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The threshold characteristics of a new type of piezoelectric instability in a finite-thickness nematic layer 
are calculated as a function of the frequency of the applied electric field. 

PACS numbers: 77.60. +v 

1. As i s  well known:" a peculiar piezoelectric effect 
exists in nematic liquid crystals, caused by the linear 
coupling between the electric polarization and the orien- 
tation of the strains of the mesophase. The correspond- 
ing contribution to the free energy of a liquid crystal, 
placed in an external electric field E, can be expressed 
in the following form by starting out with the symmetry 
properties of the mesophase in the following manner: 

6 ~ = -  J [e, (En)div n+e,E(nV)n]d3r, (1) 

where n is the "director" of the liquid crystal, and el 
and ez are  the piezomoduli. By minimizing the total 
free energy 9= % + 89, where 

(2) 
Kjj are  the elastic moduli, and c ,  is the dielectric anisot- 
ropy, Meyer has shown that a periodic distribution n(r) 
is produced in an unbounded liquid crystal by an electric 
field. Here, if  the director n in the unperturbed state 
is parallel to the x axis and the field E is directed along 
the z axis (Fig. I), the angle of inclination 8 of the di- 
rector n to the x axis in the xz plane i s  given by the ex- 
pression ['' 

at ez = - el, Kll = K39, and &, = 0. We note that in the 
given case the effect i s  not a threshold one and that the 
angle 0 changes by an amount n at  a distance xo = nKll/ 
elE, i. e., a domain picture periodic along the x axis 
and parallel to the y axis should appear. This effect 
was generalized in the work of ~ m i t r i e v ' ~ '  to the case of 
finite values of the dielectric anisotropy c,.  In particu- 
lar, it was shown that this type of instability can take 
place only upon satisfaction of the following inequality: 

We note that the absence of a threshold in the effect 
considered above is connected with the unboundedness of 
the medium. In the liquid-cry stal layer of finite thick- 
ness, the role of the boundary conditions at the solid 
surfaces is decisive, and generally such a piezoeffect 
should have a threshold character. The distribution (3) 
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is characterized by a large amplitude of the inclination 
of the director, which, at a finite layer thickness, will 
lead to the appearance of declinations; thus, the forma- 
tion threshold of such a structure must obviously be 
quite large. Such an instability has not been observed 
experimentally a t  the present time. 

2. In the present article it is shown that the piezo- 
electric coupling between the field and the orientation 
strains can cause an instability of a different type. The 
new instability, which ar ises  in a nematic layer of finite 
thickness at some threshold s t ress  is characterized by 
small deviations of the director from the x axis in two 
planes: at the angle 8 in the xz plane and a t  the angle cp 
in the xy plane (Fig. 1). Here a periodic picture of 
domains parallel to  the x axis is formed along the y 
axis. We emphasize that the boundary conditions in the 
given problem a re  taken into account exactly. We con- 
sider the case of small strains of the layer I cp I ,  
I 8 1 << 1. In this case, we have n, - 1, n, = cp, n, - 8, 
E,=O, E,=O, E,=E, cp=cp(y,z), O=B(y,z). By mini- 
mizing the quantity F= Yo + 6.Fwith respect to cp and 8, 
where for simplicity, the elastic moduli a re  set  equal: 
Kll = K2, = K, we obtain the equations for the stationary 
orientation structure of the liquid crystal: 

where e* =el  - e2. Taking into account the boundary 
conditions cp = 8 = 0 at z = k d/2, where d is the thickness 
of the layer, we find the solutions of Eqs. (5) in the 
form 

0=00 C 0 3  ( q y )  cos ( n z l d ) ,  cp=qo sin ( q y )  cos ( n z l d ) .  (6) 

Substituting (6) in (5), we obtain (from the requirement 
of nontriviality of the quantities 8, and cpo) the dispersion 
equation that connects the field intensity E with the 
wave number q, and is of the form 

where p = (&,~ /4ve*~) .  The threshold of the occurrence 
of the considered instability is determined by the mini- 
mum E = Ec at q = q, on the curve E(q), described by Eq. 
(7). Minimizing E(q), we get 

It is seen from (8) that the instability can arise only if 
the condition I ~ ( 1  i< 1 is satisfied o r  

which is similar to the condition (4). Setting &, = 0, 
K - lo6 dyn, I e* 1 - 10'~ e ~ u , ' ~ ]  we get the estimate for 
Vc=E,d-20 V. 

3. A similar piezoelectric instability exists both a t  
constant and at alternating fields. In the latter case, 

the threshold field E, depends on the frequency of the 
field w. In the approximation considered, starting with 
the general equation of motion of the director, C31 we 
can easily obtain equations for  the functions (6) with non- 
stationary amplitudes Oo(t) and cpo(t): 

where 

Y1 = a, - a, is the coefficient of shear viscosity. 

It is simplest to analyze the frequency dependence of 
the threshold for the formation of piezoelectric domains 
in the case of a meandering external periodic field of 
the form: 

where T =  2n/w. Correspondingly, in the right side of 
Eqs. (lo), the quantity B changes sign at every half 
period. It is then seen that periodic solutions O,(t) o r  
cpo(t) exist in the set  of Eqs. (lo), changing sign with 
each half period: 

00 ( t + T / 2 )  = 0 0 ( t ) ,  cpo ( t + T / 2 )  =-cpo(t) ,  (1 l a )  

00 ( t + T / 2 )  =-en ( t ) ,  ( t+T /2 )  =cpo(t) .  (1 lb) 

Estimating the solutions Oo(t) and cpo(t) in the form 

e , ( t )  =c,e'~'+eze'~', cpo ( t )  =c3e'~'+c,e4', (12) 

where the solutions of the characteristic equation (hl, 
x,) a re  given by the expressions 

and substituting (12) in (l l) ,  we obtain the following dis- 
persion equations, which determine the dependence E(q): 

Introducing dimensionless quantities 

we rewrite Eqs. (14) a s  

4. Analysis of Eqs. (15) shows that a solution of the 
form ( l l a )  is possible only at p > O(&, > 0). The solution 
( l lb)  is possible only a t  y < O(&, < 0). In the limiting 
case of low frequencies w(S2 << 1) the Eqs. (15) have the 
solutions (7) and (a), in which the sign of C( uniquely de- 
termines the amplitudes of Oo(t) and cpo(t) according to 
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FIG. 2. Qualitative dependence of the electric field on the 
wave vector of a modulated structure: a-~rkdericsz effect; 
b-threshold piezoelectric instability, no= Ip \/(I- Ip I ) .  

(11). We note that at p > 1 and O << 1, the solution (7) 
remains valid; however, the quantity E(q) has a mini- 
mum 

at q=O (Fig. 2a). This effect of the generation of an 
orientation strain that is uniform relative to x, y (the 
Freedericsz effect) is in fact independent of the piezo- 
electric properties of the liquid crystal. 

At high frequencies w(61 >> 1) and p > O(&, > O), the 
Freedericsz effect is realized only at a constant thresh- 
old value of the field E,. In the case p < 0 and 61 >> 1, 
an instability of the type ( l lb)  arises at the threshold 
field E,(w); it is strongly dependent on the frequency. It 
is not difficult to establish this fact if the inequality 
(1 - 1 pI ) << 1 is satisfied. In fact, assuming satisfac- 
tion of the inequalities 

and carrying out the corresponding expansions in (15), 
we find 

A plot of v(x) is shown qualitatively in Fig. 2b. The 
minimum of the right side in the expression (17) is 
achieved at the value w = x, if I p l 6 1: 

It is seen from (18) that the wave vector of the resultant 
structure qc depends weakly on the frequency w - S1; 

\- FIG. 3. Dependence of the 
electric field on the wave vec- 

v tor, calculated at different 
6 values of the relative frequen- 

cy: O = 0.1 (curve 1); I (curve 
2);  z (curve 331; 10 (curve 41, 
20 (curve 5). 

FIG. 4. Dependence of the threshold field on the frequency, 
calculated at different values of the parameter p: p = - 0.01 
(curve 1); - 0.5 (curve 2); - 0.9 (curve 3). 

Since, according to (19), the quantity x, << O at >> 1, 
then the expression for the threshold value of v, can be 
written with the aid of (17) in the form 

Thus, according to (20), the threshold voltage 5 - v 
has the following qualitative dependence of the param- 
eters of the material, the thickness of the layer and the 
frequency of the applied field: 

The functions of v(x) calculated numerically for different 
values of the parameter 61 are plotted in Fig. 3. Figure 
4 shows the results of numerical calculations of the de- 
pendence ~ ~ ( 6 1 )  for different values of the parameter I l l .  
Both figures are  in qualitative agreement with the con- 
clusions drawn above. 

5. The new type of piezoelectric instability should be 
observed in layers of finite thickness in nematic and 
smectic liquid crystals with negative anisotropy of the 
dielectric permittivity and planar orientation of the 
molecules on the bounding surfaces. Korn's law for the 
frequency dependence of the corresponding threshold 
field must be satisfied at frequencies higher than the re- 
ciprocal of the structural relaxation time (61 > 1) in con- 
trast with the similar law in the case of the so-called 
dielectric regime, where this law i s  valid at frequen- 
cies higher than the reciprocal of the relaxation time of 
the volume charge. The spatial period of the arising 
structure depends relatively weakly on the frequency 
(- w-ll 4) in contrast to the dielectric regime (0-'I2). 

In substances with positive anisotropy of the dielectric 
permittivity, the effect can only exist in a narrow range 
of frequencies (61 < I), smaller than the reciprocal of the 
structural relaxation time. Here the threshold charac- 
teristics depend weakly on the frequency and are  prac- 
tically the same a s  the expressions (8). 

The geometry of the forming "domain structure," - whieh differs radically-from that norm?ly observed, 
can serve as an indication of the presence in the ma- . 

terial of significant piezoelectric constants. Inhomo- 
geneous structures possessing the geometry described 
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above have been observed in a number of studies. ''I 

'Unfortunately, however, the nature of these phenomena 
remains unclear. It is desirable to search for the above 
effect in liquid crystals of the type investigated in Ref. 
5, in which Williams domains cannot exist because of 
the change of the sign of the anisotropy of the conduc- 
tivity or viscosity. 

'R. B. Meyer, Phys. Rev. Lett. 22, 918 (1969). 
's. G. Drnitriev, Zh. Eksp. Teor. Fiz. 65, 2466 (1973) [Sov. 

198 Sov. Phys. JETP, Vol. 45, No. 1, January 1977 

Phys. JETP 38, 1231 (191411. 
3 ~ .  G. de Gennes, The Physics of Liquid Ctystals, Clarendon 

Press, Oxford, 1975. 
*I. G. Chistyakov and L. K. Vistin', Kristallagrafiya 19, 195 
(1974) [Sov. Phys. Crystallogr. IS,, 119 (1974)]. 
'M. Goscianski and L. Leger. J. de Phys. Coll. 36, C1-231 
(1975). 

's. A. Pikin and A. A. Shotl'berg, Kristallografiya 18, 445 
(1973) [Sov. Phys. Crystallogr. 18, 283 (1973)l. 

Translated by R. T. Beyer 

Yu. P. Bobylev and S. A. Pikin 198 


