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The dynamics of phase transitions at multicritical points is investigated. Systems whose free energy can be 
represented in a Ginzburg-Landau form with one order parameter are considered. The dependence of the 
critical dynamics on conservations laws in the system is considered. Different types of universal dynamical 
behavior are distinguished. The effect of many-particle excitations on the critical-damping frequency is 
established. The logarithmic corrections to the theory of dynamic scale invariance that arise from the 
interaction of fluctuations at a tricritical point are found. The possibility that these effects are manifested 
in nondegenerate metamagnets is discussed. 

PACS numbers: 64 .60.K~ 

One of the most attractive features of critical phe- 
nomena is their universality. This consists in the fact 
that the critical exponents and a number of other quan- 
tities depend only on such characteristics of physical 
systems a s  the dimensionality, the number of compo- 
nents of the order parameter, and the symmetry. ['I In 
the dynamics of critical fluctuations the concept of uni- 
versality takes on a narrower meaning-the conserva- 
tion laws for the order parameter and the energy in the 
system also become important. (Here i t  i s  understood 
that the system is on a critical line in the space of the 
thermodynamic variables and external fields. ) 

However, curves of continuous transitions can termi- 
nate a t  certain points, passing into phase-coexistence 
curves. Such behavior occurs a t  certain points on the 
phase diagrams of a 'He-'He mixture, metamagnets, 
and compressible magnets. C2"01 Such points a re  crit- 
ical for several phases a t  once (ordered, disordered 
and mixed), and the number u of phases determines the 
order of the critical points. It has been established that 
the static properties of phase transitions change sub- 
stantially a t  these points. c"-131 The changes that the 
dynamics of fluctuations can undergo a t  multicritical 
points a re  unknown. The role of the conservation laws 
a t  such points has also not been elucidated. The present 
paper i s  devoted to examining this group of questions. 

1. At an ordinary critical point (a= 2) two-particle 
excitations of the energy density can decay into one- 
particle excitations of the order parameter $, changing 
the damping of the latter. '"I But in the case of higher 
critical points the fluctuations of 11, may be coupled non- 
linearly with excitations consisting of more than two 
fluctuations. We show below that if such excitations a r e  
not damped they determine the dynamics of the critical 
fluctuations in many respects. 
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The local field p,(x) of excitations consisting of k par- 
ticles can be constructed in the form of a product of k 
fluctuating fields of the n-component order parameter 
11,(x). In the general case the quantity pk is a tensor of 
rank k. Its components (or their linear combinations) 
should be such that the operations of the symmetry group 
of the free energy do not change them. This ensures 
the conservation of the total field p, equal to the inte- 
gral  of the local field pk(x) over the volume (henceforth 
we shall speak simply of the conservation of the field 
P*(x)). 

We shall consider a f ree  energy that i s  isotropic in 
the space of the components of the order parameter, 
when the field p, i s  characterized by a tensor contracted 
with respect to the maximum possible number of pairs 
of indices. As a result, for even k the field pk is a 
scalar field and for odd k i t  is a vector field with n com- 
ponents. For many-particle excitations to be mani- 
fested in the critical dynamics i t  is important that, in 
the equations of motion, the nonlinearities due to the 
coupling of one-particle and many-particle excitations 
do not fall off a s  we go to large lengths (small frequen- 
cies); this imposes restrictions on the scaling dimen- 
sions of the nonlinearities. This requirement is in- 
herently linked with the condition that the inclusion of 
many-particle excitations in the equations of motion 
should not change the equilibrium distribution function 
of the field J I (X ) .  

We write the free energy of the system in the form of 
the functional 

where d is the dimensionality of the system. We shall 
describe the dynamics of the model by the equation 
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FIG. 1. Dynamic four-point func- 
tion arising at a tricritical point. 

where h(x, t) is the magnetic field and the kinetic coef- 
ficient r0 depends on the conservation laws for the order 
parameter. Thus, when the order parameter is con- 
served, ro - - r0v2; otherwise, I',- const. The intro- 
duction of the random Gaussian force q(x, t) takes into 
account the influence of the heat reservoir. The aver- 
age (f (x, t)) is equal to zero, and the correlation func- 
tion 

(qa(x, t )  qB(x', t') )=2I',6 (x-xr)6(t-tt)6,@, (3 

where the angular brackets denote averaging over the 
fluctuations of the random force. 

For the subsequent analysis we shall use the renor- 
malization-group method. C149151 Here i t  must be re-  
membered that the space dimensionality d, below which 
stable nontrivial solutions of the renormalization-group 
equations for the coupling constants of the fluctuating 
fields appear, changes a t  critical points of higher or-  
ders. [111 In the calculations we shall use an expansion 
in E, =do - d-the deviation of the dimensionality d of 
the system from dU=2u/(u- 1). It is convenient to re-  
define the bare vertices u,, by including in them the con- 
tributions, independent of the wave vector q and fre- 
quency w,  from all  closed loops arising in the expansion 
in the coupling constant. In order to carry  out the anal- 
ysis a t  a critical point of order a, a t  each stage of the 
calculations we can assume that the redefined vertices 
%, with k < o a r e  equal to zero, since their specified val- 
ues vanish in the critical region. 

The interaction of the critical fluctuations leads to 
the appearance of purely dynamic vertices 

including some with less  than 20 legs (cf., e. g., Fig. 
1). However, such vertices appear in a t  least second 
order in u,,. For small internal momenta the vertex 
%,-E,, and, confining ourselves to f i rs t  order in c,, 
we can neglect the contribution from vertices with k <a. 
Passage to the region of internal momenta that a r e  not 
small is characterized by the appearance of momentum 
dependence of %,, so that, in place of the specified val- 
ues - e,, certain functions that a r e  not proportional to 
e, appear. Vertices %, with k < a constructed by means 
of such u,, give nonsingular contributions to the self- 
energy parts of the dynamic correlators, and these 
contributions a r e  cancelled in the subtraction accom- 
panying the renormalization of the mass (critical tem- 
perature). Consequently the vertices %, with k < a  do 
not lead to change of the critical dynamics. 

We shall now elucidate what complications of the equa- 
tions of motion can arise a s  a result of the interaction 
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of the order parameter with many-particle excitations. 
In order  to select, from the nonlinearities which then 
arise, those which a r e  able to change the critical dy- 
namics as compared with mean-field theory, we must 
take into account that only nonlinearities with scaling 
dimension A < d - A,, where A* is the dimension of the 
relaxing quantity, a r e  important. wegnercfll has cal- 
culated the scaling dimensions of quantities composed 
of products of fields $(x) and has found their dependence 
on m (the number of pairs of indices over which the con- 
traction is performed) and 1 (the number of free indices). 
From all the quantities of this kind, satisfying the in- 
equality given above, we must select the fields whose 
coupling with the order parameter J,(x) does not change 
the equilibrium distribution of $(x). At a critical point 
of order o the fields p,(x) for which 1 +2m = o a re  such 
fields. According to Wegner, C1ll for fields transforming 
like - I x l - *ml  under a change of scale, we have 

The binary correlator of the field p, depends on the wave 
vector q in the following way: 

2. We shall study the dependence of the fields $ and 
p, on time. To obtain the conjugate thermodynamic 
forces appearing in the right-hand sides of the equations 
of motion, i t  i s  convenient to regard p,(x, t) a s  an in- 
dependent field interacting with J,(x, t) and write the 
following expression for the part  of the entropy that de- 
pends on these fields: 

Here w,,, y, and v, a r e  certain constants. In this case 
the quantity f -  exp[~($, determines the joint distribu- 
tion function of the fields J, and p, in the equilibrium 
state. The wave vectors of the harmonics of $ and p, 
a r e  bounded from above by the values A and A,, re- 
spectively. We note that the quantity p, averaged for a 
given configuration $(x) coincides with i t s  definition in 
terms of the field $(x). The order-parameter distribu- 
tion function, which i s  not difficult to obtain by averag- 
ing f over all possible configurations p,(x), coincides a t  
a critical point of order o with the order-parameter 
equilibrium distribution of the type e-"IT a t  the same 
point, if the quantities %, and w,, a r e  connected by the 
relation 

Introducing the thermodynamic forces by means of 
the entropy (81, we write the equation for $(x, t) in the 
form 

and the equation for the conserved field p,(x) a s  
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Here T,(x, t) is the field conjugate to p,(x, t), is the 
transport coefficient of the o-particle excitations, and 
5,(x, t) i s  a random force such that 

( t . ( x ,  t )  )=O, ( g o ( x ,  t)E.(xr, t ' )  ) 
=-2Loav~8(x-xf)6(t-t'). 

In the case when the field p, is not conserved, it is 
sufficient to consider Eq. (2) only. As a result we can 
distinguish four types of dynamic behavior: 

I. @ is not conserved, p, is not conserved. 

11. J ,  is conserved, p, is not conserved. 

III. J ,  is not conserved, p, is conserved. 

IV. $ is conserved, p, is conserved. 

This classification differs from that introduced inc14] 
in that, instead of the energy conservation laws, the 
conservation laws for the fields p,(x) a re  important in it. 

To analyze these cases we shall consider the dynamic 
correlation functions of the order parameter (G(q, w)) 
and the field p, (D(q, w)), which have the meaning of the 
responses to the corresponding conjugate fields h(x, t) 
and T,(x, t). Iterative solution of Eqs. (10) and (11) en- 
ables us to write them a s  

a r e  the bare correlators a t  the critical point. The self- 
energy parts C(q, w )  and II(q, w) a re  expansions in the 
coupling constants z+., and yo. The graphs of f i rs t  o rder .  
in E, a re  given in Fig. 2. 

To determine the dynamic critical indices by means 
of formulas (13) and (14) i t  is necessary to know those 
fixed values of the constants %,, y,, and v, that ensure 
scale-invariant behavior in the critical region and a r e  
of a certain order in E,. As follows from a dimensional 
analysis, the frequency dependence of the correspond- 
ing vertices is given by the factor wCoMt'"; therefore, 
to within terms -E,, the fixed values of u,,, y,, and v, 
calculated from the static renormalization-group rela- 
tions suffice for us. These relations relate the force 
constants u,,, yo, and v, to their values obtained after a 
decrease of the cutoffs A and A, by a factor of b and a 
subsequent change of scale. Having carried out these 
operations, in lowest order in E, and for b >> 1 we have 
(see the graphs in Fig. 3) 

FIG. 2. Self-energy part Z(q, w) in the approximation linear 
in E,. The wavy lines correspond to Do(q,  w) and the smooth 
lines to G,(q, w). The internal integration is performed over 
wave vectors with lengths from A / b  to A  and over frequencies 
from - w to w. 

FIG. 3. Static recursion relations (without the combinatoric 
factors) for  the quantities a) u ~ ~ ,  b) v,, C )  y,. Graphs with 
p = 1, 2, . . . , o - 1 must be taken into account. 

where 

From these equations we obtain the following fixed val- 
ues of the quantities u,,, y, and v, (we mark them by an 
asterisk): 

y"/v,'=yA.-' ( I )  B.-I. (19) 

Moreover, by means of (16) we can confirm the relation 
(7). The solution with y * # 0 is stable only when y > 0. 
In the opposite case, when y < 0, i. e., the static cor- 
relator of the field p, does not diverge, .P = O  and the 
order parameter is not coupled to the field p,. All the 
fixed values a re  independent of the bare coupling con- 
stants. 

3. We consider now the behavior of the kinetic coef- 
ficients, which a r e  determined by the relations 

r-I= aG-l for a conserved order parameter $. 

I -  - aD-I 1- for a consewed field p.. 
a - 4  

In writing the recursion relations for these, we must 
take into account that under scale transformations the 
frequency changes a s  follows: w - w' = bbw. "*"' TO 
first  order in E,, using the diagrams of Fig. 2 we have, 
for b>> 1, 

where 
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p, =A,, v, r-' and y(v, x )  is the incomplete gamma-func- 
tion. 

For case I, y * = 0 (or - =m ), and therefore the fixed 
values of r a r e  attained with z = 2 + o(E~). It has been 
shown by the that the corrections to the value 
of the dynamical index determining the critical-damp- 
ing frequency w, -qa a r e  numerically small. In case 
11, however, fluctuation corrections do not ar ise  a t  all, 
and the exponent z = 4  +O(E;). 

We turn to case 111. Using the expressions (17), (20), 
and (211, we can write the following recursion relations 
for p,: 

Substitution of (19) into this leads to the following fixed 
values: 

where c is the solution of the equation 

The point p* ==m should be excluded from consideration, 
since i t  leads to the case I. 

After investigating the remaining points for stability 
and substituting them into (20), we establish from the 
condition for the existence of nontrivial solutions for I' 
that the exponent of the frequency of the critical damp- 
ing of the order parameter for even o is equal to 

and for odd o is equal to 

The frequency of the critical damping of the field p, 
is characterized by the index z, = 2 + y. From this i t  can 
be seen that the coupling of Il, with p, has the result that 
the damping frequency of the order parameter decreases 
and i s  pulled toward the damping frequency of the field 
p,. This is manifested in a substantial increase in the 
value of z a s  compared with that in case I. To demon- 
strate the size of these deviations to f i rs t  order in &, 

we cite 

It can be seen that the index z depends essentially on 
the order of the critical point. For even o w e  have put 
I = 1 in formulas (23) and (25). 

In case IV corrections to the value z =4  +o(E~)  do not 
arise. 
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For o >  2 our results characterize the fluctuation cor- 
rections that appear in planar models. For an ordi- 
nary critical point (u =2) they coincide with the results 
obtained inc1''. 

The case when d =do merits special attention, since 
a t  a tricritical point i t  corresponds to a three-dimen- 
sional system. For  d =dm all the dynamical indices 
coincide with their mean-field values, but in case III 
the int'eraction of the fluctuations leads to the appear- 
ance of logarithmic corrections to the power laws. 
These a r e  most important for the kinetic coefficients 
r(-  qa4), which a re  constants in  the mean-field theory. 
It is not difficult to find the powers of the logarithmic 
factors from formulas (23) and (24) for the fluctuation 
corrections to the dynamical exponents for d <do. By 
using the fact that when the dimensionality d deviates 
from d, the long-wavelength singularities of the type 
lnq in the divergent diagrams a r e  replaced by power 
singularities -q'O"-a', we obtain for even a 

and for odd o 

For  s <0, which, for n>4, occurs only for o =  2, I' 
= const. 

At a tricritical point we have 

4. We shall discuss the connection between the models 
considered and specific physical substances, giving our 
attention principally to nondegenerate systems from the 
class of metamagnets. These a r e  anisotropic antiferro- 
magnets of the type FeCh, ['I FeBr,, C5*61 ~ i ( N 0 ~ ) ~  . 2H20, ['I andothersL6'; they a r e  a se t  of planes weakly 
coupled by antiferromagnetic interaction, with a stronger 
ferromagnetic interaction within a single layer. Com- 
plicatedphase transitions can occur in such systems a s  
the temperature is lowered: a continuous transitionfrom 
the paramagnetic to the antiferromagnetic state occurs 
first, and, in the presence of an external magnetic field, 
separation into a paramagnetic and an antiferromagnetic 
phase can begin, indicating the presence of a complex 
critical point. The same behavior in a magnetic field 
can be displayed by planar Ising systems in which, to- 
gether with antiferromagnetic nearest-neighbor ex- 
change, there is a sufficiently strong ferromagnetic in- 
teraction between next-nearest neighbors. Both types 
of metamagnets correspond to Ising models with two ex- 
change integrals J1 and J2. In studying the dynamics 
of such systems we must also take into account that 
each Ising spin is coupled with the lattice, and, there- 
fore, irreversible equations of motion for the spins can 
be obtained only after averaging over the lattice vari- 
ables. In this case, depending on the properties of the 
spin-lattice interaction, these equations will indicate 
whether the total spin is conserved o r  not. Moreover, 
in an isolated spin system there can be conservation of 
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both the energy and other quantities constructed from 
spin variables (these quantities should commute with 
the ~amiltonian). Averaging over distances larger than 
the lattice c~nstant"~*'~ '  transforms these quantities 
into the fields of the o-particle excitations that we have 
considered, and the equations of motion take the form 
of (10) and (ll) ,  the conservation laws remaining a s  
before. In this way one of the four cases of dynamical 
behavior that we have analyzed can be realized. After 
the smoothing the free energy takes the form (I), in 
which the coefficients z+, will be functions of the tem- 
perature, the external magnetic field B, and the ratio 
of the exchange integrals. The values of T and B for 
which % =u4 = O  correspond to a tricritical point. For 
the particular value Jl/J2 = 0.6 there a re  certain T and 
B that ensure u2 = u, = u, = 0 and correspond to a tetra- 
critical point. "' Since the magnitude of the exchange 
interaction i s  a function of pressure, metamagnets can 
exist in which it  i s  possible to observe a tetracritical 
point by varying the pressure applied to the system. 
The experimental observation of multicritical points i s  
discussed 

Summarizing, we can say that, besides the conserva- 
tion laws for the order parameter, the conservation laws 
for coupled o-particle excitations play a fundamental 
role in determining the dynamical properties of a sys- 
tem at a critical point of order o. The presence of 
these excitations has a substantial effect on the trans- 
port processes. This leads us to distinguish four types 
of dynamical behavior in systems with the same static 
critical properties. In the framework of each of these 
four classes the dynamical behavior i s  universal, al- 
though it i s  true that in case 111 certain subtleties can 
arise in the presence of more than one conserved field 
Po. 

We note also that the strong dependence of the dy- 
namical indices on o that appears in the most interest- 
ing case I11 may turn out to be useful for the experi- 
mental identification of unknown multicritical points. 

In the present paper we have investigated only the 
stochastic equations of motion, which do not take into 
account the order-parameter precession that i s  char- 
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acteristic for degenerate systems. When this preces- 
sion i s  taken into account in the case of ' ~ e - ' ~ e  mix- 
tures and degenerate magnets, corrections to mean- 
field theory arise on account of nonlinearities that do 
not depend on the order of the critical point. Con- 
sequently, the dynamical indices z a re  expressed in the 
same way for all  o, in terms of the static critical ex- 
ponents at the corresponding critical point. 
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