
the left of the transition and the conducting network de- 
termines that on the right. For  R, >R,u,,,/u, the dielec- 
t r i c  is found to have a determining role in a certain re- 
gion to the right of the transition a s  well (curve 4). 

It is interesting to note that for pd < p, our results 
differ not only quantitatively but also qualitatively from 
the predictions of effective-medium theory. 'I2' This 
theory leads to a monotonic decrease of R(x) with in- 
crease of x. For example, in the case R, =Rd 5R the 
effective-medium theory gives R(X) =R = const. But in 
reality R(x) should have a sharp maximum. 

We assumed above that the equality (28) is fulfilled. 
If this is not so, the two-band model is not entirely ad- 
equate for x <x,. This may be connected with the neglect 
of the Hall current generated in the active dielectric 
layers of the conducting network. However, we a r e  con- 
fident that, even in this case, the formula (27) gives a 
qualitatively correct description of the behavior of ~ ( x ) .  

I am grateful to A. L. gfros for very useful discus- 
sions about the article. 
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Anomalous penetration of an electromagnetic field into a 
metal with diffuse reflection of electrons by the specimen 
boundary 
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A theory is constructed for anomalous penetration (AP) of an electromagnetic wave into a metal placed in 
a magnetic field parallel to its surface. The reflection of electrons from the metal-vacuum interface is 
assumed to be diffuse. AP of the field occurs along a chain of electron trajectories. It is shown that under 
anomalous-skin-effect conditions in the radiofrequency range, the field distribution contains four spikes, at 
distances from the boundary of one, two, three, and four cyclotron diameters. The first three spikes have 
a distinct spatial structure, whereas the fourth exists against the background of a smooth quasiharmonic 
distribution. At distances exceeding the region of existence of the last spike, the field has a 
quasiharmonic character. 

PACS numbers: 73.90. + f 

1. INTRODUCTION 

The effect of anomalous penetration (AP) of an elec- 
tromagnetic wave into a metal along a chain of electron 
trajectories, in a magnetic field H parallel to the sur- 
face of the specimen, is well known in the physics of 
metals (see Fig. 1). It has been observed experimen- 
tally by ~antmakher'" and investigated theoretically in 
an article by one of the authors."' A large number of 
papers have now been devoted to this phenomenon (see 
the reviewcs1 and also the a r t i ~ l e [ * ~ ) ~  There is at pres- 
ent extensive experimental material on the observation 
of AP of the trajectory type in many metals. Neverthe- 
less there has so  far  been lacking a systematic theory 
of the trajectorial transfer of an electromagnetic wave 
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with allowance for the interaction of the electrons with 
the specimen surface. The reason lies in the mathe- 
matical difficulties that ar ise  when one takes account of 
this interaction and that lead to a complex character of 
the field distribution in the metal. In order to circum-, 
vent these difficulties, qualitative considerations have 
been introduced. It has been supposed that a good ap- 
proximation is the distribution of the electric field E in 
an infinite specimen with a current sheet, simulating 
the skin layer 6 (see, for example, c31). In other words, 
i t  has been assumed that the principal role in AP is 
played by electrons that do not collide with the metal- 
vacuum interface, and for which it is possible to use the 
results that a re  valid in an infinite specimen. Thus for  
a wave polarized perpendicular to  H, the spatial distri- 
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FIG. 1. Picture of anomalous penetration of an electromag- 
netic field into a metal with a diffuse boundary. On the left is 
depicted a chain of trajectories of volume electrons that parti- 
cipate in A P .  On the right is shown the achematic form of the 
field distribution in the specimen. 

bution of the field E(x) is determined by the following 
e ~ ~ r e s s i o n ~ ~ * ~ ~  : 

2Ef(O)6 e cos ( x e / 6 )  
E (x) = - ----- 

x di ~ ' - r + i ( l C ' ~ t ? ~ ) '  r in (?Rl /6 -n /C) .  (1.1) 

Here the x  axis is directed along the internal normal to 
the metal surface; R i s  the maximum Larmor radius of 
an electron orbit in field H; 2E1(0) i s  the discontinuity 
of the derivative of the electric field at the interface x 
=O;  and 6 i s  the depth of the skin layer. 

Analysis of formula (1.1) shows that it describes three 
spikes of the field E, at distances of one, two, and three 
cyclotron diameters 2R from the surface. At larger 
depths, the field has a quasiharmonic character. Finite- 
ness of the number of spikes of the electromagnetic 
field, in a metal placed in a parallel magnetic field H, 
is a general law of the trajectorial transfer effect for 
all actual types of closed Fermi surface (the case of a 
cylindrical Fermi surface i s  an exception). The physi- 
cal reason for such behavior of the field of the wave i s  
the following. The existence of a spike is due to the oc- 
currence of a packet of shortwave harmonics in the 
spectral expansion of Eb ) ,  with characteristic values 
of the wave vector k- 6". On the other hand, from gen- 
eral considerations it i s  clear that with increasing dis- 
tance from the surface, information about the field E i s  
determined by an ever increasing contribution of the 
longwave part of the spectrum, with k<< 6''. It is the 
competition of these two factors that leads to the finite 
number of spikes. 

The actual distribution of the field E(x)  in a bounded 
metal differs from formula (1.1) and in general depends 
on the character of the scattering of the electrons by the 
specimen boundary. Therefore the number of spikes and 
their shape must also depend on the law of reflection of 
electrons by the surface. We have recently solved the 
problem of AP in a metal with a specular b~undary. '~] 
In that paper it was shown that the number of spikes i s  
two and that their shape differs importantly from the 
shape determined from (1.1). This i s  explained physi- 

cally by the fact that with specular reflection in a paral- 
lel magnetic field H, in addition to the electronic states 
that exist in an infinite metal, there appears a group of 
electrons that are  bound to the surface (grazing elec- 
trons). The surface electrons form a fundamental skin 
layer at the metal-vacuum interface and thus exert an 
important influence on the trajectorial transfer of the 
electromagnetic wave. 

In the present paper, a theory is developed for AP 
along a chain of trajectories in a metal with a diffuse 
boundary. A constant magnetic field H is applied paral- 
lel to the specimen surface. It might seem that in this 
case one could apply the concept of effective participa- 
tion in trajectorial transfer only by electrons that do not 
collide with the boundary. But a detailed analysis pre- 
sented in the present paper shows that the influence of 
the metal surface leads to a significant change of thepic- 
ture of AP, as compared with the results of the theoreti- 
cal papers.g*33 Specifically, the range of existence of 
singularities of the field E(x)  i s  broadened. The num- 
ber of spikes i s  found to be four, and their shape differs 
from that obtained from the expression (1.1). 

The difference in the number of spikes and in their 
shape, in the diffuse and the specular cases, makes it 
possible to determine the nature of the scattering of 
electrons by the metal boundary by experiments on AP. 

2. STATEMENT OF THE PROBLEM. SOLUTION OF 
MAXWELL'S EQUATION 

We consider a metallic half-space located in a con- 
stant and uniform magnetic field H. The vector H lies 
in the metal-vacuum interface. We choose the coordi- 
nate system as follows: the y and z axes lie in the metal 
surface (the plane x = 0), the z axis i s  parallel to H, and 
the x  axis is directed along the internal normal to the 
specimen surface, as i s  shown in the figure. 

Let there be incident on the interface x=O a plane 
monochromatic wave of frequency w, whose E vector is 
polarized perpendicular to H (E II y). The direction of 
propagation of the wave coincides with the x axis. The 
electric field E ={o, E, 0) inside the metal, x 2 0, depends 
only on the coordinate x ;  that is, E = ~ ( x )  exp(- iwt). 

We introduce the Fourier transformation 

Maxwell's equation for the Fourier component 5(k) of 
the field has the form 

k z 8  ( k )  +2E'(0) =4nioc-'j ( k )  , (2.2) 

where j(k) is the Fourier transform of the current den- 
sity, and where c i s  the velocity of light; the prime in- 
dicates differentiation with respect to the argument. 

Because of the spatial inhomogeneity of the problem, 
the relation between the Fourier components of the field 
~ ( k )  and of the current j(k) is of integral nature: 

I "  
1 ( k )  -X ( k ) t  ( k )  - dkr Q ( k ,  kr)  t ( k r ) .  (2.3) 

0 
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Here ~ ( k )  is the Fourier transform of the conductivity 
of an infinite metal; the kernel Q(k, kt) takes account of 
the influence of the boundary x=O on the electrical con- 
ductivity of the specimen. Exact expressions for the 
kernels $(k) and Q(k, kt), for an arbitrary coefficient p 
of reflection from the metal surface (0 s p s I), a re  given 
in[61 

We consider the case of a radiofrequency anomalous 
skin effect, 

with diffuse scattering of the electrons by the interface 
x=O; that is, when 

Here y = (v - i w)/D, R = v/SZ is the maximum Larmor 
radius of an orbit, S2 =eH/mc is the cyclotron frequency 
of revolution of an electron in the magnetic field H, v 
is the Fermi velocity, e is the absolute value of the 
charge, m is the effective mass, and v is the frequency 
of collision of the electrons with the scatterers. 

The condition (2.4) consists of three inequalities, 
namely l y l  <<l, kR>>1, and l y l  <<kR. The f i rs t  of 
these selects the region of low frequencies (strong mag- 
netic fields HI. The second inequality indicates anoma- 
lousness with respect to the magnetic field, R >> 6- k-'. 
The third is the condition for an anomalous skin effect, 
and equivalently the requirement that the thickness 6 of 
the skin layer be small in comparison with the effective 
free-path length of the electrons, v/l v - i w l  >> 6. 

We shall not present the standard procedure for ob- 
taining the asymptotic behavior of X(k) and Q(k, kt). We 
shall a t  once write the result. For  simplicity we shall 
restrict  ourselves to the case of a quadratic and isotro- 
pic law of dispersion of the electrons (an alkali metal). 
The formulas given below, however, are  also applicable, 
with insignificant changes, when the section of the Fer- 
mi surface by a plane perpendicular to H is a convex 
closed curve of arbitrary shape. 

The asymptotic behavior of the electrical conductivity 
X(k) of an infinite metal, under the condition (2.4), has 
the form 

where o = ~e ' /m(v - iw);  N is the concentration of the 
electrons. 

The integral conductivity kernel Q (k, k'), when the in- 
equalities (2.4) and (2.5) a re  satisfied, is asymptotically 
the sum of four terms: 

3a 4 =n 
Q ( k .  k') - [-(kk') -Ih d8 sin' 8 

8R n k-k' 

sin (2kR-n/4) sin (2k'R-nl4) + 
2 ~ 1 f n  k+k (2k'R) '" 

30 (kk') -" cos [2 (k+kt)R-11/41 
--p 

2 ~ 1 5  k+k' [2(k+kr)R]'" . 
(2.7) 

The expression (2.7) for  Q(k, kt)  is due to the contribu- 
tion of volume electrons, which do not interact with the 
specimen boundary. The contribution of surface elec- 
trons to the conductivity is small, in comparison with 
(2.71, according to the parameter l y l / ( l -  p )  << 1. 

The f i r s t  terms in formulas (2.6) and (2.7) describe 
the anomalous skin effect. The remaining terms, which 
oscillate rapidly according to 2kR, insure AP on elec- 
tron trajectories of the central section of the Fermi  
surface. The AP terms in the conductivity of a metallic 
half -space contain, a s  compared with the smooth part, 
the smallness parameter (2kR)'"', which i s  equal t o  the 
relative number of electrons that effectively participate 
in trajectorial transfer. 

For convenience in later consideration, we introduce 
the notation 

8 ( k )  =-2E'(0)fjZF(k6), 6= (2caR/3noa) ". (2.8) 

The quantity 6 is the depth of the skin layer in an anoma- 
lous skin effect in a strong magnetic field H. 

We substitute the asymptotic expressions (2.6) and 
(2.7) in the right side of (2.2), then in Maxwell' s equa- 
tion go over from the Fourier component 8(k) to the 
function F(k6). We also introduce the dimensionless 
wave number 5 = k6. As a result, we obtain the follow- 
ing integral equation for the function ~ ( 5 ) :  

4t dx s in[2R&sinB(x-1)/6]  
(6'-2i)F(6) + - J dB sin' I3 J - Z F ( ~ X )  

a- * Yx 2-1 

i  " d x F ( 6 z )  
t - J T r - - - - = C 5 - 2 i  ( - n'C5 ) 'la sin (T 6 - 5) 

n Y Z  x f l  4 

We shall carry out the solution of (2.9) by perturba- 
tion theory, making use of the smallness of the AP 
terms in comparison with the smooth terms. The an- 
swer is expressed in the form of a sum 

The function ~ ~ ( 5 )  is the solution of the unperturbed 
problem and is determined from equation (2.2) with a 
current density corresponding to the anomalous skin ef- 
fect; that is, 

Equation (2.11) was solved by Hartmann and ~uttinger" '  
by means of the Mellin transformation. The function 
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Fo(5) is expressed as  a contour integral in the complex 
z plane'']: 

L+'" 

Fo (E) = - j dz E'M ( z ) ,  -2<c==Re z<O. 
2ni (2.12) 

The Mellin transform ~ ( z )  is regular in the vertical 
strip - 7/2< Rez < 2, with the exception of the three sin- 
gular points z = - 2, z = 0, and z = 1. At these points 
M(z) has simple poles with residues 1, - 2 exp(ir/3)/3, 
and - i/2 respectively. It should be mentioned that in 
the interval (- 7/2,2) the function ~ ( z )  vanishes (all 
zeros a re  simple) at the points z = - 3, z =+, and z =$. 
The function M(z) satisfies the difference equation 

M (z -3 )  -- sinz(nz/2) 
--2i 

M(z )  cos (nz )  

and is described, within the strip of regularity (- 7/2,0) 
by the formula 

We shall later need the values of the function ~ ( z )  at  the 
points z = - 1 and z = - i. We write them: 

x z ( l z - l l i )  ne" ' .V'(-I)=- -- 
108 3T3 ' 

It follows from the expression (2.12) that for 5 - * 

andfor 5-0 

We next find F1([). We note that in Eq. (2.9) the 
terms containing F1(.$) under the integral sign a re  small 
in comparison with the corresponding terms outside the 
integral and may be neglected. Among the terms con- 
taining F,,(() on the right side of equation (2.9), it is 
necessary to keep only the term containing sin(2R[/6 - n/4) and the smooth term in the integral next to 
cos(2R5/6 - r/4). The integral must then be understood 
as  the principal value. As a result we get 

A - 
( & ) s i n ( 2 ~ & / 6 - n / 4 )  +X (&) cos (2AE/6-n/4) 

"'(')- Ef-2i+2i(46/nR&) 5 j s in (2R~/6-n /4 )  ' 
(2.17) 

Here the following notation has been introduced: 

'+" 2 sinz (nz /2 )  
=- dzM(z)EZ , -1/2<c=Re z t i .  (2.18) 

2nic_,= cos (nz )  

The function ~ ( 5 )  is defined by 

From formulas (2.18) and (2.19) it is not difficult to ob- 
tain the asymptotic forms of the functions &([) and ~ ( 5 ) .  
For  5 - *, 

exp (nil4) 
@ ( b ) = - =  -x(E), 

u2T 

for 5-0, 

It is interesting to compare the solution (2.10) of the 
integral equation with the corresponding expression for 
an infinite metal. In an unbounded specimen, the role 
of F o ( o  is played by the function 5/(tS - i). The denom- 
inators of the oscillatory terms a r e  of the same form in 
the two cases (the value of 6 in an infinite metal is 
smaller than (2.8) by a factor 2lI3), whereas the numer- 
ators a re  different. In the approximation of an unbound- 
ed specimen, the numerator of the oscillatory part is 
proportional to sin(2R[/6 - n/4), while in formula (2.17) 
there occurs a term ~ ( 5 )  cos(2R 5/15 - n/4). The identical 
form of the denominators indicates that the mechanism 
of AP is, as  before, determined by electrons that do not 
collide with the boundary of the specimen. But the scat- 
tering at the surface significantly changes the picture 
of the field distribution as a whole. In particular, the 
presence of the second term in the numerqtor of (2.17) 
leads to the appearance of a fourth spike of E(x). 

3. THE FIELD DISTRIBUTION 

The spatial structure of the electromagnetic field in 
the metal i s  determined by the solution F I ~ )  of the inte- 
gral equation (2.9) according to the formula 

After substitution in (3.1) of the expression for F(5) in 
the form (2. lo), (2.17), we obtain for E(x) the following 
representation: 

-d& cD (E)cos[ (z-2R)&/6-x/4]  +x(&)sin[ (~-2R)EM-n/41 
xJ- 

a Y E  E'-2i+2i (46/nR&) " sin (2RV6-n/4) (3.2) 

Here Eo(x) describes the smooth component of the field, 
due to Fo(5). To obtain it, the function ~ ~ ( 5 )  must be 
substituted for F(5) in formula (3.1). The second term 
contains the spikes of ~ ( x ) .  In the expression (3.2) we 
have omitted a smooth term that is smaller than Eok)  
by a factor ( n ~ / 4 6 ) " ~  >> 1. It coincides in form with the 
second term in (3.2) if, in it, x is  replaced by - x. 
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Formula (3.2) represents the solution of the problem 
of the field distribution in the metal. Numerical inte- 
gration of this expression can give a graphical descrip- 
tion of the change of E(x) with distance. Unfortunately 
we do not possess such technical resources. We shall 
therefore carry out an analytical investigation of formu- 
l a  (3.2). 

We consider the structure of Eo(x). On substituting in 
(3.1) the integral representation (2.12) of Fo([), we ob- 
tain Eo(x) in the form 

At large distances from the surface, 6<<x << R, the be- 
havior of Eo(x) is described by an asymptotic expression 
that i s  the sum of the residues of the integrand, with 
sign reversed, at the simple poles z = 2 and z = 3: 

From (3.4) i t  is seen that with diffuse reflection of the 
electrons by the specimen boundary, the smooth part 
Eo(x) of the field falls off faster, in the interior of the 
metal, than in the specular case (compare with formula 
(4.8) of ['I, where Eo(x) - f3l2). 

To analyze the second term of (3.2), i t  is necessary 
to expand it  a s  a series in the small parameter (46 /? r~)"~  
<< 1. For this purpose we add to  and subtract from the 
integrand a term with the same structure, but without 
the term containing s in(2~[/6  - n/4) in the denominator. 
The integral of the added term describes the f i rs t  spike. 
The remaining term (the difference between the original 
expression and the added term) is small in comparison 
with the first  term of the expansion in the parameter 
(46/?r~)"~ << 1. It contains the remaining spikes. From 
the difference thus obtained, by the same procedure, the 
second and third spikes a re  separated out. Separation 
of each successive spike adds to the remaining term a 
multiplier (46/?r~[)"~; therefore the expansion proce- 
dure is valid a s  long a s  the integrals over 5 remain finite 
at small 5 .  Consequently the term containing %([) in 
the exact formula (3.2) can be decomposed three times, 
and the term proportional to x(() five times. As a re- 
sult, the expression for E(x)  takes the form 

E (z) = E, ( x )  4- --- (3.5) 
n=i 

Formula (3.5) is convenient in that each term in i t  
describes the field of the wave in its own region of vari- 
ation of the coordinate x. Thus Eo(x) is the field of the 
fundamental skin layer 0 =s x << R . The functions Qn((x 
- 2 n ~ ) / 6 )  describe the distribution of E(x) in the vicinity 
of then-th singularity; that is, when I x - 2nR I << R. In 
the sum over n only nonmonotonic terms a re  left, and 
each of the functions an(t) is written to the lowest ap- 
proximation in the parameter (46/?r~)"~ << 1. The small 
smooth part of the field produced by the second term in 
(3.2) has been neglected in comparison with ~, (x) .  

The f i rs t  three spikes of E k )  a re  determined by the 
expressions 

TABLE I. Asymptotic forms of the spike terms for I t l >>I. 

" dE cD ( 5 )  cos (Et-n/4) + x ( E )  sin (Et-n/4) 
yt(t)=iJT E"2i , (3.6) 

0 

These spikes a re  characterized by oscillations of ~ ( x )  
that a re  localized a t  distances within some skin layer 6 
from the centers x = 2nR (n = 1,2,3), and that decrease 
rapidly a t  the edges of the line, for I t l >> 1. The value 
of the field on the wings of the spikes decreases a s  a 
power of the parameter 6/1 x - 2nR I << 1. The asymp- 
totic forms of the functions (3.6)-(3.8) a t  large values 
of the arguments I tl a re  given in Table I. From it, it 
is evident that the f i rs t  and third spikes a re  sharply 
asymmetric: the field on the left wing (278 - x >> 6) at- 
tenuates much more slowly than on the right (x - 2nR 
>> 6). Such a behavior of the field is apparently ob- 
served e~per imenta l ly . '~~  The amplitude of the second 
spike falls off symmetrically with respect to the center 
x=4R. Near the centers of the singularities, the field 
varies linearly with distance. 

The structure of the f i rs t  three spikes indicates that 
their fields within the boundaries of the line a re  deter- 
mined by the values of the wave number k from the fun- 
damental skin layer ( k -  ti-'). Small values k- R" << 6*' 
can have an effect only on the asymptotic behavior of the 
field fa r  from the center, where 6 << I x - 2nR I 5 R. The 
steeper the law of decay of E(x) in the wings, the small- 
e r  is the contribution from k-  R" in the spectrum of the 
field of the spike. With increase of distance from the 
boundary x = 0, the relative weight of a longwave compo- 
nent in the spectral resolution of E(x) increases. Cor- 
respondingly, the decrease of the functions Qn(t) with 
increase of the argument also becomes smoother with 
increase of the number n (see table). 

In the vicinity of x = 8R and x = 10R the field distribu- 
tion is determined by the formulas 
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The first  terms in the expressions (3.9) and (3.10) have 
a purely "spike" character. Their structure is similar 
to the structure of the integrals (3.6)-(3.8). The asymp- 
totic form of the spike term of (3.9) for large I tl >> 1 is 
given in the table. 

The functions *,(t) and *,(t) a re  interesting in that 
they contain, along with spike terms, terms of another 
type-the second terms in (3.9) and (3.10). It is they 
that contain the qualitative difference of structure of 
*,(t) and *,(t) from the usual spike structure. Mathe- 
matically, these additional terms represent the remain- 
der term in the expansion of the integral in (3.2), con- 
taining the function @(t), a s  a series in the small pa- 
rameter (46 /n~)"~ .  We shall pause to analyze them. 

We consider the second term in formula (3.9). The 
rapidly oscillating function sin2(2R[/6 - n/4) may be re- 
placed, in the approximation under consideration, by i ts  
mean value 4. Since the function @(()/e2- 5-I at small 6 
(see (2.21)), in the denominator of the integrand it is 
not permissible to neglect the small quantity 86/nR 5. 
Otherwise the integral diverges logarithmically at the 
lower limit. This indicates that in this term there is an 
appreciable contribution from 5 - 6/R (k- R"). From 
the physical point of view, allowance fo r  the term 86/ 
nR( means that in the formation of the center of the 
spike, the role of small k-R" is comparable with the 
contribution of values k- 6" from the fundamental skin 
layer. The contribution of small 5- 6/R << 1 to the term 
under consideration, in the vicinity of the center of the 
line I t l 2 1 ( I  x - 8R I 2 6) is asymptotically 

Here ci(z) and si(z) a re  the cosine and sine integrals, 
respectively.ts1 The expression (3.11) describes a qua- 
siharmonic component of the wave field. A character- 
istic scale for i t s  variation is R, whereas the spike 
terms a re  localized at distances of order 6. We note 
that formula (3.11) describes the behavior of 9,(t) at the 
edges of the line, 6<< Ix-8RISR.  

The quasiharmonic field, which f i rs t  appears in *,(t), 
penetrates into the depth of the metal, remaining prac- 
tically unchanged in amplitude. It is easy to demon- 
strate this by calculating the asymptotic form of the 
quasiharmonic term contained in 9,(t). In the range 
l t l k l  (Ix-1ORIL6)we have 

Here S(z) and C(z) a re  the Fresnel integrals, and 6(x) 
is the unit step function (6(x) = 1 for x >  0 and 8 ( x )  = 0  for  
x< 0). 

The appearance of quasiharmonic terms in *,(t) and 
*,(t) indicates that in the analysis of the behavior of E(x), 
the anomalous-skin-effect approximation kR >> 1 is no 
longer completely adequate in the vicinities of x = 8R and 
x = 1OR. Nevertheless formulas (3.9) and (3.10) give a 
qualitatively correct description of the actual situation. 

The functions *,(t) and *,(t) illustrate graphically the 
transition from spikes to  a quasiharmonic variation of 
~ ( x )  with increase of the distance x from the boundary. 
In *,(t) the magnitude of the spike in the vicinity of the 
center of the line i s  of the same order a s  the quasihar- 
monic term. In *,( t)  the amplitude of the quasiharmonic 
field is larger than the field of the spike by a factor (nR/ 
26)"' >> 1, and i t  makes no sense to speak of a spike in 
W t ) .  

The field distribution E(x) at distances x 2 12R is de- 
scribed by the integral in (3.2) that contains the function 
~ ( 4 ) .  In this range, the integral in question has a quasi- 
harmonic structure. In view of the qualitative nature of 
the approximation being used, we shall not give the ex- 
plicit form of the asymptotic approximation to the field 
in the regions x -  12R and x- 14R. We remark only that 
in the region I x - 12R I 2 6 the distribution ~ ( x )  is de- 
scribed by an expression similar to (3. l l ) ,  and for I x 
- 14R I ,> 6 by a formula of the type (3.12). 

Summarizing what has been said above, we can state 
that the field distribution E(x)  contains four spikes. The 
f i rs t  three spikes a re  clearly expressed, whereas the 
fourth exists against the background of a quasiharmonic 
distribution. 

The analysis of the formulas obtained in this section 
for the E(x) distribution relates to the case of low fre- 
quencies, w<< v. Under this condition the depth 6 of the 
skin layer may be considered a real quantity, and the 
real and imaginary parts of the ratio E(x)/E1(0) a re  de- 
termined by the values of Re*,,(t) and Im\k,(t), respec- 
tively. The results of the present paper a re  actually 
valid over a much broader range of frequencies w, v 
<< 52, when the value of 6 is in general complex (see 
(2.8)). The general situation is easily analyzed by a 
method similar to that se t  forth above. The occurrence 
of a phase in 6 leads to the result that the real and imag- 
inary parts of E(~)/E'(O) will be determined by combina- 
tions of Re\k,(t) and Im\k,(t) in the region of each spike, 
and the field-distribution picture will become somewhat 
more complicated than in the low-frequency case. 
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The dynamics of phase transitions at multicritical points is investigated. Systems whose free energy can be 
represented in a Ginzburg-Landau form with one order parameter are considered. The dependence of the 
critical dynamics on conservations laws in the system is considered. Different types of universal dynamical 
behavior are distinguished. The effect of many-particle excitations on the critical-damping frequency is 
established. The logarithmic corrections to the theory of dynamic scale invariance that arise from the 
interaction of fluctuations at a tricritical point are found. The possibility that these effects are manifested 
in nondegenerate metamagnets is discussed. 

PACS numbers: 64 .60.K~ 

One of the most attractive features of critical phe- 
nomena is their universality. This consists in the fact 
that the critical exponents and a number of other quan- 
tities depend only on such characteristics of physical 
systems a s  the dimensionality, the number of compo- 
nents of the order parameter, and the symmetry. ['I In 
the dynamics of critical fluctuations the concept of uni- 
versality takes on a narrower meaning-the conserva- 
tion laws for the order parameter and the energy in the 
system also become important. (Here i t  i s  understood 
that the system is on a critical line in the space of the 
thermodynamic variables and external fields. ) 

However, curves of continuous transitions can termi- 
nate a t  certain points, passing into phase-coexistence 
curves. Such behavior occurs a t  certain points on the 
phase diagrams of a 'He-'He mixture, metamagnets, 
and compressible magnets. C2"01 Such points a re  crit- 
ical for several phases a t  once (ordered, disordered 
and mixed), and the number u of phases determines the 
order of the critical points. It has been established that 
the static properties of phase transitions change sub- 
stantially a t  these points. c"-131 The changes that the 
dynamics of fluctuations can undergo a t  multicritical 
points a re  unknown. The role of the conservation laws 
a t  such points has also not been elucidated. The present 
paper i s  devoted to examining this group of questions. 

1. At an ordinary critical point (a= 2) two-particle 
excitations of the energy density can decay into one- 
particle excitations of the order parameter $, changing 
the damping of the latter. '"I But in the case of higher 
critical points the fluctuations of 11, may be coupled non- 
linearly with excitations consisting of more than two 
fluctuations. We show below that if such excitations a r e  
not damped they determine the dynamics of the critical 
fluctuations in many respects. 
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The local field p,(x) of excitations consisting of k par- 
ticles can be constructed in the form of a product of k 
fluctuating fields of the n-component order parameter 
11,(x). In the general case the quantity pk is a tensor of 
rank k. Its components (or their linear combinations) 
should be such that the operations of the symmetry group 
of the free energy do not change them. This ensures 
the conservation of the total field p, equal to the inte- 
gral  of the local field pk(x) over the volume (henceforth 
we shall speak simply of the conservation of the field 
P*(x)). 

We shall consider a f ree  energy that i s  isotropic in 
the space of the components of the order parameter, 
when the field p, i s  characterized by a tensor contracted 
with respect to the maximum possible number of pairs 
of indices. As a result, for even k the field pk is a 
scalar field and for odd k i t  is a vector field with n com- 
ponents. For many-particle excitations to be mani- 
fested in the critical dynamics i t  is important that, in 
the equations of motion, the nonlinearities due to the 
coupling of one-particle and many-particle excitations 
do not fall off a s  we go to large lengths (small frequen- 
cies); this imposes restrictions on the scaling dimen- 
sions of the nonlinearities. This requirement is in- 
herently linked with the condition that the inclusion of 
many-particle excitations in the equations of motion 
should not change the equilibrium distribution function 
of the field J I (X ) .  

We write the free energy of the system in the form of 
the functional 

where d is the dimensionality of the system. We shall 
describe the dynamics of the model by the equation 
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