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The dependence of the Hall coefficient on the composition of a system of two components with strongly 
differing electrical conductivities (a "dielectric" and a "metal") is considered. In the case of equal 
mobilities of the current carriers in the two components the behavior near the percolation threshold is 
described on the basis of the scaling hypothesis. Critical indices are introduced. Relations between the 
indices, and their numerical values for two and three dimensions, are found. In the two-dimensional case, 
by means of a method of Dykhne, an exact relation, valid for an arbitrary ratio of the mobilities of the 
components and for arbitrary composition of the two-component system, is found between the effective 
Hall constant and the effective electrical conductivity. In the three-dimensional case, a model theory of 
the Hall effect is const~cted for an arbitrary ratio of the mobilities. Unlike the effective-medium method, 
the theory predicts a sharp maximum of the Hall coefficient near the percolation threshold if the mobility 
in the dielectric is much smaller than that in the metal. 

PACS numbers: 72.10. -d, 77.90. +k 

1. INTRODUCTION 

Much attention has been attracted recently by materi- 
a ls  which, to a good approximation, can be regarded a s  
two-component systems consisting of macroscopic re-  
gions with large and small electrical conductivities. 
For brevity, we shall call the former regions metallic, 
and the latter dielectric. Granular metals o r  cer- 
metsc4] can serve a s  an example of such systems. In 
this example the volume fraction x of metal i s  fixed by 
the technology of the preparation of the cermet. As 
another example, we can mention substances that under- 
go a first-order metal-insulator phase transition (e. g., 
transition-metal oxides) with change of temperature. 
Because of inhomogeneity of the material the transition 
can be smeared out. It occurs a t  lower temperatures in 
certain regions, and metallic nuclei form in a back- 
ground of dielectric. The volume fraction of the metal- 
lic phase in this case is determined by the temperature 
and with increase of temperature varies from zero to 
unity. 15] A third example could be the appearance of 
electrical conduction in a system of metallic exciton 
droplets in semiconductors. Here the quantity x is deter- 
mined by the light-pumping intensity. 

An increase, for  whatever reason, of the volumefrac- 
tion x of metal leads to a sharp increase of the effective 
electrical conductivity a(x) near a certain critical value 
x =xc, a t  which an infinite cluster of metallic regions 
f i rs t  forms. This value is called the percolation thresh- 
old. ['] The behavior of the electrical conductivity near 
the percolation threshold resembles the behavior of the 
order parameter of a second-order phase transition. 
If the electrical conductivity ad of the dielectric regions 
is equal to zero, then for x<xc we have u(x) = O  and for 
x 2 x, 

where a, is the conductivity of the metallic regions and 
the index t for two and three dimensions is equal to'1121 
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The decrease of a(x) by the law (1) a s  x-xc is connected 
with the gradual cutting-up of the infinite metallic clus- 
ter. C6*11 If the parameter h = ad/um is very small, but 
finite, then, for sufficiently small x - x,, the dielectric 
begins to shunt the infinite metallic cluster. In this 
case the singularity of a(x) a t  x =xc is removed and a(x) 
becomes a smooth function, increasing monotonically 
from ad to a,. Thus, the parameter h plays a role anal- 
ogous to that of the magnetic field in the theory of ferro- 
magnetic transitions. Starting from this analogy, 
~ t r a l e ~ [ ~ ]  and Efros and the authorCQ1 have constructed 
a theory of the critical behavior of o(x), based on a 
scaling hypothesis. They introduced the power laws 

a(,) =od(x,-x) -q=omh(xc-x) -q 

for X<X,. 
(4) 

The growth of o with increase of x by the law (4) is re-  
lated to the gradual increase of the s izes  of the metallic 
clusters and of the area of the thin dielectric layers 
between neighboring clusters (Fig. 1). In the immediate 
vicinity of x, the power laws (1) and (4) a r e  violated and 
there is a crossover from one to the other. In the 
papers indicated i t  was assumed that in the crossover 
region the behavior of o(x) is determined by the single 
parameter A = hm, which may be called the width of the 
transition (Fig. 2). In other words, it was assumed 

FIG. 1. Metallic c lus ters  
(shaded) for  x < x, near the 
percolation threshold. The 
direction of the current is in- 
dicated by the arrow. The 
"active" dielectric regions 
that determine the electrical  
conductivity a r e  indicated by 
the le t ter  A. 
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FIG. 2. Schematic graphs of the 
functions u(x) and RGt) for the case 
p ,= p, and h = ud/u, << 1 (solid lines). 
Each dashed line corresponds to the 
formula whose label is indicated 
alongside. The three-dimensional 
case is plotted, and g z 0. 

that the function U(T, h) satisfied the scaling hypothesis 

wherer=x-x, ,  andcp(z)=l f o r z=Oand i sapower  
function of z for z - * m . A comparison of (5) with the 
laws (I), (3) and (4) led to relations between the indices: 

Thus, all the indices of o(x) are  expressed in terms of 
the indices t and s. The latter, according toCg1, i s  equal 
to 

The relations (6) agree with numerical calculations for 
three-dimensional latticesc3' and a re  well fulfilled for 
the Bethe lattice. 

In an analogous way we can introduce critical indices 
in the problem of the effective Hall constant R(x) of a 
two-component medium and relate them to each other. 
Section 2 i s  devoted to this question. 

2. CRITICAL INDICES OF Rfx )  I N  THE CASE OF 
EQUAL MOBILITIES OF THE METAL AND 
DIELECTRIC 

Let k, pm and R,, R, be the mobilities and Hall con- 
stants, respectively, in the dielectric and metallic re- 
gions. We shall consider first the simple case when 
pd = pm = p and, consequently, the ratio R,/R, = ad/om 
=h<< 1 i s  the only parameter describing the decrease of 
R(X) with increase of x. In this case the following pic- 
ture of the behavior of R(x) seems natural. In the crit- 
ical region to the "right" of the threshold (A<< x - xc << 1): 
corresponding to the power law (1) for a(%) there is a 
power law for R (x): 

This law i s  connected with the gradual cutting-up of the 
metallic infinite cluster as  x, i s  approached, and the 
dielectric plays no role in its origin. It was derived 
inCal on the basis of a network model of the infinite clus- 
ter and inc" on the basis of ideas of geometric scaling 
in percolation theory. It was found that 

where v3 = 0.9 i s  the correlation-length index of percola- 
tion theory. "I In the region of x to the "left" of the 
threshold (1 >> x, -x>> A), corresponding to the power 
law (4) for a(x) there is a power law for ~ ( x ) :  

In this region of values of x, in view of the large value 
of R,, the Hall effect i s  determined by the dielectric. 
The decrease of ~ ( x )  i s  connected with the fact that a s  
the threshold i s  approached the current i s  concentrated 
in an ever smaller part of the volume of the dielectric 
(Fig. 1). The fraction of current flowing outside the 
active dielectric layers decreases continuously. 

In the critical region I x - x, Is A the dielectric and 
metal produce comparable contributions to the conduc- 
tivity and Hall effect. In this case a gradual crossover 
from the law (10) to the law (8) occurs (Fig. 2). We can 
introduce a further critical index by writing ~ ( x , )  in the 
form 

The pattern described for the behavior of R(x) con- 
tains essentially two assumptions: 

1. The smearing-out of the transition for R(x) i s  de- 
termined by the same interval A = hslt a s  for o(x). 

2. For all 1 71 << 1 to the right and left of the region of 
smearing, R(x) i s  a power function of T. 

Inother words, we take for R(x) the scaling hypothesis 

where $(2) = 1 for z = O  and $(z) is a power function of z 
for z - * m . It follows from a comparison of (12) with 
(8) and (10) that for z >> 1 we have + = K g  and for z << - 1, 
+ = (- z )  f. Then, in order that the dependence on the 
parameter h as  comprised in (12) coincide with the de- 
pendences (8) and (lo), the following relations between 
the indices should be fulfilled: 

Using the values of t, s andg from (2), (7) and (9), we 
obtain the remaining critical indices of the Hall con- 
stant: 

Knowing the behavior of a(x) and ~ ( x ) ,  i t  is not difficult 
to find all the critical indices of the effective mobility 
p(x) =R (x) u(x). In particular, by writing p(x,) in the 
form p(x,) = phz, we obtain 1 =s + k  - 1, i. e., 

It i s  interesting to compare the values of the indices 
in (9), (14) and (16) with the predictions of the effec- 
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tive-medium theory. According toc12', this theory gives 

Thus, except for g2, k2, and I,, the effective-medium 
theory predicts critical-index values that differ from 
ours. 

3. EXACT RESULTS FOR TWO-DIMENSIONAL 
SYSTEMS 

For two-dimensional systems with & = p,f p there 
exists an exact relation between R(x) and oh) ,  which is 
essentially contained in the work of ~ ~ k h n e ~ ' ' ] :  

It can be obtained in  the limit of weak magnetic fields 
from the formula (D. 20) (this is the way in which we 
shall refer to formulas in Dykhne's art i~le" '~).  Ac- 
cording to formulas (3) and (7), in the two-dimensional 
case 02(xc) r;: omad (for a symmetric spatial distribution 
of the components the exact equality 02(xc) =ornod 
holds"'?. It can be seen from (18) that for x - x, << - A, 
when o(x) << o(xc), we have ~ ( x )  =~,o; /o~(x) .  Accord- 
ing to (4) this means that f2 = 2t,. For x - x, >> A, on 
the other hand, a(x) >> o h  ,) and R = R,, i. e., g2 = 0. 
For x = x c  we have R(x,)=R,, so  that k = 1. Thus, in 
the two-dimensional case the values of the critical in- 
dices in (9), (14) and (15) agree with the exact relation 
(18). 

It turns out that, in the general case p,# ~1, ,  in two- 
dimensional systems there exists an exact relation be- 
tween R (x) and g ( ~ ) :  

To obtain (19) one must change the derivation of for- 
mula (D. 20) slightly. The derivation of (D. 20) was based 
on a transformation of the local currents and fields that 
does not change the local values of the conductivity but 
reverses the sign of the Hall parameter @ =  pH/c (here 
H is the magnetic field and c i s  the velocity of light). In 
going over from the case H, = p, = p to the case H, # p, 
we must generalize this transformation in such a way 
that both local values B, and Pd of the Hall parameter 
reverse their signs without changing their absolute val- 
ues. In weak fields (P,, Pd << I), the transformation 
sought i s  effected by means of the following values of 
the coefficients in (D. 14): 

One can convince oneself of this by substituting (20) into 
the expressions (D. 15) for P" and a" (it is necessary, 
however, to take into account that there is a misprint 
in the numerator of P" inC1": the term cdo2 was omit- 
ted). The subsequent chain of arguments repeats ex- 
actly the arguments of Dykhne and, in weak magnetic 
fields, leads to the relation (19). 

FIG. 3. Schematic graphs of the 
function R(x) for the two-dimen- 
sional case for fixed values of the 
quantity R, and the parameter k 
=uJum <t 1 and different values of 
the ratio pJ,u,,,: 1) pdZ,u,,,, 2) pd 
>>&, 3) P~<<P,,,, Ra"Rm. 

We turn to an investigation of the relation (19). We 
shall consider, e. g., the situation when 

Then from (19) we obtain 

This formula can be interpreted on the basis of the so- 
called two-band model, i. e., of a model in which there 
a r e  two parallel conduction mechanisms 1 and 2. In 
this case, 

We shall visualize our two-component system a s  a ho- 
mogeneous dielectric (al = od, R1 =Rd) and a conducting 
network, connected in parallel. By the conducting net- 
work we mean the connected region delineated by the 
current lines; this, for x>xc,  coincides with the infinite 
metallic cluster, and, for x<x,,  consists of large me- 
tallic clusters linked by dielectric layers. The conduc- 
tivity of this network i s  u(x), and the Hall constant for 
x > x c  is, according equal to R,. If we neglect 
the Hall current that a r i ses  in the thin dielectric layers, 
then, for x <xc, to calculate the Hall constant of the 
network we can repeat exactly the arguments given 
inC6, 11 . We then obtain that, in the two-dimensional 
case, the Hall constant of the conducting network is R, 
in the whole range of values of x. Substituting R2 =R,, 
o2 = o(x), q = od and R1 =Rd into formula (22) and neglect- 
ing ad in comparison with o(x), we obtain (21). 

It can be seen from (21) that for &//.A,<< 1, i. e., Rd 
<< R,u,/IJ~, owing to the comparatively small value of 
Rd the dielectric ceases to play a role in the creation of 
the Hall emf when x - x, is still << - A, when the conduc- 
tivity is essentially determined by the dielectric layers. 
For &/pm>> 1, on the other hand, the value of Rd is so 
large that even after the conductivity begins to be deter- 
mined by the infinite metallic cluster the dielectric con- 
tinues to play a determining role in the Hall effect (Fig. 
3). 

For pd = pm the exact solution (18) has justified the 
assumptions 1 and 2. The assumption 1 is also justified 
for p a  # p,, a s  can be seen from (19). The entire cri t-  
ical behavior of R(x) is contained in o(x). However, a s  
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we should expect, assumption 2 i s  no longer justified. 
Owing to the presence of the parameter pd/pm, the dis- 
tance from the threshold over which the change in the 
power laws occurs turns out to differ from A. 

4. THREE-DIMENSIONAL SYSTEMS WITH pd Zp,  

In the three-dimensional case exact relations anal- 
ogous to (19) are absent. For H, # p, it i s  not possible 
to apply the theory of critical indices developed in Sec. 
2. In fact, in this case there a re  no reasons for as- 
sumption 2 to be fulfilled. Using the example of a two- 
dimensional system it can be seen clearly how the pres- 
ence of the parameter pd/p, leads to a futher change in 
the power laws outside the region 171 c A of smearing of 
the transition. At the same time we are sure that as- 
sumption 1 remains valid. This certainty i s  based, in 
particular, on a consideration of a system in which ad 
= a, = a and R, >> R,. In a weak magnetic field, using 
perturbation theory in the nondiagonal components of 
the conductivity tensor (a,,),, , = R,, , H U ~ ,  it i s  easy to 
show that the exact relation 

holds, irrespective of the number of space dimensions. 
For a two-dimensional system the relation (23) can also 
be obtained from (19). For this we must assume that 
6 = (a, - o,)/(a, +om) << 1 and make use of the fact that, 
in first order in 6, 

Substituting (24) into (19) and expanding in 6, we obtain 
(23). 

From (23) it i s  particularly clear that sharp drops in 
the mobilities or Hall coefficients from one medium to 
the other do not in themselves produce any critical be- 
havior near xc. The critical behavior of ~ ( x )  arises 
only when ad << a, and is  entirely determined by the crit- 
ical behavior of o(x). Therefore, it is  natural to as- 
sume that for 1 T 1 << 1 and h << 1 the quantity R (x) is  de- 
termined by formula (12), although, a s  already stated, 
~ ( z ) ,  generally speaking, is  no longer a power function 
in both the regions z >> 1 and z >> - 1. The ratio pd/ p,, 
which determines the point at which the power laws 
change, can appear in the function $(z) as  a parameter. 
There are not enough of these general properties of the 
function ~ ( x )  to determine the function. Therefore, to 
determine R(X) we shall have to use the "two-band" 
model, used successfully above to interpret the for- 
mula (19). 

First we shall calculate the Hall constant R ~ ( X )  of the 
'conducting network. According toC6~", the Hall constant 
of a network i s  proportional to its "period" (the average 
distance between nodes). For x - xc >> A the "period" of 
the conducting network coincides with the percolation- 
theory correlation length and grows like (x -xc)'s a s  the 
transition is  approached. Correspondingly, Ra (x) grows 
by the law (8) with g, = us. In the region I x - xc I <  A the 
period of the conducting network does not change and, 
consequently, R2(x) is constant. In the region 1 >> xc 
-x>> A to the left of the threshold the period of the net- 

FIG. 4 .  The same as Fig. 3, for 
the three-dimensional case: l)pd 
= hll, (R,=R,), 2) ll ,h << Cl, << 
3) P d = l l , ,  44) Ccd>P,,,. 

work i s  equal to the characteristic size of the metallic 
cluster, i. e., it again coincides with the correlation 
length. With decrease of x it falls off like (x, -x)*3, 
and, therefore, 

In the whole range I x - xc I < <  1 the Hall constant of the 
conducting network can be written by means of the inter- 
polation formula 

Rz ( x )  =RJ (x-xc) 2+A2]-gr''. (26) 

Substituting R1 =R,, a, = a,, a, = o(x) and Rz(x) from for- 
mula (26) into (22), we obtain 

Before analyzing (27) for arbitrary values of p,/p, 
we shall examine how well the "two-band" model de- 
scribes the case p, = p,= p. It i s  not difficult to see 
that, in order that (27) reproduce the results of Sec. 2, 
the equality 

should be fulfilled. This same equality is necessary in 
order that, for any ratio p,/p,, the function ~ ( x )  (27) 
satisfy the general conditions formulated above, i. e., 
have the form (12) with pd/pm as  the parameter. Ac- 
cording to formula (15) andcs3, fs = 1.7 and q, = 1. The 
uncertainty in the numerical values of the indices f, and 
q ,  make the equality (28) perfectly possible. If this 
equality i s  fulfilled, we obtain a consistent picture of 
the dependence R(x) for a, << a,. 

We shall start  the investigation of (27) from the case 
R, =R, =R. In this case the contribution of the dielec- 
tric is negligibly small and we obtain a curve with a 
sharp maximum near x, (curve 1 of Fig. 4). We shall 
increase Rd gradually, leaving R,, a, and a, constant. 
Then in the interval 

a gradual increase occurs in the role of the dielectric. 
This leads to smoothing of the minimum (curve 2) and to 
change-over to a monotonic curve. When R, = R , u ~ u ,  
(1, = pm) we arrive at the result of Sec. 2 (curve 3). In 
this case the dielectric determines the entire curve on 
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the left of the transition and the conducting network de- 
termines that on the right. For  R, >R,u,,,/u, the dielec- 
t r i c  is found to have a determining role in a certain re- 
gion to the right of the transition a s  well (curve 4). 

It is interesting to note that for pd < p, our results 
differ not only quantitatively but also qualitatively from 
the predictions of effective-medium theory. 'I2' This 
theory leads to a monotonic decrease of R(x) with in- 
crease of x. For example, in the case R, =Rd 5R the 
effective-medium theory gives R(X) =R = const. But in 
reality R(x) should have a sharp maximum. 

We assumed above that the equality (28) is fulfilled. 
If this is not so, the two-band model is not entirely ad- 
equate for x <x,. This may be connected with the neglect 
of the Hall current generated in the active dielectric 
layers of the conducting network. However, we a r e  con- 
fident that, even in this case, the formula (27) gives a 
qualitatively correct description of the behavior of ~ ( x ) .  

I am grateful to A. L. gfros for very useful discus- 
sions about the article. 
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Anomalous penetration of an electromagnetic field into a 
metal with diffuse reflection of electrons by the specimen 
boundary 
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A theory is constructed for anomalous penetration (AP) of an electromagnetic wave into a metal placed in 
a magnetic field parallel to its surface. The reflection of electrons from the metal-vacuum interface is 
assumed to be diffuse. AP of the field occurs along a chain of electron trajectories. It is shown that under 
anomalous-skin-effect conditions in the radiofrequency range, the field distribution contains four spikes, at 
distances from the boundary of one, two, three, and four cyclotron diameters. The first three spikes have 
a distinct spatial structure, whereas the fourth exists against the background of a smooth quasiharmonic 
distribution. At distances exceeding the region of existence of the last spike, the field has a 
quasiharmonic character. 

PACS numbers: 73.90. + f 

1. INTRODUCTION 

The effect of anomalous penetration (AP) of an elec- 
tromagnetic wave into a metal along a chain of electron 
trajectories, in a magnetic field H parallel to the sur- 
face of the specimen, is well known in the physics of 
metals (see Fig. 1). It has been observed experimen- 
tally by ~antmakher'" and investigated theoretically in 
an article by one of the authors."' A large number of 
papers have now been devoted to this phenomenon (see 
the reviewcs1 and also the a r t i ~ l e [ * ~ ) ~  There is at pres- 
ent extensive experimental material on the observation 
of AP of the trajectory type in many metals. Neverthe- 
less there has so  far  been lacking a systematic theory 
of the trajectorial transfer of an electromagnetic wave 
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with allowance for the interaction of the electrons with 
the specimen surface. The reason lies in the mathe- 
matical difficulties that ar ise  when one takes account of 
this interaction and that lead to a complex character of 
the field distribution in the metal. In order to circum-, 
vent these difficulties, qualitative considerations have 
been introduced. It has been supposed that a good ap- 
proximation is the distribution of the electric field E in 
an infinite specimen with a current sheet, simulating 
the skin layer 6 (see, for example, c31). In other words, 
i t  has been assumed that the principal role in AP is 
played by electrons that do not collide with the metal- 
vacuum interface, and for which it is possible to use the 
results that a re  valid in an infinite specimen. Thus for  
a wave polarized perpendicular to  H, the spatial distri- 
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