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Phenomena connected with the coherence of the phase of the wave function of an electron-hole pair in a 
non-equilibrium semiconductor with electron-hole pairing are considered. It is shown that when a voltage 
is applied to a semiconductor-insulator-semiconductor structure in which optical pumping is produced by 
an external source, oscillations of the magnetic moment are produced in the quasistationary state when 
the conditions needed for the realization of electron-hole pairing are realized. The frequency of these 
oscillations is = 2 V, where V = V,  - V,,  V ,  = (1/2) D, + p, .  V,  = (1/2) D, +pi, Dl and D, are the 
widths of the forbidden bands of the left-hand and right-hand semiconductors, respectively, while pi and 
p,  are the Fermi degeneracy energies of the corresponding semiconductors. 

PACS numbers: 71.35. +z 

1. Much attention has been paid recently to an inves- 
tigation of high-density nonequilibrium carr iers  in semi- 
conductor~.['~ If the lifetimes of the electrons and holes 
a re  long enough, these systems lend themselves to a 
quasi-equilibrium description, wherein thermodynamic 
equilibrium is established in each band separately within 
a time much shorter than the carr ier  lifetime. Allow- 
ance for the Coulomb interaction of the electrons and 
holes from different bands leads to the possibility of the 
formation of electron-hole pairs in the system below a 
certain temperature T,, at which the system undergoes 

sociated energy transport in a non-equilibrium system 
was considered also inL4'. We note, however, that the 
tunneling of the particles can be accompanied by the 
transport of not only charge and energy, but also spin, 
since each tunneling particle has spin 1/2. Further- 
more, the presence of a Bose condensate of electron- 
hole pairs in quasi-equilibrium semiconductors gives 
grounds for  hoping that the spin tunneling will be accom- 
panied by a number of specific effects, the investigation 
of which is in fact the subject of the present communica- 
tion. 

a second-order phase transition. We note, however, It will be shown below that when a potential difference 
that the phase produced in the transition differs from the 

is applied to an S-I-S tunnel structure in which an ex- 
excitonic dielectric which is produced by Coulomb inter- 

ternal source produces optical pumping, oscillations of 
action of the electrons and holes in a ~ e m i m e t a l , [ ~ * ~ ~  and 

the magnetic moment a r e  produced in the quasi-stationary 
in which the character of the Bose condensation of the 

state if the conditions necessary for the realization of 
electron-holepairs in the quasi-equilibrium semicon- 

electron-hole pairing a r e  satisfied. The frequency of 
ductors is determined only by a Coulomb interaction of these oscillations is 
the density-density typeOc1] As a result, in a quasi- - - -  
equilibrium semiconductor, just a s  in the case of a o =2 V, 

V=V,-V, ,  V,='l,D,+p,, V , = ' / Z D , f p , ,  superconductor, the phase of the order parameter i s  in- (1) 

determinate below the point T,, and this leads to the ex- D, and D ,  are  the widths of the forbidden bands of the 
istence of specific quantum effects in such systems. right and left semiconductors, respectively, while p ,  

and p r  are  the Fermi degeneracy energies of the corre- From the macroscopic point of view, the new coherent 
sponding semiconductors. There is no ferromagnetic 

state into which the quasi-equilibrium system of elec- 
ordering in the two semiconductors. 

trons and holes goes over below T, is characterized on 
the whole by the existence of a certain generally speak- 
ing complex function J ,  =fef', which has the meaning of 
the electron-hole pair. The fact that there exists for 
the entire sample a single function J ,  that characterizes 
the entire ensemble of particles makes it possible for 
phase differences cp, which a re  fixed at a given instant 
of time, to occur between two arbitrary points of the 
crystal. It is precisely this phase coherence which pro- 
duces in a quasi-equilibrium semiconductor-insulator- 
semiconductor (SIS) tunnel structure electric-current 
oscillations['1 analogous to Josephson oscillations in 
superconducting tunnel junctions. This result is not 
trivial because, in contrast to a Cooper pair, the charge 
of which is 2e, the total charge of the electron-hole pair 
is zero. 

Coherent tunneling of electron-hole pairs and the as- 

2. We consider an S-I-S tunnel structure in which an 
external field has produced a stationary carr ier  density. 
We confine ourselves for the time being to high carr ier  
density in the bands, when a substantial restructuring 
of the spectrum takes place in a narrow energy layer at 
the Fermi surface. This is the simplest case from the 
mathematical point of view, in view of the formal anal- 
ogy with superconductivity theory. Just  a s  before, ['] to 
investigate the phenomena that occur in the tunnel struc- 
ture we use an approach based on the tunnel-Hamiltonian 
method.15] As applied to theory of the Josephson effect, 
this approach was developed by many authors and is de- 
scribed in detail in the book by Kulik and  ans son."] 

In the tunnel-Hamiltonian method, the tunnel junction 
of two semiconductors is regarded a s  a weakly-coupled 
system described by a Harniltonian that consists in the 
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zeroth approximation of two parts corresponding to iso- 
lated semiconductors-one on the right and the other on 
the left: 

and containing in the next approximation a term 

that describes the tunneling of the electrons from one 
semiconductor to the other (we consider tunneling with- 
out spin flip). Here +;,, and Q2+, a r e  the electron crea- 
tion and annihilation operators in the electron and hole 
bands of the right-hand semiconductor, and +il, and $2101 
a re  the corresponding operators of the left-hand semi- 
conductor. 

We assume for the semiconductors making up the tun- 
nel structure a simple model with isotropic dispersion 
laws in the electron and hole bands. We assume for 
simplicity that the extrema El and E2 of the electron and 
hole bands a re  located at the point p = O  of momentum 
space and, in addition, the electron and hole masses are  
equal. Then we can write, for example, fo r  the right- 
hand semiconductor 

where D, is width of the forbidden band, p, is the Fermi 
degeneracy energy of the electrons and holes of the 
right-hand semiconductor, and ~ ( p )  =$/2m - p,. 

Just a s  b e f ~ r e , ' ~ '  in the investigation of the case of 
high density nu: >> 1 (n i s  the carr ier  density and a. is 
the exciton Bohr radius) we use a model similar to the 
BCS model in superconductivity theory, inasmuch a s  in 
this case the Coulomb interaction between the electrons 
and the holes i s  strongly screened, a s  a result of which 
only carr iers  situated in a narrow layer of momentum 
space near the Fermi surface take part in the production 
of the electron-hole pairs. In this model the interaction 
between the electrons and the holes is described by a 
certain effective interaction Hamiltonian which, for ex- 
ample in the right-hand semiconductor, can be written 
in the form 

where gl and g2 are  the constants of the Coulomb and ex- 
change interactions, respectively, with energy cutoff at 
the frequency w, << p,; qlrn and $,,, are  the electron 
operators in the electron and hole bands, while o,, is a 
vector whose commutators a re  Pauli matrices. 

Just as inc2', we do not include in the Hamiltonian the 
interaction of carr iers  within the same band. In addi- 
tion, we have left out of (5) the interaction terms corre- 
sponding to the transformation of electrons of one band 
into electrons of another,['' inasmuch as the states in 

the different bands a r e  separated in energy by an amount 
D, >z me4/x2ti2. As a result, the Hamiltonian of the 
right-hand semiconductor takes the form 

The letter U denotes here the applied potential difference 
(the contact potential difference between the semicon- 
ductors is assumed to be zero). The expression for H,o 
is similar. 

The statement that a bound state of an electron and a 
hole exists in a system with Hamiltonian (6) was made 
in[2 ,7~  . There, however, the reference was to a semi- 
metal with overlapping bands, and it is  therefore natural 
to raise the question whether the conclusions of C2s71 ap- 
ply to the system considered by us. The answer is in 
the affirmative, since the lifetime of the nonequilibrium 
car r i e r s  in a semiconductor is usually long enough in 
comparison with the time required to establish thermo- 
dynamic equilibrium in each band separately,['] and also 
with time of the electron-hole pairing accompanied by 
the restructuring of the spectrum. In this case, our 
system becomes fully equivalent to that considered ear- 
lier,[2*1' and the appearance of terms with V ,  and U in 
the Hamiltonian leads to no physical effects whatever 
(so long a s  tunnel transitions a re  disregarded), and their 
influence reduces to the appearance of phase factors in 
the particle creation and annihilation operators and in 
the Green's functions.[81 

3. We derive an expression for the current due to the 
electron magnetic moment from semiconductor to  semi- 
conductor. In the tunnel-Hamiltonian method, this quan- 
tity is determined from the rate of change of the mag- 
netic moment of the electrons in one of the semiconduc- 
tors, say on the right, 

where ~ , ( t )  is the operator of the rate of change of the 
magnetic moment in the right-hand semiconductor, writ- 
ten in the Heisenberg representation. The averaging in 
(7) is over an equilibrium Gibbs canonical ensemble 
with Hamiltonian Ho = Hlo + H,,,, which conserves the num- 
ber of the electrons, and consequently also the electron- 
ic  magnetic mpment in each semiconductor. The ex- 
pression for M,. obviously takes the form 

where po  =eti/2mc. The procedure for deriving the 
formula for the tunnel current is well known (see, 
e. g. ,[8*81) albeit laborious, since i t  is necessary to op- 
erate with cumbersome expressions. We shall there- 
fore not present here all the details of the calculations, 
and write out only the final results. 

The expression for  the magnetic-moment current is 

~ . ( t )  =I, sin 2 ~ t + 1 ~  cos 2 ~ t + 1 ~ ,  (9) 

where I,, k, and I ,  can be represented as follows, 
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Here 

a re  the system Green's functions integrated with respect 
to energy, with GI,, and GIag the usual Green's functions 
of the electrons in the electron and hole bands, respec- 
tively, while GlZuB and G2,,,, which a re  analogous to the 
anomalous Gor'kov functions in the theory of supercon- 
ductivity, correspond to the electron-hole pairing that 
exists in the  stern,^^*'^ R = [4e I W,, I 2(rnp$/2s2)2]-1 is 
the resistance of the insulating layer between the normal 
semiconductors. 

As follows from (9)-(12), the value of JM(t) depends 
significantly on the spin structure of the Green's func- 
tions of the system, which in turn i s  determined by the 
character of the restructuring of the initial spectrum in 
the semiconductors that enter in the tunnel structure. 
Volkov, Kopaev, and Rusinov have shownL81 that, depend- 
ing on the ratio of the constants gl and g2, the Hamil- 
tonian (6) admits, below a certain critical temperature 
T,, of restructuring of the initial spectrum followed by 
formation of either singlet or  triplet pairs, or  else by 
coexistence of both types of electron-hole pairs. Ac- 
cordingly, we shall consider in succession all the possi- 
ble variants that can occur in our problem. The direc- 
tion of the magnetic moment M, is taken to be the z axis 
of the coordinate system, i. e., the integrals I,, &, and 
I3 will take the form If =Zfnz (i = l ,2 ,3 ,  n, is a unit vector 
along the z axis). 

a) Singlet pairing is realized in both semiconductors. 
In this case GuBr(l) = 6,,Gr (, ) and, as is easily seen from 
(10)-(12), all three integrals 11, 12, and 4 are  equal to 
zero, i. e., JM(t) = 0. 

b) When triplet pairing takes place in both semicon- 
ductors the result is similar. Now GaB1,(, )=60r6Glr(l), 
G u 6 ~ r ( l )  =6a8G2r(l 1, G u ~ 2 r ( l )  = u u ~ G 1 2 r ( l ) ,  G u ~ 2 1 r ( l )  

= u,,Gzlro ), but a simple calculation yields in this case 
I1 =I2 =I3 = 0 and J,(t) = 0. We note, however, that in both 
indicated cases an oscillating tunnel current arises in 
the structure, and i ts  dependence on the structure pa- 
rameters and on their applied voltage U is described by 
formulas (8)-(18) of c41. 

c) We consider now the case when triplet pairs a re  
produced in, say, the right-hand semiconductor and sin- 

glet pairs in the left one. Direct calculation yields the 
following result: the integral I, vanishes indentically, 
while the integrals ZI and Z2 differ from zero  and the ex- 
pressions for them a re  

where the function GR is an analytic continuation of the 
corresponding temperature Green's function on the real 
axis of the variable i ~ , , , [ ~ '  and the notation wl, = w i  V 
- U and w2, = w i V+ U has been introduced. 

The formulas obtained a re  valid for both pure and 
doped semiconductors. We consider f i rs t  semiconduc- 
tors without impurities. In this case 

Substituting these expressions in (13) and (141, we can 
obtain the explicit forms of the integrals Z1 and Z2. How- 
ever, we shall not write them out because of the cum- 
bersome resultant expressions. We shall dwell only on 
the final results. 

Consider the case T =O. Then at I U +  VI , I U - VI 
< A, +A, the integral Z2 vanishes and the integral Z1 is 
equal to 

at I U+ VI, I U - VI > l A, - A,l, where ~ ( x )  is a complete 
elliptic integral of the f i rs t  kind 

At 

max ( l U + V ( ,  ( U - V I ) = A , + A ,  

a magnetic-moment current component appears jump- 
wise and is described by the integral 12, while the inte- 
gral Zl has a singularity. The singular part of the inte- 
gral Zl is 
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where p=mw(lU-VI,  IU+VI), andthe jump of the in- 
tegral I2 is equal to 

At U+V>>A,+A,and U=Vwe have 

Thus, in the case when different types of pairing are  
realized in the semiconductors making up the tunnel 
structure, singlets on the left and triplets on the right, 
application of a potential difference on the structure 
gives r ise  to magnetic-moment oscillations described 
by formulas (9)-(19). It is easy to show that in this case 
there are  no electric-current oscillations corresponding 
to those considered earlier."' 

At low voltages, in formula (9), only the integral 1, 
differs from zero. With increasing applied voltage, the 
expression for JM(t) acquires a singularity at the point 
max(lU-VI, IU+VI)=A~+A,,  inview of the fact that 
breaking of the electron-hole pair is possible and one 
electron or  one hole can pass through the barrier. 
Since there i s  no magnetic ordering in either of the 
semiconductors making up the tunnel structure, there 
is no injection of magnetic moment in this case, i. e., 
I, =O. It is easy to show, however, that a normal elec- 
tric current appears jumpwise at this point and is de- 
scribed by formula (14) of [41. In strong fields U>> V and 
A, +A,, the integrals 1, and I, decrease and tend to zero, 
while the normal electric current, in accordance with 
formula (18) of ['I, is proportional to U, in accord with 
the usual Ohm's law. At U = V and U >>A, +A,, however, 
the integral 1, does not tend to zero, i. e., oscillations 
of the magnetic moment can exist also when strong 
fields are  applied to the structure. 

d) We consider the case when singlet pairing is real- 
ized in the left-hand semiconductor, while singlet and 
triplet pairs can coexist in the right semiconductor. 
The spin structure of the Green's functions can now be 
chosen in the following manner: GaBI = ba6GI, Go& = 
G,,,6,, + G,o,,. By simple transformations of formulas 
(10)-(12) we find that in this case all three integrals 11, 
12, and I, differ from zero. The expressions for 1, and 
I2 are  similar to formulas (13) and (14), in which the 
right-hand semiconductor is represented by the z com- 
ponents of the Green's functions and the integral I, can 
be written as 

It was shown incT1 that the coexistence of singlet and 
triplet states of electron-hole pairs is impossible in a 
cryseal without impurities, in which the number of elec- 
trons is equal to the number of holes. The inequality of 
the number of carr iers  of opposite sign as a result of 
doping makes possible this coexistence, which further- 

more is accompanied by ferromagnetic ordering of the 
carr ier  spins. Formulas describing J,(t) can be easily 
obtained in this case by substituting in (131, (14), and 
(20) the corresponding expressions for the Green's func- 
tions. It i s  easy to show, however, that the integrals I, 
and lz can be obtained from (16)-(19) by making the 
formal substitution 

where 6p, and 6pI are  the doping-induced changes in the 
Fermi degeneracy energies of the right and left semi- 
conductors, respectively (we assume the carrier density 
n to be given for each semiconductor). 

Since, however, the dependence of 6p,, A,,, and A,, 
on the concentration of the doping impurities is rather 
complicated,cT1 the explicit forms of the integrals 11, 12, 
and I, will not be written out here for simplicity. We 
shall dwell only on one result of physical importance. 
The right substitution of the expressions for the Green's 
functions in the integral 4 shows that this integral, which 
describes the injection of ordered spins from the ferro- 
magnetic[" right-hand semiconductor into the nonferro- 
magnetic left semiconductor differs from zero at arbi- 
trary small U and V. The reason is the following. It 
was shown incT' that the nature of the ferromagnetic 
ordering in a system in which singlet and triplet pairs 
coexist is connected with the inequality of the number of 
carr iers  with up and down spins above the energy gap in the 
restructured spectrum. It becomes clear therefore that 
these very carr iers  will contribute to the normal injec- 
tion of the spins from the one semiconductor to the other. 

Thus, in our case, in contrast to the case (c), all 
three integrals in (9) differ from zero, with I, contribut- 
ing to the expression for JM(t) at  arbitrarily small U and 
v. 

The cases (e) (triplet pairing in the left semiconductor 
and coexistence of singlet and triplet pairs in the right 
one) and (f) (coexistence of singlet and triplet pairings 
in both semiconductors) lead to results that are qualita- 
tively similar to the case (d). We shall therefore not 
dwell on them in detail. 

The results can be easily generalized to include the 
case when the fact that the mean free path of the carriers 
in the crystal is finite becomes significant. 

4. We have thus shown that quantum phenomena con- 
nected with the coherence of the phase of the wave func- 
tion in quasi-equilibrium semiconductors with electron- 
hole pairing can lead to the appearance of oscillations 
of the magnetic moment in a tunnel structure consisting 
of two such semiconductors separated by an insulating 
layer. In analogy withc4', the character of these oscilla- 
tions is determined by two parameters: V, which de- 
pends on the rate of carr ier  generation and on the dif- 
ference between their lifetimes in the semiconductors 
making up the tunnel structure, and the external voltage 
6' applied to the structure. The value of U determines 
the magnitude of the oscillations, the frequency of which . , 

is equal to w =2V. 

From the physical point of view, we regard as the 
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most interesting the results obtained in case (c), that 
magnetic-moment oscillations can appear when an ex- 
ternal potential difference is applied to a tunnel struc- 
ture in which both semiconductors have no magnetic 
ordering. This case i s  interesting also because the 
magnetic-moment oscillations are more pronounced 
here than elsewhere. The reason i s  that the case (c) is 
the only one in which the magnetic-moment oscillations 
are  not accompanied by oscillations of the tunnel elec- 
tric current. It is easy to show that in cases (d), (c), 
and (f), in addition to oscillations of the magnetic mo- 
ment there will exist in the tunnel structure an oscillat- 
ing electric tunnel current described by the formulas 
of 14', which can greatly hinder the observation of the 
magnetic-moment oscillations. Therefore the case (c) 
is the most favorable when attempts are made to investi- 
gate experimentally the oscillations of the magnetic mo- 
ment in a tunnel structure. 

The result obtained in the present study can be quali- 
tatively interpreted in the following manner. As shown 
by Kozlov and ~ a k s i m o v , " ~ ~  the restructuring of the ini- 
tial spectrum and the formation of electron-hole pairs 
in the crystal are  accompanied by the appearance of 
standing waves of charge-density (in the case of singlet 
pairing) or  of spin density (in the case of triplet pairing). 
When the extrema of the electron and hole bands are at 
one point of the Brillouin zone, the period of such a 
wave coincides with the period of the lattice. The coex- 
istence of two such waves in a homogeneous crystal, as 
shown by Volkov, Kopaev, and ~usinov,['] leads to ap- 
pearance of ferromagnetic ordering. 

In our case of a quasi-equilibrium semiconductor, 
when the Fermi quasilevels of the electrons and holes 
are separated in energy 2Vro), the situation becomes 
somewhat more complicated because of the distinctive 
time dependence of the equations on the problem. This 
was already discussed earlier, when we noted that the 
appearance in the Hamiltonian (6) of terms with Vrcl, 
leads to the appearance of factors of the type 
exp(2iVrcz)t) in the Green's functions of the problem. It 
is easy to show that in this case the density of the elec- 
tron-hole-pair Bose condensate in each of the quasi- 
equilibrium semiconductors making up in the tunnel 
structure oscillates in time with frequency w = 2V, ,, ). 
When an external potential difference U is applied to the 
structure between the semiconductors, intense carrier 
exchange takes place, with superposition of time-oscil- 
lating charge- and spin-density waves on the different 
semiconductors. It is this superposition which causes 
oscillations of the magnetic moment. The concrete ar- 
guments that explain each of the cases (a), (b), (c), (dl, 
and (e) are obvious and will not be presented here. 

We note that, as follows from (9) and is also easily 
understood from the qualitative reasoning presented 
above, no magnetic-moment oscillations are produced 
at V = 0. In other words, there a re  no oscillations in the 
equilibrium case when the Fermi levels of the electrons 
and holes coincide. In this case, however, the tunneling 
from semiconductor to semiconductor (or from semi- 
metal to semimetal) leads to a mutual penetration and 
superposition of standing charge- and spin-density waves 
from the different semiconductors (semimetals), and 
consequently gives rise to magnetic ordering near the 
tunnel junction. The result is particularly interesting 
when singlet pairing i s  produced in one equilibrium 
semiconductor (semimetal), and triplet pairing in the 
other. In this case each of the semiconductors (semi- 
metals) i s  nonferromagnetic, and ferromagnetic order- 
ing of the carr ier  spins is produced near the interface, 
owing to the superposition of the charge and spin waves 
from the different crystals. A detailed examination of 
the proximity effect in the equilibrium case will be the 
subject of a separate study. 

We note in conclusion that although the final expres- 
sions for the magnetic-moment current were obtained 
for the case mi >> 1, these results remain qualitatively 
in force also for an arbitrary carrier density, if the 
conditions for the Bose condensation of the electron- 
hole pairs are satisfied. 

The author i s  grateful to Yu. V. Kopaev for a discus- 
sion of the results and for interest in the work. 
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