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The current fluctuations in a semiconductor are investigated under the conditions for "Stark 
quantization". It is shown that the fluctuations may be anomalously large. The obtained dependence of 
the fluctuations on the parameters of the scattering system and on the width of the energy band allow us 
to reach definite conclusions about the nature of the energy dissipation and band structure of the 
semiconductor. 
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1. INTRODUCTION cording to this theorem the problem of fluctuations re-  

A number of art icles devoted to the investigation of 
semiconductors in strong electric fields have recently 
appeared. If the electric field is sufficiently strong 
(and the allowed band is relatively narrow), in such a 
field the electron is able to reach the top of the allowed 
band in energy space before being scattered. In such a 
situation the electron may undergo periodic motion in the 
Brillouin zone between collision events, which leads to 
qualitatively new quantum effects which a r e  not observ- 
able in weak fields. The general theory of kinetic phe- 
nomena in semiconductors in a strong electric field is 
developed in the art icles by Bryksin and Firsov. c1121 In 
the single-band approximation they obtainedc1] an ex- 
pression for the current in an  arbitrary electric field 
and an equation for  the distribution function on the basis 
of a diagram technique. A quantum transport equation 
is presented and also a number of specific physical situ- 
ationscZ1 a r e  investigated. Similar questions a r e  con- 
sidered by Levinson and Yasevichyute inc3], where the 
quantum kinetic equation is solved and the current is 
calculated for a model of scattering. It should be noted 
that the solution of the problem by Levinson and 
~ a s e v i c h ~ u t e ~ ~ ~  is of a less  general nature than the solu- 
tion by Bryksin and ~ i r s o d ' ~ ~ ~  since the authors ofc3] 
confined their attention to the case of weak electron-pho- 
non coupling and to a specific choice for the form of the 
electron band. 

It is known that the fluctuation-dissipation theorem is 
valid for a system in thermodynamic equilibrium; ac- 
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duces to a calculation of the-linear response of the sys- 
tem to an external perturbation. There is no such gen- 
eralized theorem for nonequilibrium systems, and in 
each specific case the calculation of the fluctuations re-  
quires special consideration. The theory of fluctuations 
in nonequilibrium electron-phonon systems is given in 

In these art icles current fluctuations were in- 
vestigated under the quasi-classical condition F>> tiw, 
where F denotes the average energy of the electron and 
w denotes the frequency of the fluctuations. High-fre- 
quency fluctuations in electron-phonon systems were in- 
vestigated inc7]. 

The present article is devoted to a calculation of the 
current fluctuations in semiconductors in a strong elec- 
tr ic field such that quantum effects due to the appear- 
ance of the "Stark levels"c81 begin to exert  influence on 
the quantum effects. The existence of these levels has 
been experimentally established. C9r'01 AS f a r  a s  the 
authors know, fluctuations under the conditions for quan- 
tization of the electron longitudinal motion have not been 
hitherto investigated. 

~ a r l i e r [ ~ * ~ '  a method was proposed for a calculation of 
the fluctuations, based on the equations of motion fo r  the 
quantum analog of the microscopic distribution function. 
In particular, this method enabled one to introduce out- 
side sources of fluctuations into the equation for the 
fluctuating part  of the distribution function without mak- 
ing any kind of assumption except those which a r e  used 
in the derivation of the corresponding kinetic equations. 
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In the present article the spatially homogeneous current 
fluctuations of a relatively strong transverse electric 
field E a re  calculated by this method. In this connection 
the investigation i s  valid for low a s  well a s  high frequen- 
cies (an exact criterion for the frequency range of the 
fluctuations will be indicated below). It is shown in this 
work that Stark quantization significantly changes the na- 
ture of the fluctuations whose intensity may appreciably 
exceed the intensity of the equilibrium fluctuations. The 
investigated fluctuations a re  found to depend on the pa- 
rameters of the scattering system and on the width of 
the energy band which allows one to reach definite con- 
clusions about the nature of energy dissipation and the 
band structure of the semiconductor. 

2. THE HAMlLTONlAN OF THE SYSTEM AND THE 
CURRENT OPERATOR 

Let us consider an electron-phonon system with a 
weak interaction, located in a strong electric field E. 
We assume that in equilibrium the ca r r i e r s  obey Boltz- 
mann statistics. We take the interaction between elec- 
trons into account by the introduction of self-consistent 
fields 6E(f) and 6H(t) which a re  due to fluctuations of the 
charge density and in turn exert influence on the fluctua- 
tions of the distribution function. In the single-band ap- 
proximation the Hamiltonian of such a system has the 
form 

where He is the single-band Hamiltonian of the electrons 
in the electric field, H, is the Hamiltonian of the phonon 
field, He, i s  the Hamiltonian characterizing the interac- 
tion between electrons and phonons, and H, describes 
the interaction of the electrons with the self-consistent 
fields. 

The single-band approximation i s  valid when one can 
neglect the effect of interband tunneling, i. e. , in the 
case of narrow allowed bands and rather broad forbidden 
bands. In this approximation the eigenfunctions of an 
electron in the crystal in the presence of a uniform elec- 
tric field E directed along the x axis a re  given byc8' 

with an energy 

where 

Here v denotes the set of quantum numbers n, k, (n is 
the label on the Stark level and k, ={k,, kJ), a is the 
smallest lattice vector in the direction of E, e i s  the 
carrier charge, and &(k) denotes the energy of the Bloch 
state h ( r ) .  In what follows we shall assume that the 
crystal has a center of inversion. In this case X(k) = O .  

In the second-quantization representation we have the 
following expressions for  the components of the Hamil- 
tonian H: 

where a:(a,) and bi(b,) denote the creation (annihilation) 
operators, respectively, for an electron in the state v 
and for a phonon with wave vector q,  w, denotes the pho- 
non frequency, C,  denotes the matrix element of the 
electron-phonon interaction, and 3::, = (vl e*"" I v'). 

For  a spatially homogeneous system the current oper- 
ator i s  given by 

where ci, i,, and Hi respectively denote the velocity, 
coordinate, and Hamiltonian operators for the ith elec- 
tron, and V denotes the volume of the crystal (further- 
more, we take V =  1). 

In the v-representation of operators longitudinal and 
transverse with respect to the direction of the field E, 
the coordinates have the form 

where 

=la 

X'L. = 2 5 '3 exp (i (n - nf)  ak,) dk,, 
2n -*,a eE 

By calculating the corresponding commutators in formu- 
la (I), we obtain the following expression for the cur- 
rent 3: 

J = e C vlh.an+ (kL) a,,, ( k ~ ,  
k,, n, "' 

where 

"" e+", = " \ exp {t  (ra - n') ak,) dkz. 
2n -=,a 

3. FLUCTUATIONS OF THE DISTRIBUTION 
FUNCTION 

The problem of fluctuations is self-consistent. The 
fluctuating fields 6E(t) and the current fluctuations 6J(t) 
a re  related by Maxwell's equations. But in order to cal- 
culate 6J(t) it i s  necessary to solve the equation for the 
fluctuations 6f,,. (t) = a:a,. - (a:a, ,) of the distribution 
function. Therefore, f irst  of all let us find the time de- 
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pendence of 6f,,. assuming the field fluctuations 6E to be was fulfilled. 
given. To this end we write down the equation of motion 
for the operator a:a,. Let us present the explicit form of BW and Ge,,: 

In the present article we consider only fluctuations 
6J, ={65,, 65,) which a r e  transverse with respect to the 
direction of E. And also we shall assume that c(k) 
= c ( k x )  + E (k,) in order to not complicate the calculations. 
Taking account of the latter leads to a simplication of 
formula (4) and for 65, we obtain 

1 de(k , )  
@ , ( t ) = e  - - - - - 6 f v v ( t ) .  

u h dk,  

It i s  clear from formula (6) that Eq. (5) can be used to 
determine 65, only at v= v'. Evaluating the commuta- 
tors on the right side of Eq. (5), we obtain the following 
equation for aia,: 

Here and below 1 = (y, 2). 

Let us derive the equation for 6f,= bf,, according to the 
scheme proposed Writing down the equations of 
motion for operators of the type a h ,  .be and linearizing 
these equations with respect to the fluctuating quantities, 
let us find the time dependence of the operator a:a,,b, to 
lowest order in the interaction constant C,. We can now 
write for the operator 

the following equation which i s  linearized with regard to 
the fluctuations: 

where f v =  (aia,,) and j,(t) i s  the operator of the extraneous 
current which appears in the equation as  a consequence 
of taking account of the initial conditions upon solution of 
the equations of motion for operators of the type a'av.b,. 
The form of j, coincides with the right side of Eq. (71, 
but the operators a, and b, have a time dependence of the 
same type a s  for noninteracting particles: 

{ ) , bq ( 1 )  = bq ( t o )  e x p ( - i o q ( t - t o ) ) .  a. ( t )  = a. ( t o )  erp - - 

In connection with the derivation of Eq. (8) the moment 
of time to was chosen such that the inequality 

Here 

1 r3E(k,) w,': ( a ) =  w Z . ( q ) *  wZ ( q ) ,  vk1=--, 
h Gk, 

where A:, , = E, - E , ,  f Ro, and N, i s  the Planck distribu- 
tion for the phonons. The expression for A; has a rath- 
e r  cumbersome form and i s  therefore not given here. In 
addition, in the case considered below A: i s  an even 
function of k, and, a s  will be evident from the following, 
does not give any contribution to the current. 

Equation (8) was obtained under the conditions 

where a,= e~a /F i  denotes the frequency of the electron 
vibrations in coordinate and momentum space and <, i s  
the characteristic frequency of electron- phonon colli- 
sions. Condition (11) indicates that the quantization of 
the longitudinal motion i s  essential and the Stark levels 
a re  not washed out by the collisions, and criterion (12) 
indicates the range of fluctuation frequencies under con- 
sideration. 

4. FLUCTUATIONS OF THE TRANSVERSE 
CURRENT 

As is evident from formula (61, the antisymmetric 
part of the function bf, gives a contribution to the fluctu- 
ating current: 

We shall assume that the electrons a re  scattered by 
unpolarized optical phonons. Then in the cases investi- 
gated by Bryksin and J?irsovE1 f,, is an even function of 
k, and therefore A: and BW(v) a r e  even and odd functions 
of k,, respectively, and also 

ie6Eta af., w:: (a) [bf ."(v' )  - --I t io ak ,  = 0. 

In addition the f i r s t  term inside the square brackets 
in Eq. (8) vanishes. This follows from the fact that in 
the electric field space remains homogeneous and one 
can show that (ai(kAa,.(k,)) only depends on the differ- 
ence n - nr .  Also bearing in mind that X: = ~ 2 ,  one 
can easily see  that the indicated quantity vanishes. 
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After everything that has been said, we obtain the fol- 
lowing equation for bf :(v): 

[ i o + r ; ' ( o )  16fao(v) 

where 

1 .  
.r;' (0)=  w P I ~  ( a ) ,  jaa(v) = 3 [ ~ a ( n ,  k , ) -  -kJ I .  

- LL - 
v ' , q  

We note that rt l(w) and B* do not depend on n since n ap- 
pears in WFV, in the form n - n' but summation i s  car- 
ried out over n'. Here the notation n(k,) = fv is  intro- 
duced since fv does not depend on the quantum number of 
the Stark level a s  a consequence of the above mentioned 
property of spatial homogeneity. 

Equation (13) is easily solved and we obtain the follow- 
ing expression for the fluctuations of the transverse cur- 
rent: 

Here 

a re  the outside fluctuating currents and a,, i s  the con- 
ductivity tensor (1, m = y, z )  which i s  given by" 

ie' an (kL) 

Now let us go on to the calculation of the correlation 
functions (I ';'I:') since it i s  just these quantities which 
a re  observable, and not the outside currents l,(t). The 
average values of quantities of the type 

a re  needed in order to determine the correlation func- 
tions of the outside currents. In Eq. (16) all of the op- 
erators a re  specified at a certain moment of time t, (the 
choice of to was mentioned above). Neglecting the non- 
diagonal elements f,,,. = (a:av.) of the density matrix, 
which a re  small in comparison with the diagonal ele- 
ments in terms of the parameter ;,/a,, we obtain the 
average value of expression (16) 

Then with (17) taken into consideration we have 

(18) 
where 

Formulas (15) and (18) a r e  valid for both low and high 

frequencies (the exact criterion for the range of w i s  giv- 
enby  hequality (12)). These formulas simplify consid- 
erably for  low-f requency fluctuations (w << E). And since 
in an experiment very often just the low-frequency fluc- 
tuations a re  measured, it makes sense to present the 
expressions for a,, and (I,I,,,) for the case of small w: 

The kinetic equation for n(k,) was utilized in the deri- 
vation of Eqs. (19) and (20). Thus, for example, taking 
account of the kinetic equation in (8) a s  w -  0 gives the 
equation 

a s  a result of which Eq. (8) takes a simpler form. 
Starting from this equation for  the function %, one can 
easily obtain formula (19). Analogous simplifications 
also occur in connection with the derivation of expres- 
sion (20) for the correlation function. 

The equation for n(k,) i s  derived under the same as- 
sumptions that were made for the derivation of Eq. (8) 
from the averaged equation (7) and in the stationary case 
has the form 

Equation (21) and i ts  solution were f i rs t  found by Bryksin 
and Firsov. C1rzl 

5. THE FLUCTUATION-DISSIPATION THEOREM 
AND OTHER EXAMPLES 

In this section we investigate the consequences of the 
above derived formulas for the conductivity tensor and 
for the correlation functions of the outside currents. Up 
till now the fundamental condition on the entire investi- 
gation was criterion ( l l ) ,  which determines the magni- 
tude of the constant applied electric field. But the width 
AE of the allowed band implicitly enters into all  expres- 
sions. And different physical situations a re  possible 
depending on the relationship between the quantities A E  
and En,, and also depending on the relationship between 
AE, and AE, (AE, denotes the width of the band along the 
field and AE, denotes the width transverse to the field). 
A number of such situations were investigated by Bryk- 
sin and Firsov, [zl who found the distribution function 
n(kL) for each case. 

In the limit of quantizing fields the electrons a re  only 
scattered inside a single Stark sub-band andcz1 

where C i s  a constant determined from the normaliza- 
tion condition, and T i s  the temperature of the lattice. 

(22) corresponds to thermodynamic equilib- 
ystem. In this case the fluctuation-dissi- 
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pation theorem, which can be represented in the form 

I h o  h o  
-=- cth - 
Real," 2n 2T 

should be satisfied. It i s  not difficult to obtain formula 
(23) if only the terms with n' = 0 a r e  kept in the summa- 
tion over n' in Eqs. (15) and (18) and also if the rela- 
tionship 

n(k , )  (N,+l)G(c (k , ) -e  (k,') -ho,*ho) 
=n(kL')N,e'""/'6 ( ~ ( k , )  -e (k,') -ho,*fio) 

is taken into consideration. 

Now let us investigate the case when fin,<< AE. Then 
we have 

n (k , )  =C (24) 

for the scattering of electrons by unpolarized optical 
phonons (w,= w,). It i s  assumed that Rw,<< &Ex, AE, 
and AE,- &EL- AE. This i s  the so-called case of total 
warming-up. It i s  of no interest due to the fact that for 
frequencies w >> & (see Eq. (15) we have 

This corresponds to the fact that the plasma frequency 
tends to zero, and for low frequencies, a s  i s  evident 
from Eq. (191, a';',= 0 and the ratio 

tends to infinity. This implies that the fluctuations in 
the system a r e  anomalously large. In order to deter- 
mine 0 it would apparently be necessary to determine 
n(k,) to the next order in RW,/AE, But 0 is easy to cal- 
culate if the band i s  asymmetric: nE, << AE,. In this 
caseC2] 

where 

We note that in spite of the Maxwellian form of the 
function (251, for arbitrary frequencies T i s  not re- 
placed by T* in formula (231, but for  low-frequency 
fluctuations 
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If we assume that fiw,<< T, we obtain an extremely 
simple expression for 9:  

From the last formula it i s  quite clear that the fluctua- 
tions in the investigated system a re  considerably more 
intensive than the equilibrium thermal fluctuations for 
AE, > Aw,. 

Thus, a s  follows from formulas (26) and (27), the in- 
vestigation of fluctuations in strong electric fields allows 
one to investigate the band structure of semiconductors, 
and the simplicity of the results significantly offsets the 
experimental difficulties. 

In conclusion we further note that in the present work 
the problem of a linear response has been solved and the 
results can be used in problems where there i s  a weak 
alternating electric field in addition to a strong constant 
field. 

The authors express their gratitude to V. V. Bryksin 
for helpful discussions and also to S. V. Gantsevich and 
R Katilyus for a discussion of the results of this work. 
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