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The longitudinal and transverse conductivities of a quasi-one-dimensional metal containing impurity centers 
are calculated for T = 0. It is assumed that the energy spectrum is given by expression (2), where 
Id<€,. It is found that for a:/v> 1 the longitudinal conductivity is described by the "three- 
dimensional" formula (28), where l2 is the mean free path of p o d - p ,  transitions, and S is the area of the 
xy-section of the unit cell. In the case of where a:/v< 1, the order of magnitude of the conductivity is 
expressed for a short-range potential by formula (42), where I, is the mean free path for p,+p, 
transitions. 

PACS numbers: 72.15.Nj 

1. INTRODUCTION It i s  obvious that for sufficiently large o the problem 
becomes truly three-dimensional and localization effects 

In a preceding P ~ P ~ ~ " '  (referred to I) lac should not come into play, In this event the usual kinetic 
cussed a method of deriving the characteristics of a equation is applicable, which is equivalent to neglecting 
one-dimensional metal containing random impurity cen- diagrams with intersection of the impurity lines (seec3'). 
ters' As was pointed Out? the true aim of this method The criterion for their neglect is >> 1, where Ac is 
was not the solution of the one-dimensional problems the characteristic energy, and T the time between colli- 
with a random potential, which may also be solved by sions. In the present case the role of AE i s  played by 
another method (seeE1), but of quasi-one-dimensional 

a ,  while T =12/v (see I), i. e., the problem becomes 
ones in which the motion of the electrons is not purely three-dimensional when 
one-dimensional and there is relatively slow motion in 
the transverse direction. 

In the present paper we shall examine the conductivity 
of a metal with an energy spectrum 

( a  << zF) and containing random impurity centers at T 
=O. Referring the energy to the chemical potential, we 
have 

(the integral is taken over the area of the xy-cross-sec- 
tion of the Brillouin zone). If a more concrete estimate 
is needed we shall use the formula for  strong coupling 
for a rectangualr cell in the plane: 
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It i s  evident from this that there i s  a region ab/v<' 1 
in which, on the one hand, static conductivity must ex- 
ist, and on the other hand, localization effects must be 
strongly in evidence. A rough estimate of the conduc- 
tivity in this case can be obtained from a diffusion analy - 
sis. As a result of collisions, an electron diffuses f i rs t  
of all in the xy-plane. The relevant diffusion coefficient 
is of the order of 

In I i t  was shown that two times T exist: the time T, 
for the processes without appreciable change in the z -  
component of the momentum ("forwara'scattering) and 
the time for  processes in which p, undergoes a transi- 
tion from the neighborhood of p, to the neighborhood of 
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-Po ("bacK' scattering). Localization i s  determined by 
T2 only. In formula (5) T takes both processes into ac- 
count, since a transverse component of momentum 
arises for both of them, i. e., T = (1;' + T;')". As re- 
gards the transverse velocity, it is 

where a i s  the transverse period. 

The distance p in the transverse direction negotiated 
by a particle in the time t is p- (~ , t ) "~ .  If the impurity 
potential is short-range, i. e., there i s  in reality no cor- 
relation of the potentials in neighboring threads, then it 
is sufficient for the particle to cross into the neighbor- 
ing thread for it to get into new localization conditions. 
Since the localization radius is of the order of 1, =vr2, 
the particle i s  displaced in this event along z by a dis- 
tance of the order of 12. According to the foregoing, the 
average time necessary for this i s  t-  d/D,. Conse- 
quently, 

The conductivity in a degenerate system is related to 
the diffusion coefficient by the well known relationship 

Substituting (5), (6)) and (7), and taking into account 
that in our case 

where S is the area of the xy-section of the unit cell (S 
=a,a,), we obtain 

If the interaction is long-range, i. e. , its radius of ac- 
tion yo >> a, violation of the correlation will only occur 
for p - ro. This leads to t -  r :/Dl, Dl, - ~ , ( 1 ~ / ? - ~ ) ~ ,  and 

We shall verify below that expression (10a) is an ac- 
curate result, while (lob) is somewhat approximate, ap- 
parently because of some inaccuracy in the concept of a 
displacement by h in a time t. 

In what follows we present a rigorous theory of conduc- 
tivity based on the method developed in I. 

2. THE GREEN FUNCTIONS AND THE GENERAL 
FORMULA FOR LONGITUDINAL STATIC 
CONDUCTlVlTY 

The Green function in the static potential V(r) will de- 
pend on the two coordinates r and r' and on the time dif- 
ference t - t'. Let us introduce a Fourier transforma- 
tion with respect to t - t' (i. e., w) and to xy, x'y'. The 
Green function will then have the form G(Z, z', p, p', w), 
where p = (p,,p,). Such a Green function satisfies the 
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Dyson equation 

Here, as in I, a 2x 2-matrix Green function is intro- 
duced, the index 1 denoting the vicinity of Po, and the 
index 2, that of -Po. The field $ is the matrix 

cp̂ (k, Z )  = q  (k ,  Z )  +I/& (k ,  z )  0 (+~+~/26 ' (k ,  z)a(-I. 

Here u"'=oliio2, where ol, 02, and a, in (11) are Pauli 
matrices. The fields q and b are random Gaussian 
fields which are averaged 'according to the rule 

<q( i i ,  z ) q ( k f ,  z') >=(2n)'6(k,+k.')6(ku+k,')d(z-zt)D1(k), 

( 5  ( k ,  z) C'(k', z') >= (2n)'6(k,+k.') 6 (kg+ k d )  6(z-z ' )D,(k) .  (12) 

This description corresponds to the Born approximation 
(see I). 

To eliminate 6(p- p') from the right-hand side of (ll), 
we return to the coordinate by the Fourier procedure, 
but with respect to the variable p' - p. On doing this we 
obtain 

a G 
oG+iuo3-- a(p)G=G(z-z ' )  + @ ( k ,  z )G(p-k ,  p', z, ~ ' ) e - " P ' # k / ( 2 n ) ~ .  

az 

This equationis of the same form as in I. The difference 
is that previously the potential was an operator only with 
respect to the "spin" indices, whereas it  now also acts 
on the variables p and p', viz., i t  displaces p by k and 
multiplies G by exp(- ik . p').  Nevertheless the equation 
may be solved symbolically. From (13) it follows that 

G ( z ,  z') =S(z ,  z , )  G ( z l ,  z1)-iu-'S(z, zr)us0(z-z l )e(z ' -z , ) ,  (14) 

where the S-matrix has the form 

- [ S ( z , )  lo'+' /2+[S'(z l )  lo'- ' /2]dz ,  , 1 
[ q ( z )  ]= q (k, Z )  e-IkP' dzk/ (2n)'. 

Equation (14) is solved taking account of the boundary 
conditions for G,,, and GaBR in the same way as in I, 
but with the difference that the operator character of S 
with respect to p and p' must always be borne in mind, 
i. e., the non-commutative nature of S,,(z, 2 ' )  and 
S,(z,, 2;). However, the derivation in I i s  easily gener- 
alized to this case. 

A more convenient representation of the Green func- 
tions is the following 

c,,, ( Z > z T ) = -  L ~ , ~ - l ( m ,  Z )  [SII - l (m,  -m) I-'IS-'(z', -*)u~J:P. 
U 
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Here the notation i s  the following: S;.,; must be under- 
stood in the sense that the component a1 is taken from 
the matrix inverse to (15). In relation to p and p' this 
is still an operator; [S,',]" denotes the inverse of this 
operator. 

Since we a re  interested in the static conductivity, it 
is sufficient, a s  shown in I, for us to know G  for o=ON: 

The dependence on p' in G ,  is due to the multipliers 
exp(- ik p') in the potential components. The n-th 
order term for interaction with the potential is propor- 
tional to 

If this multiplier is substituted in (17) and integration is 
carried out with respect to p', we obtain 

pi=p - k,. 
L l  

But according to (13) each component of potential does, 
after all, lead to the replacement of p by p - k. Conse- 
quently, we can assume that in this sense all the poten- 
tial components that have already acted on G ,  act on G,.  
Taking into account that according to (12) after averag- 
ing to every k, there corresponds a - k,, all the k com- 
ponents cancel out. This makes i t  possible to write the 
expression for  conductivity in the form of a trace not 
only with respect to a, but also with respect to p, viz., 

i t  being necessary to consider each impurity potential 
a s  a displacement operator with respect to  p: p - p - k,. 

Let us substitute in this the expressions (16) for G .  
After some easy transformations we obtain 

In this formula we have changed to the finite length L, 
i. e., Sll(-=, - w) -Sll(L, 0). The factor L appears a s  a 
result of the integration with respect to z,. 

Equation (19) can be presented in a different form due 
to the fact that the trace does not change on going over 
to a different complete system of functions. To be pre- 
cise, let us  carry out a Fourier transformation of a(p) 
with respect to  p: 

where the sum with respect to i is over lattice periods 
in the xy-plane, N is the number of cells in the xy-plane, 

and S is the area  of the xy-section of the unit cell. Let 
f be a certain function of ~ ( p ) .  Then on inserting the re-  
lation q(k) f (p) = f (p - k)v(k) in the Fourier components, 
we obtain 

In other words, the function f i s  converted into an oper- 
ator which, acting on the potential operators, multiplies 
them by exp(- ik . p,). Bearing this in mind, we can write 
in place of (19) 

Let us note that 

corresponds to the form (3). All the remaining at's a re  
equal to zero. 

In real  calculations formula (19) is more convenient 
in the case of a short-range potential, since use can be 
made of the fact that = 0, the averaging being done 
over a range of momenta small in comparison to l/ro, 
where ro is the radius of action of the potential. In the 
case of a long-range potential, on the other hand, formu- 
l a  (20) is more convenient. The point is that if a did not 
have an operator character, i t  would play the same role 
a s  w ,  i. e., i t  would drop out of the result. Consequent- 
ly, one can always substitute 

Thus, the problem consists in calculating expressions 
(19) and (20) for the different cases. 

3. THE LIMIT OF APPLICABILITY OF THE KINETIC 
EQUATION 

Let us  examine the S-matrix (15) for w =O. On chang- 
ing to the "interaction representation," we have 

where P, is an operator displacing p by k. 

Let us, a s  in I, change from integrals with respect to  
z in the exponents to sums and use the notation 
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~ = ( t + t ~ )  -,. (27) 

Here to is found, in principle, from the boundary condi- 
where A is a normalizing segment which will later tend tions fo r  t =O. However, whatever to may be, Q Z t "  for 
to zero. Then (see I) sufficiently large values of t. On substituting this in 

formula (19), we find 
S(z, z ' )  =T, ~ e s p [ c ~ j , a ~ + ~ , o ' ~  '/2+i,'01-1/21 

t o,,=eZ1,/2rcS. (28) 

= (l-t1:/2+15,1'/2) T, rl[ (l+i.ii,os+i,o'+'/2+f,'o'-'/2). 
This answer could also be derived from the kinetic equa- 
tion. 

We have expanded the exponents and kept only terms not 
higher than :, L t ,  [ f ,  I C t  l 2  in order. It must be taken Let us now determine what e r r o r  we made in neglect- 
into account that in the I [ , I  2 ' ~  which enter into the ing the intersections. For  this purpose let us put Q(z) 
products in i it i s  sufficient to keep only those products with 7 = O  in the following form (see I): 
which "link together," i. e., [ ( k ) ~ *  (- k) with their appro- - I  

priate multipliers. It i s  not difficult to see that these Q(z)= S ( i+lcl12)~pp{[  1 +z i,im' + z&im'k,ih'+. . .] 
multipliers cancel and as a result 

A iz?+ l l ~ + - i ~ , ( k ) d f k / ( 2 n ) 2 = -  ,,- A' I? I lli(k.=O, k )  i2rPRI(2r)'=~N.. 

A AN2 where in the f i rs t  square bracket I< m < n< k . . . , and in 
~f,l'+lt I -  -- ~ ~ ? ( k ) d ? k l ( 2 n ) ~ = - - - ; - ~  ICr(h~=2po,k) 1 2 d 2 k / ( 2 ~ ) Z = l / l l  the second 11> ml >nl > kl . . . . 

1.- u- 

(2 3) Let us  expand the square brackets with respect to 3 
is obtained. On substituting the S(z, 2') expression in and [*. The general term of such an expansion will have 
(19) the external multipliers exp[ia(p)z/v] cancel and an the form 
expression is left which, in place of the full S-matrices, -- ---- 
contains reduced ones 3. SPP { 5 ~ 5 ~ ' 5 ~ t ' S ~ 5 , ~ }  

Let us  examine the expression 

Q(z)=S .Sp , ( [SII - ' (~ .  0) ]-'[S,i(z, 0) I-'). 

where c and f* must alternate. If we substitute formula 
(22) for [ and c*, we shall obtain a phase multiplier of 

(24) the type 

which enters in u,, (19) a s  a function of z. Changing exp { i [a(p)z~+ a (P-k,) (zl-z,) -a(p-k,-k,) (z,-z.) 
from integrals with respect to z, to sums, we separate +a(p-k,-k2--k3) (z.-2,)-. . . -a(p- . . .)z,]/u). 

out the field operators with the largest z. Expanding a s  
in 1 with respect to these operators and keeping terms Taking into account that on averaging with respect to 3 

not higher than the second order in 77 and the f i rs t  order the coordinates zi  must coincide in pairs, then we will 
in 1 3 1 2 ,  we obtain of necessity get phase multipliers of the type 

Here all the S's in the curly brackets a re  S(z -A ,  0). 
Notice that qf: drops out of this relationship. 

Before averaging with respect to t ,  let us note that 
according to formula (22) has phase multipliers which 
depend on 0. In the general case such a phase multi- 
plier is  equal to 

If the "intersections" of the impurity lines a re  ignored, 
account must be taken of the fact  that the term in the 
brace brackets in (25) breaks up into two independent 
averages; in this event p =pl. On averaging with re- 
spect to [ and introducing the notation t =z/Z2, we obtain 

On averaging the expressions depending on several 2,'s 

with respect to 3, i t  always turns out that these expres- 
sions decrease exponentially f o r  z, - 2,- la. An example 
of this is the calculation carried out in I, and the com- 
putations of Q(z) for small values of cy in the next section 
of this paper. 

Consequently, a typical phase multiplier is exp[icu(p)12/ 
v]. Since integration with respect to p i s  implied in the 
full expression, we can carry i t  out in two stages. We 
shall f i rs t  average over the interval l Ap l << n/a, and 
then carry out a full integration with 'respect to p. If 
012/2, >> 1, then l Ap I << r /a  can always be chosen so that 
IAp. acy/apl 12/v is large since acy/ap- cya. But the 
phase multiplier will then give zero on averaging with 
respect to Ap. If, on the other hand, culz/v<< 1, then the 
phase multiplier is as a f i rs t  approximation equal to 
unity. 

Transposing the matrices in P under the trace sign and Consequently, in the f i rs t  limiting case the intersec- 
carrying out some elementary transformations, we ob- tions can be neglected and result (28) is obtained, while 
tain P = Q  - 1. Substituting this in (26) and solving the in the second limiting case there is a purely one-dimen- 
equation, we obtain sional situation. 
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4. LONGITUDINAL CONDUCTIVITY IN THE CASE 
a/, /V << 1 

The case &/v << 1 is the most interesting since, in 
the first  place, i t  corresponds to  a real quasi-one-di- 
mensional substance with internal disorder, and in the 
second, it makes i t  possible to see how the finiteness of 
ar leads to the occurrence of finite conductivity. It is 
not possible to compute expression (19) for  non-commut- 
ing 5 operators, and therefore the f i rs t  thing that enters 
one's head is to  expand with respect to a. Care must, 
however, be exercised here as  o may prove to be non- 
analytical in the neighborhood of a! =O. We shall see be- 
low that this is in fact so, but in principle this could be 
guessed just from the fact that the conductivity of an in- 
finite specimen is equal to zero for ar =0, i. e., for a 
value of ar a s  small as one likes, the first-order term 
will be infinite with respect to the null-order term. This 
difficulty can be avoided if a sample of finite length L i s  
considered. We shall therefore consider L finite and 
find the f i rs t  terms in the expansion of o with respect to 
0. 

The null order was determined in I, and i t  turned out 
that 

The next term will obviously be proportional to 

since <r = 0. 

On expanding S(z, z') with respect to ar in the form 
(15) and substituting in expression (24), we obtain 

+ o ( z , - z , )  [ s , , - ~ I - ~ [ s , , I - ~ [ s ( ~ ,  z , ) a S ( z , ,  z , ) a s ( z , ,  0 )  I , , [ S , , I - ~ } ,  

(31) 
where & = ao3, while Sll =Sll(z, 0). Note should be taken 
of the following. Since each 5 (or q) operator exchanges 
p fo r  p - k, then having taken, on averaging with respect 
to 5, the sequence order, let us say, of 565*6, we ob- 
tain 

Let us consider the potential a s  short-range, i. e., let 
us assume that i ts  radius of action is ro << a .  In this 
case integration with respect to k within the limits of the 
cell of the reciprocal lattice is in fact done for constant 
1 ~ ( k )  1 2 ,  and since z(p) =0, this integral vanishes. This 
means that non-null terms must have a sequence order 
of the averaging operators of c&&* or  655*6. In other 
words, the 5 and q operators situated between two 6's 
and those which stand outside 6.. . &, are  averaged in- 

dependently. After this one can forget the operator 
character of 5 in the sense of translations of p, and the 
trace in p will simply denote 

On removing the brackets in (31) and taking what has 
been said above into account, we get 

z z 

~=(alv)l J d z ,  j d z z { 2 0 ( z i - z 2 )  [ S , , ( z ,  z , ) S , , ( z , ,  O ) + S 1 2 ( ~ ,  z I ) S 2 , ( z 2 ,  0 )  I 
a 0 

X e x p { ( z , - z , )  (1,-'-1,-') / 2 } / S , , Z S 2 2 -  

-2[Si1 ( z ,  z z ) S i l ( z , ,  O) /S t j l  [Sir (2,  z t ) S i t ( ~ z ,  O) /S l tZS??l  
-21S12(z, z2)SZi(zl, O)/SLII [ S t t ( z ,  zl)S2'(zI,o)/SLlZSZZl 
+ 2 [ S , , ( z ,  z*)SH(z i ,  O)lSIIl [S12(z, z , ) S , ,  (22, O)/S112S221 
+ 2 [ s , 2 ( z ,  zz)Sir(zt ,  O)/SttI  [ S , * ( Z ,  ~ t ) S z l ( ~ z ,  O)/Si*'Sz=l 
1 Is,?(-, z , ) S , ,  (2,  z2)/S, ,Sz2] [S , , ( z , ,  0 ) S 3 ,  (22, o ) / s , l s 2 2 l  
+ [ s l Z r z ,  Z ? ) S ~ , ( Z ,  z ~ ) / s ~ ~ s ~ ~ I  [ s I 2 ( ~ , ,  o ) s Z 1  ( z 2 ,  O ) / S , , S ~ ~ I  
-- [S22(z, 2 , )  s,2 (z, z,)/S11Sz1] [SZZ (z1,O) S2, ( z 2 , 0 ) / s , , s ~ ~ ]  

- [ s , ,  ( z ,  z , ) S , ,  (2,  z2)/S, ,S22] [ S , ,  ( z , , O ) S , ~ ( Z , ,  O ) / S t , S 2 2 1 } .  (32) 

(Here and below the square brackets denote averaging 
over the fields q and 5 in accordance with formula (121.) 
In deriving this formula use was made of the properties 
of S,, found in I as these quantities a re  now purely one- 
dimensional, i. e., they do not have an operator charac- 
ter. In (32) each expression contained in the square 
brackets is averaged independently. Use was also made 
of the invariant nature of each bracket with respect to 
the substitution g * ~ t  5 and of the property 

Of the terms derived, all those containing in any bracket 
a different index figure 1 and 2 in the numerator vanish. 
In the terms left i t  is easy to find averages of the type 
[sal(z1, O)S,,(Z, Z,)/S,,(Z, o)], since these a re  precisely 
those combinations which enter into the components 
G,,, (see I). After this 

is left in the brace brackets of expression (32). 

Fi rs t  of all, let us analyze the role of the field q. If 
one changes to the interaction representation with re- 
spect to q (see I), then since on averaging with respect 
to 5 compensation of the 5 and 5* multipliers exp(i 2iqz/ 
v) occurs, i t  is sufficient to take only the external mul- 
tipliers exp(iqz/v) into account. It is not difficult to see 
that after averaging with respect to q the same depen- 
dence on 1, appears in all the terms of expression (331, 
viz. , the multiplier expi- (zl - z2)/ll}. Bearing this in 
mind, we can carry out all the future computations with- 
out taking account of the field q. 

Fi rs t  of all, let us note that in the second and third 
terms the case z1 > z2 is equivalent to  the case z, > 2,. 

Indeed, each of the averages which occur here can be 
subjected to a formal transformation g e  C*, after which 
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zl>z, goes over into z,>zl. Consequently, it is suffi- 
cient to consider, for example, the case zl >z,. Let us  
calculate 

A,( z .  z1, zz)=[S,1(z,,  O)S,z(zz, O)/S, , (z ,  O)S,,(z,  O ) ] .  (34) 

In analogy with the procedure in I, one can write equa- 
tions connecting the various Aln's: 

This system tallies with the one which was obtained for 
C, in I: 

where t =z/12. For  t =tl  =zl/l2 

These quantities a re  defined by the system of equations 

Finally, for z1 -zz, the quantities P, change into the B,'s 
found in I: 

In I it was shown that b, (2,) contains a part which is 
independent of z,, viz., Bn(z2) = 1, and a part which de- 
creases exponentially at distance 1,. We only need the 
first  part. From equation (38) i t  is evident that P, =l  
satisfies both the equation and the boundary condition. 
On changing to the equation for  Al,, we see that the solu- 
tion will be 

In particular, Alo =Al which we have been working out 
will be of this type. 

Substituting this result in the second term of formula 
(33), taking account of the multiplier em[- (2, - z,)/ll] 
from the field q ,  and integrating with respect to z, we 
get 

(the factor 2 is due to the two regions z1 > 2, and z1 < 2,). 

To work out the third term of formula (33) it is neces- 
sary to find the averages 

For z - z1 the quantity A* becomes Kn(zl, 2,): 

Finally, for zl - z,, K, - Bn+1(z2). Analogously to  what 
was done for Aln, we get 

Consequently the contribution of the third term coincides 
with that of the second. 

It is considerably more difficult to find the contribution 
of the f i rs t  term in (33). The corresponding computa- 
tion gives 2111 ;/(l1 + 1,). But if one considers that z >>ley 
the contribution of this term is small in comparison to 
those found earlier. It is for this reason that we shall 
not se t  out here the long calculation leading to this re- 
sult (unfortunately, we have not succeeded in demon- 
strating the smallness of the contribution of the first  
term compared with the others without a full calcula- 
tion). Substituting the results for  the second and third 
terms in (33) in the formula for the conductivity, we get 

Consequently, formulae (30) and (40) describe the null 
and f i rs t  orders in 5' for conductivity with finite L. The 
calculation of the subsequent orders in a! presents con- 
siderable difficulties, not to mention the finding of a 
general expression, and without this i t  is not possible 
to find the limit L - 03. In order to find an answer we 
shall use the hypothesis relating to the existence of a 
correlation length, i. e., of a value ~ , (c r )  above which 
the sample can be considered infinite. In the spirit of 
similarity theory one can assume that for L =  L,(a!) all 
the terms of the ser ies  for o,, become of one order. 
Comparing expressions (30) and (40), we get from this 

Let us note that for a&/v  << 1 we have L, >> Z,, which jus- 
tifies neglecting the f i rs t  term in (33) in comparison 
with the others, even for L=L,. From formula (40) it 
is evident that in this case o,, reaches a value of the 
order of 

which can also be considered the conductivity of an in- 
finite sample. 

We must emphasize once more that expression (42) is 
the consequence of the hypothesis adopted. Unfortunate- 
ly, we have not succeeded in deriving o,, more strictly. 
The similarity of the formula obtained to expression 
1(93) for the purely one-dimensional case with w,# 0 is 
noteworthy (for further details see  Conclusion). 

5. THE TRANSVERSE CONDUCTIVITY 
The transverse conductivity is found considerably 

more simply. In the general expression (17) the velocity 
operators vo, are  replaced by aa!/ap,. On doing this we 
get 
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A s  previously, we shall analyze the simpler case of a 
short-range potential: ro << a. In this case the sequence 
order glcug:cu is not permissible on averaging, and con- 
sequently 

is left. 

It is not difficult to show that the averages of the G -  
functions depend on o only through the external multi- 
pliers exp(icuo,z/v) which cancel in (44). Indeed, if use 
is made of formula (16), then only II (1 + 1 g,I2/2) need be 
taken into account in each S a s  there is nothing to aver- 
age the other g's with. In this sense the situation does 
not differ from the purely one-dimensional case. If this 
is taken into account, we get, for example, 

[GRII  (z>z,) ] =exp(-iuzlu) (I- I f ,  1'12) exp (ill,) exp (iuz'lu) 1 
=exp{-ia (z-z,) /v) exp {- (z-z,) (l,-L+l,-l) 12). 

Consequently, the purely one-dimensional expressions 

a re  left. Substituting this in (44), we get 

If use is made of formula (3) for CY, we get 

6. CONCLUSION 

The formula (46) obtained for the transverse conduc- 
tivity is identical with expression (10a) which results 
from a diffusion evaluation. The evaluating formula 
(lob) differs from (42) in the absence of the multiplier 
ln2(v2/1s2), which, as  already noted, is a consequence 
of a somewhat inaccurate assumption made in the evalu- 
ation. Let us note, however, that the two mean free 
paths ll and h enter into both formulae in the same way, 
confirming the correct physical interpretation of longi- 
tudinal conductivity. 

Formula (42) is very reminiscent of the formula for 
the longitudinal conductivity of a purely one-dimensional 
metal in an a. c. field (see I, formula (93)), which is 
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quite natural. Both these formulae correspond to the 
well known qualitative evaluation due to ~ o t t , ~ "  the role 
of the energy required to overcome the difference in 
levels in the random potential is played in one case by 
w ,  and in the other by a. A linear term is naturally ob- 
tained only for w #  0 a s  z(p) =O. 

Consequently, making use of the expansion with re- 
spect to a, it is possible to find the longitudinal conduc- 
tivity using the lacing hypothesis only with an accuracy 
to an unknown numerical coefficient. To check this hy- 
pothesis and to determine the coefficient it is necessary 
to manage without expanding with respect to a, which is 
not realistic in the framework of the method used. An- 
other method i s  to examine a long-range potential. In 
doing this formula (20) has to be used. As has already 
been said in the appropriate place, one can in this case 
use the expansion with respect to I exp(ik. p,) - 1 l << 1 
(since k- rid, pi - a and ro/a >> 1). As a f i rs t  approxima- 
tion i t  is sufficient to take account of the correction to 
one impurity line. If this line is separated out, then on 
the one side of i t  is the pi-component from a certain ex- 
pression, and on the other the p,-component from an- 
other expression. But since 

one can consider with logarithmic accuracy that on the 
left-hand side of the line separated out el =constant, and 
on the right-hand side C Y ~  =constant, which play the role 
of different frequencies. Such a computational program 
proved in practice very complicated, but this route is 
apparently not without hope. 

 ere and in what follows we shall assume the electrons to 
have zero spin. To take account of spin the whole expression 
for of,, must be multiplied by 2. 
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