
is equal to 9 MHz, which i s  also in good agreement 
with the measured B = 8 MHz. 

The considered mechanism of phaser generation un- 
der conditions of spatial disequilibrium corresponds to 
a monotonic decrease of the spectrum intensity with 
increasing distance from the center of the resonance 
lines. This monotonic decrease, a s  noted above, is 
observed only at small excesses above the generation 
threshold. The fact that the decrease i s  no longer 
monotonic at high pump levels (Figs. 6 and 7) demon- 
strates the limited character of this analysis. The i r -  
regularities and the dips in the spectrum show that at 
high pump levels the resonance line acquires a fine 
structure which apparently leads to the aforementioned 
spectral disequilibrium, when individual regions of 
lines that a re  quite close in frequency make independent 
contributions to the generation. 
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Dynamic damping of dislocations by spin waves in ferromagnets is investigated. The dependence of the 
magnon damping force on temperature and velocity is calculated. A general picture is presented of the 
temperature dependence of the dynamic damping force on dislocations in ferromagnets. 

PACS numbers: 75.30.Ds, 61.70.Ga 

INTRODUCTION fluctuations, and dynamic damping caused by scattering 
of the.energy of a dislocation by elementary excitations 

Motion of dislocations in a crystal, which causes the in the crystals (phonons, electrons, spin waves, etc. ). 
process of plastic deformation, is limited, a s  is well Because of the fact that the density of an elementary-ex- 
known (see, fo r  example, ['I), by two qualitatively dif- citation gas increases with r i se  of temperature (elec- 
ferent phenomena: the surmounting of barr iers  through trons in a normal metal a r e  an exception), the contribu- 
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tion of dynamic damping of a dislocation increases, and 
calculation of i t  is necessary for an understanding of the 
processes that control plastic deformation. [1'2J 

In ferromagnetic materials, moving dislocations must 
be damped because of interactions of their elastic fields 
with the magnetization of the ferromagnet. 

The present paper is devoted to a study and analysis 
of the damping force caused by dissipation of the energy 
of a dislocation by magnons in ferromagnets". It is 
shown that a t  T =  0 there is a critical dislocation velocity 

where A is the activation energy of a spin wave, p i s  the 
Bohr magneton, Mo is the magnetic-moment density a t  
saturation, p is the anisotropy constant, Ho is the ex- 
ternal magnetic field, 0, is the Curie temperature, and 
a is the lattice constane). At velocities v<v,, the damp- 
ing force F  on a dislocation is zero; but for v> v,, i t  be- 
gins to increase; and for v >> v,, i t  is quadratic in the 
dislocation velocity: F -  2. This peculiarity of magnet- 
ic  damping is a consequence of the existence of an acti- 
vation energy in the spectrum of quasiparticles of a fer- 
romagnet and is due to the process of generation of spin 
waves by a dislocation when v > v,. 

For T + 0, damping exists a t  arbitrary dislocation ve- 
locities; but for T<< A, i t  remains exponentially small in 
the range v<v,, while for T >> A, i t  increases with in- 
crease of temperature - ( T / O , ) ~ / ~ ;  then a t  dislocation ve- 
locities v << v,, the damping force increases linearly with 
increase of v. For velocities v> v, and temperatures 
T<< A, the damping is caused principally by generation 
of spin waves by the moving dislocation, and the char- 
acter of the velocity dependence changes from a linear 
to a quadratic. For T>> A in the range v >> v,, the con- 
tribution of the mechanism of generation of spin waves 
is negligibly small in comparison with the contr:V~ution 
of the mechanism of scattering of magnons by disloca- 
tions; over a broad velocity range v<< ( ~6 ,d ) ' / ~ ,  the 
damping has a viscous character: F -  v. 

In the paper, an analysis is made of the role of the 
various mechanisms of dissipation of the energy of a 
dislocation in a ferromagnet, and a description is given 
of the general character of the temperature dependence 
of the dynamic damping force on dislocations. 

1. THE HAMlLTONlAN FOR INTERACTION OF SPIN 
WAVES WITH DISLOCATIONS IN  FERROMAGNETS 

We consider the scattering of spin waves by disloca- 
tions in ferromagnets. We write the Hamiltonian of this 
interaction in the form 

where uik(r, t) is the dislocation deformation tensor; 
Xi,,, and yik,, a re  magnetostriction-constant tensors, of 
which the first  describes magnetoelastic effects for uni- 
form and the second for nonuniform magnetization; M is 
the magnetic-moment density vector; the integration ex- 
tends over the volume V of the crystal. Hereafter we 

shall consider the isotropic case, for which 

where A,,, X, pl, and a r e  magnetoelastic constants. 

We express the Hamiltonian (1.1) in terms of gener- 
ation operators a; and annihilation operators a, of spin 
waves with wave vector k. It is well known (see, for 
example, ['I) that 

If we then describe the elastic field of the dislocation in 
the form 

(where uik(q) is the Fourier transform of the static de- 
formation field of the dislocation, and where w = q. v), 
substitute (1.2)-(1.4) in (1. I), and retain terms qua- 
dratic in the spin-wave operators, we get3) 

where 

As follows from formula (1.5), interaction of spin 
waves with dislocations is caused both by processes of 
emission and absorption of a phonon by a magnon, and 
by processes of fusion of two magnons into a phonon and 
splitting of a phonon into two magnons. Each of these 
processes is characterized by the appropriate amplitude 
Gl(k, q) o r  G,(q). The simple time dependence of the 
Hamiltonian of interaction of a moving dislocation with 
spin waves, 

allows us to treat the energy acquired by spin waves 
from moving dislocations a s  energy of absorption of 
quanta during various transition processes in the mag- 
non system. 

2. RATE OF DISSIPATION OF ENERGY OF A 
MOVING DISLOCATION I N  A FERROMAGNET 

The rate of dissipation of energy per unit length of a 
moving dislocation is determined by the expression 

where L is the length of the dislocation line, and where 
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v,,,,, is the probability of a transition in the magnon sys- 
tem from a state with wave vector k to a state with wave 
vector k+ q, during which a quantum w(g) is absorbed 
(radiated). 

The dissipation of the energy of a dislocation is de- 
termined, a s  was mentioned above, by two types of scat- 
tering processes, each of which is characterized by i ts  
own transition probability. By calculating the respec- 
tive probabilities and substituting the expressions for 
them in formula (2. I), we find 

where n, = [exp(&,/~) - I]-' is the number of spin waves 
in the state with energy c,. 

We shall suppose that the external magnetic field H, 
is large enough so that the energy of a magnon may be 
considered to be &, = ~ + O , ( a k ) ~ .  ['I Then on going over 
from summation to integration in formula (2.2) and in- 
tegrating, we obtain after simplification 

where 

and where 9 is the azimuthal angle of the vector k. 

The appearance of two terms in (2.3) is caused by the 
two types of scattering processes: the f i rs t  of these de- 
scribes the part of the damping that is due to radiation 
and absorption of phonons by magnons and exists a t  a r -  
bitrary dislocation velocities. The second term is due 
to fusion of two magnons into a phonon and splitting of a 
phonon into two magnons. As follows from the formula, 
these processes make a contribution only beginning with 
velocity v 2 v, = 2 ( ~ 0 , a ~ ) " ~ .  The expression (2. 3) de- 
scribes the dependence of the damping force of the mag- 
nons on temperature and velocity. 

The case v << (TO .aZ ) 

The damping of dislocations in this case is determined 
by the f i rs t  term of formula (2.3), in which the expres- 
sion for the amplitude of scattering of spin waves by 
straight-line dislocations is conveniently written in the 
formcs1 

nbi 2 n b ~  
@, (k ,  q )  =- - hpMox (qo, I), r)  6 ( q r )  + - f), B0(ah) '~  (qo,  b, T, ko) 6 ( q ~ ) ,  

q v q v 
(2.4) 

where p,, - p, - & = 1; H and q are  certain functions of 
order of magnitude unity, dependent on the directions of 
the wave vectors q and k, of the Burgers vector b, and 
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of the unit vector T tangent to the axis of the dislocation. 
Noting that a t  low temperatures, T<< A, the chief con- 
tribution to the damping of dislocations comes from the 
f i rs t  term of the expression (2.4), we express formula 
(2.3) in the form 

where C1 is a constant of order of magnitude unity, 9, 
is the projection of the wave vector on the plane perpen- 
dicular to T, and x is the azimuthal angle of the vector 
q, in the plane plane perpendicular to T. 

After integrating in formula (2.5), we find for the 
damping force on dislocations, F,= %/v, the following 
expression: 

The coefficient of damping of a dislocation by spin waves 
because of relativistic magnetoelastic interaction is ~ 1 ' )  
= 2 . g/cm-l sec-'. For  ferromagnets with X =  5. ld 
we have B:') = lo-' g/cm-' sec-l. 

At temperatures T>> A, the damping force is deter- 
mined chiefly by the second term of the amplitude *,(k, 
q) of (2.4), which is due to magnetoelastic interaction of 
exchange type. In this case the rate of energy loss k is 
again described by formula (2.5), in which 

hence we have for the damping force on a dislocation 

The coefficient of magnon damping because of magneto- 
elastic interaction of exchange type is B:"= @ - lo-' 
g/cm-lsec-l. For ferromagnets with 0 -  10, we have 
B:"= g/cm-l sec-'. 

Formulas (2.6) and (2.7) describe the temperature de- 
pendence of the damping force on dislocations in the lim- 
i t  of low velocities, v<< (TO,U~)' /~.  In these formulas 
there a re  still undetermined constants C , ,  C,-  1. These 
constants can be calculated for specific dislocations. 

If a straight-line screw dislocation, oriented along the 
axis of anisotropy, moves in such a way that the vector 
v makes an angle a! with the dislocation axis 7 ,  then C, 
= r/4, and for the low-temperature case T<< A we find 
the following expression for the magnon damping force 
on the dislocation: 

B ; 2 ) q i n z  a ( ~ / @ c ) s / : e - A I T ~ ,  u  sin a <  ( ~ @ , a ~ ) " ,  (2.8) 
2B!1' (eCa)zu-1 ( ~ / 8 , ) ' / : e - ~ / " ,  u  s i n a ~  (T@,a2)".  
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FIG. 1. Schematic representation 
of the velocity dependence of the 
magnon damping force on disloca- 
tions (in the limiting case T << A) 
for two orientations of the dislo- 

In the case T >> A, the expression for the damping force 
on a dislocation is described, over a wide velocity 
range v<< (TQU~) ' '~ ,  by the function 

F,=n- 2c ('/?) B!') sin? a (T /8 , )" :v .  (2.9) 

where L(x) is Riemann's zeta function. A schematic 
representation of the velocity dependence of the magnon 
damping force on dislocations for  the low-temperature 
case T << A i s  shown in Fig. 1. 

If a straight screw dislocation, located in the basal 
plane, moves in such a way that v makes an angle CY 

with the axis 7 and an angle P with the anisotropy axis, 
then Cl =8n-'I2, and the damping force i s  determined by 
the formula ( T  << A )  

B.'" (TIB.) '.'e-A/rv(sinz a+ 2 cosz p),  v sin aau , ,  

48:" (T/B,)"e-A'r (@,a )  'u-', V ~ ~ U  sin a a v , ,  
(2.10) 

where v, i s  the projection of the vector v on the plane 
perpendicular to T. 

At temperatures T>> A, the magnon damping force i s  
described, over a wide velocity range, by the formula 

(3.1) with the expression for the magnon damping force 
on dislocations, (2.6) o r  (2.7) (we consider the respec- 
tive expressions for slow dislocations), shows that in the 
very-low-temperature range the dynamic damping 
is caused chiefly by the conduction electrons. An esti- 
mate of the temperature a t  which the contributions of 
the two damping mechanisms become comparable gives 

For  typicalvalues B,= 0. 7 + 10'~ g/cm" sec", B:~) = 5 .  
g/cm" sec", 0,= 10' K, and the estimate (3.2) gives 
T.125 K. 

Thus a t  temperatures T< T, the chief contribution to 
the damping of dislocations comes from the conduction 
electrons. The estimate (3.2) gives a lower bound for 
the region of magnon damping. To determine an upper 
bound for this region, we compare the contributions due 
to the magnon and to the phonon mechanisms of damp- 
ing. In accordance with the results of Al'shitz and In- 
denbom, [" the phonon damping force is described by 
the expression 

where 8, is the Debye temperature, Bk:'-ki= lo9 to 
10" g/cm-' sec-' i s  the coefficient of phonon damping of 
dislocations a t  low temperatures (the flutter-effect 
mechanism), and B ki'=yb9(k,b/2n)5= 10'~ to 10" (y=102 
to lo3, k, = n/a) is the coefficient of phonon damping a t  
high temperatures (the phonon-wind mechanism). 

Comparison of formulas (3.3) and (2.6), (2.8) shows 
that the region of magnon damping extends to the tem- 
perature 

3. TEMPERATURE DEPENDENCE OF THE DYNAMIC 
DAMPING FORCE ON DISLOCATIONS IN  
FERROMAGNETS 

Dynamic damping of dislocations in ferromagnetic 
metals i s  caused by the presence of three channels for 
scattering of the energy of moving dislocations: elec- 
tron, phonon, and magnon. Each of these damping 
mechanisms i s  characterized by its own damping coef- 
ficient and temperature variation of the frictional force 
during motion of a dislocation in the ferromagnet. There- 
fore a comparison of the contributions of the various com- 
ponents of the damping of a dislocation will enable us to 
establish bounds to the temperature intervals within 
which each of the mechanisms considered i s  dominant. 
The electronic damping force on dislocations i s  a tem- 
perature-independent quantity and is described by the 
expression 

(m is the mass of the electron, and X l  = E,, where c, 
i s  the energy of electrons a t  the Fermi surface). For  
typical metals the coefficient of electronic damping of 
dislocations is B, = g/cm" sec". Comparison of 

From the estimate given, it follows that T,<< 8,. Thus 
on setting 0 , = 3 . 1 0 ~  K, OC=l .6 . lo3  K, #:'=10'~ g/ 
cm-' sec", and B',:'= l o 3  g/cm'' sec-', we find T,= lo2 K. 
Thus the region of magnon damping i s  T, << Tc< 7. 

The estimates made enable us to determine the range 
of the phonon contribution to the temperature dependence 
of the dynamic damping force on dislocations in ferro- 
magnets. This range is T,<< T << O,. I t  is divided into 
two intervals, according to the character of the tem- 
perature dependence of the dynamic damping force, in 
accordance with (3.3). 

Thus a general picture of the dynamic 'damping of dis- 
locations in ferromagnets can be presented a s  follows. 
At very low temperatures, T<< T,, the conduction elec- 
trons a r e  the principal channel for scattering of the 
energy of moving dislocations. Then, with increase of 
the temperature, the contribution of the magnon mech- 
anism of damping of dislocations increases, and it be- 
comes dominant in the temperature interval T, << T 
<< T,. On further increase of the temperature (up to 0,), 
the dynamic damping of dislocations is determined chief- 
ly by the phonon mechanism. 
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The longitudinal and transverse conductivities of a quasi-one-dimensional metal containing impurity centers 
are calculated for T = 0. It is assumed that the energy spectrum is given by expression (2), where 
Id<€,. It is found that for a:/v> 1 the longitudinal conductivity is described by the "three- 
dimensional" formula (28), where l2 is the mean free path of p o d - p ,  transitions, and S is the area of the 
xy-section of the unit cell. In the case of where a:/v< 1, the order of magnitude of the conductivity is 
expressed for a short-range potential by formula (42), where I, is the mean free path for p,+p, 
transitions. 

PACS numbers: 72.15.Nj 

1. INTRODUCTION It i s  obvious that for sufficiently large o the problem 
becomes truly three-dimensional and localization effects 

In a preceding P ~ P ~ ~ " '  (referred to I) lac should not come into play, In this event the usual kinetic 
cussed a method of deriving the characteristics of a equation is applicable, which is equivalent to neglecting 
one-dimensional metal containing random impurity cen- diagrams with intersection of the impurity lines (seec3'). 
ters' As was pointed Out? the true aim of this method The criterion for their neglect is >> 1, where Ac is 
was not the solution of the one-dimensional problems the characteristic energy, and T the time between colli- 
with a random potential, which may also be solved by sions. In the present case the role of AE i s  played by 
another method (seeE1), but of quasi-one-dimensional 

a ,  while T =12/v (see I), i. e., the problem becomes 
ones in which the motion of the electrons is not purely three-dimensional when 
one-dimensional and there is relatively slow motion in 
the transverse direction. 

In the present paper we shall examine the conductivity 
of a metal with an energy spectrum 

( a  << zF) and containing random impurity centers at T 
=O. Referring the energy to the chemical potential, we 
have 

(the integral is taken over the area of the xy-cross-sec- 
tion of the Brillouin zone). If a more concrete estimate 
is needed we shall use the formula for  strong coupling 
for a rectangualr cell in the plane: 
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It i s  evident from this that there i s  a region ab/v<' 1 
in which, on the one hand, static conductivity must ex- 
ist, and on the other hand, localization effects must be 
strongly in evidence. A rough estimate of the conduc- 
tivity in this case can be obtained from a diffusion analy - 
sis. As a result of collisions, an electron diffuses f i rs t  
of all in the xy-plane. The relevant diffusion coefficient 
is of the order of 

In I i t  was shown that two times T exist: the time T, 
for the processes without appreciable change in the z -  
component of the momentum ("forwara'scattering) and 
the time for  processes in which p, undergoes a transi- 
tion from the neighborhood of p, to the neighborhood of 
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