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The two-dimensional self-consistent problem of absorption and reflection of incident radiation by a 
dispersing high-temperature plasma is considered. The process of interaction of the radiation with matter 
is described within the framework of the Maxwell equations for the light-wave field and the gas- 
dynamical equations with allowance for the electronic thermal conduction. A numerical solution to the 
indicated equations is presented for a plane plasma layer in a wide range of flux densities and for different 
laser-pulse durations. The main attention is given to the investigation of the efficiency with which the laser- 
radiation energy is injected into the plasma. The computations are camed out under the assumption of a 
bremsstrahlung mechanism of absorption and with allowance for a number of collective processes. 

PACS numbers: 52.25.P~ 

1. FORMULATION OF THE PROBLEM critical point, a s  a result of the inapplicability of geo- 

One of the most important tasks of the physics of the 
interaction of high-power laser radiation with matter is 
the investigation of the efficiency of injection of the light 
energy into the target plasma. As applied to the prob- 
lem of laser thermonuclear fusion (LTF), this problem 
is directly connected with the determination of the hy- 
drodynamic efficiency in the process of heating and com- 
pression of a thermonuclear target, C1921 on the magnitude 
of which the efficiency of the laser  thermonuclear sys- 
tem a s  a whole largely depends. C31 The physical pro- 
cesses determining the useful radiation-energy portion 
that goes directly into the heating and compression of 
the thermonuclear fuel a r e  the process of absorption 
and reflection of the light and the process of transport 
of the evolved heat by means of the mechanism of elec- 
tronic thermal conduction under conditions of highly 
developed hydrodynamics. All the indicated processes 
develop a t  the stage of formation and dispersion of the 
"corona" of laser thermonuclear targets. In the 
presently known theoretical investigations of the hydro- 
dynamics of the interaction of laser radiation with mat- 
ter, the process of light-energy dissipation was studied 
within the framework of the transport equation for the 
radiation flux, o r  under the assumption of complete ab- 
sorption of the radiation in the vicinity of the point with 
the critical density. Ce*651 However, the correct de- 
scription of the process of absorption and reflection.of 
the incident radiation in the laser  plasma is impossible 
without the inclusion, in the consideration of the prob- 
lem, of the Maxwell equations for the light field. This 
circumstance is connected with the presence of sub- 
stantial gradients in the density and other gas-dynamical 
quantities in a plasma flying apart under the action of la- 
s e r  radiation. The formulation of such a problem can 
be found in, for example, Such an approach was 
used in an application to the laser  plasma inc7', but 
without allowance for thermal conduction and the dy- 
namics of the dispersion of the plasma. 1nCB1 it i s  sug-. 
gested that only the geometrical-optics approximation 
should be considered with the condition of total reflec- 
tion a t  the critical point. However, such an approxi- 
mation yields an incorrect result in the vicinity of the 

metrical  optics. inCBi the authors cbGider, for ex- 
ample, the analytic solution for a linear layer, and the 
result is compared with the geometrical-optics ap- 
proximation. However, first, the comparison was not 
done quite correctly, since the collision rate was as-  
sumed in the solution of the wave equation to be inde- 
pendent of the space coordinate. Second, and this is 
the main thing, incB3 the authors considered already- 
formed plasma profiles, their optical thickness being 
such that the radiation is almost totally absorbed by 
the plasma. In this case, the contribution of the vicinity 
of the critical point to the optical thickness can be 
small. But in the hydrodynamics calculation the plasma 
profile is formed in the course of the irradiation of the 
layer, and i t  is possible to have density gradients such 
that a substantial part  of the radiation is reflected 
from the layer. In this case the calculation cannot be 
carried out, using the method proposed inCB1. In the 
case of large plasma-density gradients, the decisive 
role in the radiation-absorption process i s  played by 
the skin effect, which i s  taken into account in the rigor- 
ous approach to the solution of the Maxwell equations. 

Let a monochromatic electromagnetic wave P 
= ~ , e ' ~ ~ ' ~ ,  where w is the angular frequency and c i s  the 
velocity of light in a vacuum, be incident on a plane 
plasma layer from z = -a (Fig. 1). Since the charac- 
teristic times of variation of the density and temperature 
of the plasma exceed by f a r  the quantity 2a/w, we can 
use the quasi-stationary Maxwell equations. The pro- 
cess of heating and dispersion of the plasma is de- 
scribed by the following system of equations: 

FIG. 1. Density and elec- 
2- I tron-temperature profiles 

I in the "corona79 of the laser 
I 
I target. 
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TABLE I. 

Radiation-energy flux 
density q in Wlma I 

0 6 9 4 9 0  

qo < 9 B min (n1. 9%) 

90 < < min ( q l .  q,i 

min (q13 9%) < q <m 

min ('2x9 qr) < 9 < m 

min (q,,  9%) < q < m 

-- 

Electron density, n. cm* 

ax, au au 
- = - ( p i - p p z ) z + ~ 7  at 

where u is  the velocity, p i s  the density, z is  the Euler 
coordinate, rn and t are  Lagrangian variables, p =pe 
+pi is  the total pressure, pe = (y - l)Ae p Te and pi 
= (y - l)Ai p T, are  respectively the electronic and ionic 
pressures, y =+ i s  the adiabatic constant, p =-$ Q T 5'' 
is  the coefficient of ionic viscosity, 8, =Ae Te and 1 
=Ai Ti are  the internal energies of the electron and ion 
components, Te and T, are the electron and ion tem- 
peratures, H = H , T : I 2  i s  the coefficient of electronic 
thermal conductivity, Q = Q, p(Te - T,)/T : I2  is  the rate 
of exchange of energy between the ions and electrons, 
E, and H, are the complex components of the electric 
and magnetic fields (below we drop the indices on these 
fields), and cl +ic, is  the complex permittivity of the 
plasma. In the case of purely Coulomb scattering of 
the electrons by the ions, c is  a function of only the den- 
sity and temperature of the electrons: 

where a, and b, are known constants. In the case when 
allowance i s  made for the anomalous absorption of light 
by the plasma, 

where ne i s  the electron density and e and me are the 
electron charge and mass. The effective collision 
rates, v,,,, are  given in Table I, where the threshold 
fluxes are equal to: 

and the values of the effective collision rates are given 
by the following expressions: 

The third term on the right-hand side of Eq. (3) rep- 
resents Joule heating. For the numerical integration of 
the system (1)-(6), it i s  convenient to represent the ex- 
pression for the energy release in the form of a diver- 
gence. It i s  easy to obtain with the aid of the Poynting 
theorem the equality 

where = - (c/lGa)(E~* +E*H) is the light-energy flux 
density averaged over the period of the field oscilla- 
tions. The system of equations (1)-(6) can be solved 
for an arbitrary initial distribution of the hydrodynamic 
quantities over the coordinate z.  For the solution of 
the Maxwell equations, it i s  sufficient to give the am- 
plitude of the incident wave and use the condition that 
E-0 a s  z-+m. 

2. SOLUTION OF THE MAXWELL EQUATIONS 

The simultaneous solution of Eqs. (1)-(6) amounts to 
the successive integration of the Maxwell equations for 
given temperature, Te(z), and density, p(z), distribu- 
tions. Let us represent the fields E and H in the form 

where 

The functions P and R coincide respectively with the in- 
cident and reflected waves in the vacuum (z s~,);  
V(z c z,) i s  the reflection coefficient. The substitution 
of (10) into (5) and (6) yields 

d V  io -=- 1 dl' 2 - p v + - -  (1-V). 
dz c 28 d z  , 

Equation (12) in the case of classical absorption con- 
tains only one unknown function, V, and can be numeri- 
cally integrated if the value of V i s  given at some point. 
In the case under consideration, the method of computa- 
tion i s  connected with the selection of the neighbor- 
hood, (z,, z,), of the critical point, such that the field 
E at the point z, i s  negligibly weak, while the geomet- 
rical-optics approximation i s  valid at z az,. In prac- 
tice, the choice of the width of the region (z,, z,) is 
made with the aid of the relation 

'cr 

- 5 ~ F , d ~ = 4  J ~;,dz=a.2n, (13) 
cr 

where a- 2 - 3. In this case V(z,) =O. Indeed, on ac- 
count of the rapid attenuation of the field in the region . 
z >z,, we can set c (z) =E (2,) for z 2 z8. Then the field 
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E in this region will have the form 

E=P+R=Ct exp i- Biz -- pzz +cz exp -i-piz + W pZz , (14) 1: : I  { :  c 1 
Since E-0  for z>z2, C2=0. 

Integrating Eq. (12) from the point z2 to z =zO, we 
find the universal, i. e., incident-field independent, 
function V(z), after which we can also integrate Eq. (11) 
for the function P, since P(z,) =Po exp(iwzo/c) where P,, 
is the prescribed amplitude of the incident wave. The 
expression for the flux density q(z) for the found func- 
tions P and V is of the form 

In the case when allowance is made for the collective 
effects, which formally amounts to allowance for the 
dependence of the imaginary part, &,, of the permittivity 
on the square, I E 1 2, of the field amplitude, the solu- 
tion is found by the method of iterations. As the initial 
approximation, we use the solution with a field-indepen- 
dent value of c2. The gas-dynamical equations with 
thermal conduction, (1)-(4), a r e  solved by the well- 
known difference methods. 

3. THE RESULTS 

As has already been indicated above, the considered 
model allows us to give a physically correct self-con- 
sistent description of the processes of absorption and 
reflection of monochromatic radiation by a dispersing 
plane plasma layer and answer a number of important 
questions, such a s  the efficiency of injection of the light 
energy into the plasma, the spatial structure of the 
radiation field and, consequently, the composition of 
the energy release, the shaping of the reflected wave, 
the temporal evolution of the reflection coefficient a s  a 
function of the parameters of the laser pulse and target. 
Furthermore, the simultaneous solution of the Maxwell 
equations and the equations of gas dynamics enables us 
to interpret the experimental data on the reflection with 
allowance for the actual shape of the laser pulse and for 
a number of secondary effects, a s  for example the pres- 
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FIG. 2. Dependence of the inte- 
grated-over the time interval 
t*-coefficient of reflection with 
respect to energy on the magnitude 
of the incident flux in the case of 
classical absorption (the curve 1) 
and with allowance for anomalous 

uz absorption (the curve 2). 
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FIG. 3.  Dependence of the integrated reflection coefficient 
on the laser-pulse duration for different values of the incident 
flux. 

ence of forepulses. In the present paper the Eqs. (1)- 
(6) have been solved for neodymium laser  radiation 
(w = 1 . 8 ~  1015 sec-') in the 10" - 10'' - W/cm2 flux den- 
sity range and plane, homogeneous (at t =0) targets of 
the type DT, (CH,),. 

In Fig. 2, we show the dependence of the integrated 
reflection coefficient 

on the incident flux q' for a DT layer (p(0, z) = po =O. 2 g/ 
cm2, T(0, z )  =0). The curve 1 corresponds to classical 
absorption; the curve 2 was obtained with allowance for 
anomalous absorption. As follows from the plots shown, 
a t  radiation-flux densities q 210'~ w/cm2 the anomalous- 
absorption processes begin to play a decisive role, lead- 
ing to significantly lower reflected-energy values. In 
the present case the dominant contribution to the ab- 
sorption in the entire range of incident fluxes q* was 
then connected with the effective frequency v,, which 
corresponds to the process of decay of the light wave 
into an electronic wave and ionic sound. 

In Fig. 3 we show a family of plots of R(q+, T) illus- 
trating the efficiency of absorption, including anomalous 
absorption, of radiation energy in a DT target as a func- 
tion of the laser-pulse parameters q* and T.  It can be 
seen from the curves shown that, a t  any value of the 
quantity q', the fraction of reflected energy decreases, 
starting from some value of ~(q ' ) .  This circumstance 
is connected with the growth in time of the optical thick- 
ness, 1 k dz (k = 2wp2/c), of the plasma layer and, cor- 
respondingly, with the decrease of the reflection coef- 
ficient I V(t) 1 '. It may be assumed that in the case of 
spherical dispersion the quantity R(q', t) attains a 
steady-state value, i. e., R(q', t) -Rat(q*) for t - m, a s  
a result of the more rapid decrease of the density along 
the coordinate axis and the saturation of the quantity 
I k dr .  

In Fig. 4a, we show the profiles of the density, the 
temperature, and the energy-release (per unit mass) 
for q' = 10" W/cm2 at  the moment of time t = 1 nsec. The 
energy-release curve has in the vicinity of the critical 
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FIG. 4. The density, temperature, and energy-release pro- 
files 1 nsec after the beginning of the action of a q+= lo i4  W/ 
cm2 constant pulse incident on a DT layer of thickness 30 p ,  
(a), and the structure of the field in the vicinity of the critical 
point at the same moment of time, (b). 

point a strongly pronounced peak, which i s  connected 
with the anomalous-absorption mechanism correspond- 
ing to the frequency vl >> v,. Figure 4b shows the struc- 
ture of the field I E 1 and the quantity I V1 in the vicinity 
of the critical density. Let us note here the following 
circumstance. In the geometrical-optics approximation 
the quantity I V1 should decrease exponentially (without 
oscillations) toward the left plasma boundary. As fol- 
lows from Fig. 4b, we can neglect the oscillations in 
I Vl near the point 2,  and go over to geometrical optics. 
In this case the quantity I VI2 corresponds with a high 
degree of accuracy to the local coefficient of reflection 
with respect to energy. 

To illustrate the dynamics of dispersion of a plasma 
layer, we present below the dependences of the brighten- 
ing time, t *, of a DT layer of thickness 30 p on the 
flux q' for the cases of purely classical absorption (t s) 
and absorption with allowance for the anomalous pro- 
cesses (t *,): 

The time t * (9') was chosen from the condition of equal- 
ity of the maximum density of the layer to the critical 
density. 

Notice that in Fig. 2 we present values of the reflec- 

tion coefficient integrated over the time interval t *, 
which, a s  can be seen from the data presented above, 
depends on the magnitude of the incident flux. The de- 
pendence of the reflection coefficient on the magnitude 
of the flux for a fixed pulse duration can be found in 
Fig. 3, from which it  can be seen that the reflection 
coefficient can increase, a s  well a s  decrease, with in- 
creasing flux. 

We carried out a computation of the variant that has 
been realized in experimentc"': on a solid polyethylene 
target impinges a flux of given shape and duration. Fig- 
ure 5 shows the incident and reflected pulses, a s  well 
a s  the time dependence of the reflection coefficient (the 
values of I Vl in a vacuum), obtained in the computation. 
The experimentally observed fraction of reflected en- 
ergy constitutes 3%, while the value obtained in the com- 
putation is 3.33%. It should be noted that the interpreta- 
tion of the experiments with plane targets in the frame- 
work of the one-dimensional model has only a qualitative 
character. Indeed, the dimensions of the focal spot on 
the target a r e  usually substantially smaller than the di- 
mensions of the developing plasma "flare"; therefore, 
the problem should be two-dimensional (under the con- 
dition of axial symmetry). However, if in an experi- 
ment a focusing optical system with a small transmis- 
sion value i s  used, then it can be assumed that the laser 
radiation interacts with some part of the "flare" where 
the curvature i s  insignificant. In Fig. 6 we show the 
corresponding profiles at the moment of time t = 4  nsec 
after the pulse begins to act. 

The influence of the contrast of the laser pulse on the 
magnitude of the reflected energy was also determined. 
First, a constant pulse (q' = loi4 w/cm2, 7 = 1.7 nsec) 
incident on a layer of DT mixture was considered. The 
fraction of reflected energy in this case was 4.9% (see 
the curve corresponding to q' = 10" W/cm2, 7 = 1.7 nsec 
in Fig. 3). Then the case when this pulse had a fore- 
pulse linearly growing from zero to the value 10" W/ 
cm2 in 3 nsec (without a time lag) was considered. The 
contrast in this case was - 10". The fraction of re- 
flected energy was 1.1%. In spite of the fact that the 
forepulse contained a negligible part of the energy, a s  
compared to the main pulse, the fraction of reflected 
energy decreased to a value several times less than its 
former value. 

It should be noted that in our calculations we used the 

FIG; 5 .  The time dependences of the incident and reflected 
fluxes, a s  well as  of the instantaneous reflection coefficient 
in the case of a solid polyethylene target. 
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FIG. 6. The density, temperature, and energy-release pro- 
files a t  4 nsec (for a (CH2), target). 

classical expression for the heat flux transportable by 
the electrons: 

In[lzl it . is . shown that the expression in question i s  valid 
when the condition @ cam,, where 

i s  fulfilled. Estimates of the quantity 6 for the tem- 
perature and density profiles shown in Fig. 4 yield 
(x, = 1 . 9 3 ~  10" g-cm-seems - kevqI2) at the point z = 2 
x 10" cm 

at the point z = 0 

and at the point z=-1.9x104 cm 

It follows from the obtained estimates that the use of 
the classical expression for @ i s  in the present case 
physically correct. 

The effective collision rates given in the table were 
obtained in the approximation of a weakly -turbulent, ho- 
mogeneous plasma. ts] The approach developed in the 
present paper also allows us to use other possible ef- 
fective collision rates, in particular, those obtained 
from numerical experiments. The inhomogeneity of 
the plasma can affect only the magnitude of the thresh- 
old for excitation of the dominant-in the cases con- 
sidered in the present paper-instability, which con- 
sists in the decay of the light wave into a plasmon and 
ionic sound (of frequency v,). In order for the plasma 
inhomogeneity to significantly affect the magnitude of 
the instability-excitation threshold, the condition 

where H i s  the characteristic inhomogeneity dimension, 

1, i s  the electron mean free path, o is the radiation fre- 
quency, and ve i s  the electron collision rate, should be 
fulfilled (seeL9', p. 179). Let us verify this condition, 
using a s  an example the plasma whose parameters a re  
given in Fig. 4: He lo-' cm, v, = (~,/m,) ' /~ = 1 . 6 ~  lo9 
cm-sec", ve, = 5X 10" sec", 1, = 3 x lom3 cm, and leln(o/ 
vei) = 2 . 4 ~  cm. These estimates show that the in- 
fluence of the inhomogeneity in the present case i s  in- 
significant. 

Thus, it can be seen from the computations carried 
out that, depending on the conditions (the pulse length, 
the presence of a forepulse), the fraction of reflected 
energy can be significantly different. These results 
can be used to explain experiments performed on dif- 
ferent facilities (see the review chart It should, 
of course, be noted that, besides the indicated effects, 
there exist a number of physical phenomena (e. g., re- 
fraction in the case of oblique incidence of the light) that 
must be taken into account in the explanation of the ex- 
perimental data connected with the measurement of the 
light energy deposited in the plasma. Nevertheless, 
the results obtained in the present paper indicate that 
under certajn conditions the magnitude of the laser- 
pulse energy deposited in the target plasma can be large 
enough to guarantee the requisite value of the hydro- 
dynamic efficiency. 
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