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An averaging method is used to obtain an approximate kinetic equation for a collisionless plasma in the 
drift approximation in the presence of a high-frequency field in the form of a quasimonochromatic wave, 
both in the absence of resonance conditions and under c;yclotron-resonance conditions. 
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1. The drift-kinetic approximation refers to the ap- 
praxirnate equation obtained from the "exact" kinetic 
equation by averaging in the case when the plasma-par- 
ticle gyroscopic radius is small. It is necessary to dis- 
tinguish in this case between the drift approximation and 
the magnetohydrodynamic approximation. In the single - 
particle theory, which determines the characteristics 
of the kinetic equation, this corresponds respectively 
to the cases of weak and strong electric fields. ['*" In 
the drift theory i t  is assumed that 

v is the particle characteristic velocity, a is its gyro- 
scopic radius, v, is the electric drift velocity, and E is 
a small parameter. The drift-kinetic equation under 
conditions (1.1) and (122) was obtained, for example by 
~ivukhin[~ '  and Hazeltine. In the magnetohydrody - 
namic theory, the condition (1.2) is replaced by the 
assumption 

In this case, the corresponding averaged kinetic equa- 
tions were obtained in a number of studies, [4-71 which 
have led to the known Chew-Goldberger-Low system of 
equationslas well a s  to a number of corrections to them. 

In connection with problems involving heating and sta- 
bilization of plasma, as well a s  others, interest in a 
plasma situated in a magnetic field on which high-fre- 
quency (RF) fields a re  superimposed has increased of 
late (see, e. g. , ['*''). Simplified kinetic equations for a 
tenuous plasma in the presence of RF fields a r e  known 
for some particular cases. [10'121 This paper presents 
a derivation of averaged kinetic equations for a plasma. 
situated in a strong magnetic field in the presence of 
RE fields in the form of arbitrary quasi-monochromatic 
waves. The drift approximation (1.1) and (1.2) is used. 
The characteristic space-time scales of the RF fields 
a r e  assumed to be close to the corresponding values of 

The magnetic field of the RF wave is assumed to be 
small in  comparison with the strong field Bo. In the ab- 
sence of resonances, s,Sl+s,v * 0, where s1 and s, a r e  
certain prime numbers, i t  turned out that the R F  field 
has no effect whatever on the drift-kinetic equations of 
zeroth and f i rs t  order in the parameter c. Its influence 
manifests itself only in the second-order approximation. 
The second-approximation equation (4.1) below was ob- 
tained for a longitudinal wave propagating along a homo- 
geneous magnetic field, a s  was Eq. (5.1) in the case of 
a quasi-stationary RF field. It i s  also assumed in the 
averaging that there a r e  no resonances si O+ s,v + s,wj, 
where w j  a r e  the frequencies of the plasma natural oscil- 
lations. 

An averaged equation under the resonance conditions 
s,O+s,v = 0, which is considered in first  order in the ex- 
pansion parameter, was obtained in general form. In 
this case the drift-kinetic equation turns out to  be even 
of zeroth-approximation in the cyclotron-resonance re -  
gion. 

2. It is convenient to use the Vlasov equation in the 
form of a continuity equation in a cylindrical coordinate 
system in velocity space c6': 

a1 I a a I a -+ Vvf +--u,a,f +-allf +--a,f=O. (2.1) 
d t u, du, a v ~ ~  v, 30, 

In the approximation (1.2), the particle velocity vector 
can be resolved in terms of the local unit vectors el = Bo/ 
Bo, e,, and e3, which a re  connected with the force lines 
of the field Bo: 

- 
Here vll and v, a r e  respectively t&len@&ind and 
transverse components of the velocity vector relative 
to the force lines of the field Bo, and 9, is the phase of 
the particle cyc1ot;on rotation. The accelerations a, 
=GI, a,, = ell, a8 = vlO1 a r e  determined from the equation 
of motion 

the inhomogeneous magnetic field Bo, s o  that the "fre- d v  e ' e  
-=- 

quency" v = - o + klv,, of the RF field (see (2.6b)) and the E + - [ v X B ]  
d t  m mc 

displacement a, of the particle in the R F  field satisfy 
the relations of the type (1.1) by projection on the directions 
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e l ,  ez cos B,+er sin 8,,  -ezsin B,+e3cos 8 , .  

The fields E and B a r e  assumed to consists of two parts: 
slowly varying fields Eo(r, t) and Bo(r, t), and a rapidly 
alternating RF field of rather general form 

E-= eiEi cos (8 ,+qi) ,  
l<<<3 

(2.4) 
B,= eiB, cos (OZ+XI). 

1 4 i S 3  

The quantities e,, E,, B,, cp,, and Xi a re  assumed to be 
slowly varying functions of the coordinates and of the 
time. The phase 6, of the R F  wave, assumed to vary 
rapidly, is defined by the r e l a t i ~ n ~ ~ ~ " * ~  

dBz 88, dr - = - + - VB2=v+uI (k2  cos 01+k3 sin 8 , )  , 
d t  at dt  

where 

a re  respectively the "frequency" and the "wave vector" 
of the quasi-monochromatic wave (2.4), and 

The fields E- and B, a r e  not independent. From Max- 
well's induction equation it follows that[14' 

The symbol? stands here forc1' 

Taking the expansion (2.7) into account, the right-hand 
side of (2.3), and with it the accelerations a,, a,,, and 
a,, a re  also represented in the form of expansions in 
powers of E. In the presence of an RF field, the dis- 
tribution function is of the type f = f(t, r, v, 8,). The op- 
erators 8 / 8 t  and V must therefore be defined respec- 
tively a s  

a a u 
-*--0- 
at at ae, ' 

After subtracting the accelerations a,, a,,, and a, from 
(2.3) and taking into account the relations (2.8) and 
(2.9), we can rewrite the kinetic equation (2.1) in the 
form 

where the operator L is defined by 

a a a 
L=D.+A. - + cos 8, D,+AI - + C, -) 

ae,  ( a do, 

a a 
+sin 9. (D.+A.  x) +cos 8 ,  (D ,+A,  -) 

ae,  
a 

+sine+ (D,+A.-)+cos 0- 
00, 

(2.11) 

Here 

B,=8,*OZ, C, 2=u,k, 3 ,  F,=eE,lm, 

a a (2.12) 

The explicit forms of the other operators D, and A,  are  
quite cumbersome and will not be written out here (see 
the expressions for some of the first  operators in 
volkov's paperc9'). 

In Eq. (2.10) there has been introduced explicitly a 
small parameter in accordance with the conditions (1.4). 
By virtue of the expansion (2.7), the operators D, and 
A i ( i 2  5, ..., 10) a re  also expanded in powers of &. The 
operator L then takes the form 

3. We seek a solution of the kinetic equation (2.10) in 
the form of an expansion in powers of &: 

In the zeroth approximation we then have 

i. e . ,  the distribution function fo does not depend explic- 
itly on the phase shifts 8, and 02: 

In the next order of the approximation we have 

By definition, the functions f, ( ia  1) a r e  periodic (with 
period 2n in each argument) and can be written in the 
form 

where 

is the "dc" component off,, and?, = f, -3 is its "alter- 
nating" part, which can be described in the general case 
by the formula 
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Then, averaging (3.3), we obtain 

or, taking (2.11) into account, 

This is the zeroth-approximation drift-kinetic equation, 
which is of the same form a s  in the absence of the RF 
field (seeC6' with v~ = 0). The operator Do is defined by 
(2.12). In the case of a c'onstant magnetic field, Eq. 
(3.6) takes the simpler form 

This equation describes the distribution of the centers of 
the Larmor circles as  Bo- - (see, e.g., "' with V E  = O), 
V1 = elV, and Fox = el Fo. It follows from (3.7) that the 
distribution function fo  is independent of the transverse 
coordinates and of the transverse velocity. The depen- 
dence of these variables can be only "slow, " i. e. ,  in 
place of (3.2) we must write 

If no account is taken of the slow dependence on the 
transverse variables, then the dependence on these vari- 
ables drops out completely in the higher-order approxi- 
mations. It must therefore be assumed from the very 
outset that 

Then all the operators L, in (2.12) must be regarded to 
be of the form 

where the operators L:" contain the operations of dif- 
ferentiation with respect to the "slow" transverse vari- 
ables 

Thus, the kinetic equation (2.10) must be written in 
the form 

Equations (3.3) and (3.6) remain unchanged in this case, 
but the operators Lo and Do must be replaced by ~ 6 ' '  
and ~ 6 0 ' .  

When account is taken of (3.6), Eq. (3.3) can be 
represented in the form 

where LiO' is the "alternating part" of the operator ~ 6 ~ ' .  
The right-hand side in (3.12) is given by (3.5). We then 
obtain from (3.12) 

The hacek V marks a quantity defined by the foregoing 
identity. TO determine the dc component of the function 
fl it is necessary to consider Eq. (3.11) in second-order 
approximation: 

fz=~~oJfi+~!o)fo+~!LJfo. (3.14) 

This yields, after averaging with allowance for (3. a), 

or by virtue of relations (3.4) and (2.1 I), 

We have also taken account here of the fact that 

z,jO=o where i> I. (3.17) 

Relation (3.16) is the first-order approximation of the 
drift kinetic equation. By virtue of (2.11) one could ex- 
pect this equation to depend on the RF field. Rather 
cumbersome calculations, however, show that the RF 
corrections vanish and the drift-kinetic equation (3.16) 
can be written in the form of a Liouville equation in the 
phase space r, vll, u,, "I, where i., b,,, and b, a re  de- 
termined by the known first-approximation formulas of 
particle drift motion. C1'21 Thus, the influence of the RF 
field comes into play in the second order in the param- 
eter c .  For the alternating part of the second-approxi- 
mation distribution function we obtain 

To find the equation for the dc component of the function 
f, it is necessary to consider Eq. (3.11) in third-order 
approximation 

From this we obtain, after averaging, the sought second- 
order approximation of the drift-kinetic equation 

The explicit form of this equation is exceedingly com- 
plicated. We shall consider some particular cases. 

4. Consider the averaged plasma equation in the case 
of a longitudinal quasi-monochromatic wave propagating 
along a homogeneous magnetic field. In this case F, 
= F3= 0 and k2 = k3= 0. If we choose the direction of the 
magnetic field to be the z axis, then 
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F,=F,(z ,  t ) ,  a = a ( z ,  t ) ,  k = k , ( z ,  t ) .  

The zeroth approximation equation takes the form (3.7). 
According to (3.8) we have 

The first-approximation equation (3.16) then coincides 
in form with (3.7). The second-approximation drift- 
kinetic equation is 

Here I = e2q/2m2 = e2 Il/m2. The operator Do is defined 
by formula (3.7). The first term in (4.1) is of the 
"diffusion" type, i r i  analogy with the quasilinear approx- 
imation for a given external field, '15' with a diffusion 
coefficient 

Expanding the expressions in (4.1) and making the sub- 
sitution Vl, = v,, - 21k/v3, s o  that V,, describes the entire 
average velocity along the magnetic field, we readily 
get 

where (. . .)' stands for (a/at+ Vll a/az) (. . .). The char- 
acteristics of the left-hand side of (4.3) coincide exactly 
with the corresponding averaged equations of motion of 
a charged particle in the field of a longitudinal quasi- 
monochromatic wave. '14] From (3.13) and (3.18) follow 
expressions for the alternating components of the dis- 
tribution function: 

We determine now the averaged macroscopic quantities: 
the density 

the average velocity 

It is then easy to obtain from (4. I), with allowance for 
(3.71, 

Here (. . .) denotes average quantities of the type (4.6b), 
and F is the force exerted by the RF wave on one par- 
ticle. '"' It follows from linear plasma theory that 

where & is the dielectric constant of the plasma. Equa- 
tion (4.8) can then be rewritten in the form 

d a d Z e  d k  a2& am dze -- + -- ( at da' d t  aa dk dz dm d k  

If the frequency v and the wave number k of the RF wave 
satisfy the dispersion equation & = 0, and if terms of 
order I, a r e  neglected (as is done also inc1'?, it follows 
that the total force exerted by the wave on the plasma is 
equal to the energy density gradient of the electric field, 
taken with a minus sign (cf. '14]). 

The second term on the right-hand side of (4.10) is the 
averaged force acting on the plasma particles in the RF 
field. C1" At k = 0 and & = 1 - w:/w2, where w, is the plas- 
ma frequency, this force is potential with a quasipo- 
tentialc16' U =  e2$/4m02. 

5. We consider now the case of a quasi-stationary 
inhomogeneous field: v = - w = const, a= const. The 
zeroth- and first-approximation drift equations coincide 
with (3.7). The second approximation equation takes, 
after rather laborious calculations, the form 

v, -- d f o  1 a f  2g e,  rot F,- + - [ ~ , e , ]  2. 
d e v ,  S2 der 

Where 

I F,z+F,2-2 ( Q / m )  FIFS sin (cpz-qr) U=-+ 
2 a Z  4 ( a 2 - 8 ' )  

is the high-frequency quasipotential in the presence of 
a homogeneous magnetic field. 'le' In the absence of a 
magnetic field (511 0) and in the absence of the force Fo, 
Eq. (5.1) goes over into the kinetic equation, C1Oe"l but 
differs from the latter in that i t  has a second and third 
term with second derivatives. Under these conditions, 
Eq. (5.1) is analogous in the spatially-homogeneous 
case to the equation of the quasilinear theorycs1 with a 
given external field. 

6. In the presence of an RF field, the distribution 
function depends on the phase of the field 0,. If the fre- 
quency of the RF field is close to the frequency of the 
cyclotron rotation of the particle in the field Bo (the 
resonance condition), the? in accordance with the 
Bogolyubov-Mitropol'skii general it is neces- 
sary to take into account also the dependence of the dis- 
tribution frequency on the "resonant" phase difference. 
Thus, under resonance conditions, the distribution func- 
tion takes the form 
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'Its actual form depends on the resonance under consid- 
eration. 

where 
For the alternating component 7, we get from (6.8) 

and (6.10) the equation 

is the resonant phase difference; si and sz are  certain 
prime numbers, then the operators 8 / 8 t  and O in the ini- 
tial Vlasov kinetic equation must be defined not by (2.8) 
and (2.9) but in the form 

The alternating parts of the functions can be represented 
in the form 

a a a a g a  
-+--Od+-- 

at at ae, ' at  a g  ' 
a a (6.3) 

V + V + k - + v g - .  ae, ag  where 

We shall assume conditions (1. I), (1.2), and (1.4) to be 
Isatisfied. In the resonance region we have 

m+ ( m l ,  m,) , ( m ,  0 )  =m,0,+m282. 

It is then easy to obtain from (6.11) 

The resonance phase difference J, must therefore be 
included among the slow variables. Then Eq. (2.1) can 
be written in the form 

where (Y, and P, are  the coefficients in the expansions 
s, a a A af 

v ---- e --+Lf+M-- , ( s ,  ae. aoz )f= { s,  ae ,  alp I (6.5) 

where 

To find the equation for the "dc" component of the func- 
tion f,, we must use (6.5) in the second approximation 

M=A+s,A,+G, cos O,+Gz sin e ,+s , (A,  cos 28, 
+A,  sin 28,+A, cos e2+A. sin ez+Al cos 8 ,  

+A,  sin 8++A,  cos 8-+A,, sin 9 - ) ,  

G ~ , ? = S ~ A , . Z + S ~ U ~ ~ ~ , S ,  (6.6) 

the operator L is defined by formula (2.11). The dis- 
tribution function is sought in the form of the Bxpansion 
(3.1). In the zeroth approximation we get from (6.5) 

After averaging over the fast phases, this yields the 
first-approximation drift-kinetic equation in the reso- 
nance region 

from which it is seen that fo does not depend on the fast 
phases 0, and 02: The described procedure can be continued. The corre- 

sponding calculations, however, become exceedingly 
cumbersome. 

7. We consider now the region of electron-cyclotron 
resonance (ECR). The zeroth-approximation drift-ki- 
netic equation takes in this case the form 

In the first-order approximation 

a v ---- a f o  a ) f.=L0fo+Modu. (: ae,  ae. 
KIO=(DO+D,,  cos I $ + D , , ~ ~ ~  f ) f , + ~ ~ + ~ , + ~ , a c o s  ,,,+A,,sin + )  -- 010 - 0. 

alp 

(7.1) 

Here 

The functions f, can be represented as  sums of "con- 
'stant" parts that depend on the resonant phase differ- 
ence, and periodic parts that depend on the fast phases: 

Then, averaging (6.8) over the fast phases, we can ob- 
tain an equation for the function fo: The characteristics of Eq. (7.1) coincide with the aver- 

aged equations of motion under the ECR conditions, 
which generalize the known Canobbio equations. C19*201 

The alternating part of the function f, is given, in ac- 
cordance with (6.13), by the formula This is the zeroth-approximation drift-kinetic equation. 
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f l=a l  cos Ol+a2 sin 13,+aJ cos 201+a, sin 213, 
+a5 cos 02+ae sin Ox+% cos &+alo sin 13-, (7.2) 

where 

1 a I a 
a ,  = - -(D.+ ( ~ ~ - k . u , )  - 1 jo, a 2  = - ( ~ , + t ~ , - k f l . )  - ) j o ,  

alp a ,  
1 a I a 

a , =  - - ( D . + A . - - ) ~ ~ ,  a* a, = %(D,+A' -) to. 
2v a ,  

(7 3) 

1 a 
j ,  .,. = - (D: ' )+A:~) - )  fo. 

2v a ,  

The first-approximation drift-kinetic equation takes in the 
ECR region the form 

1 aai  

- -i-l<zo G~ 
+ Q, cos . ~ + Q s  sin .p. 

The formulas for the coefficients Q, and G ,  are quite 
complicated. In the absence of cyclotron-resonance 
conditions, the function fo does not depend on the phases 
at all. Then, after additional averaging over the phases, 
Eq. (7.4) goes over into an equation whose character- 
istics are the known equations of motion of a charged 
particle in the drift approximation. [lr2' 

The obtained equations become much simpler in the 
case of a homogeneous magnetic field, and also at 
,o = const and k= 0. Under these conditions, (7.1) takes 
the form 

Here A = S2 - w and Fi = - eEi/m.  Outside the resonance 
region, Eq. (7.5) goes over into the drift-kinetic equa- 
tion that describes the distribution of the Larmor-circle 
centers as B ~ -  -. c5*61211 
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