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FIG. 7. Dependence of T,(O) on the magnitude of the discharge 
current (continuous curve) and on the longitudinal magnetic field 
(the dashed curve) for  fixed ii, = 1 . 4 ~  1013 cmq3. 

large number of regimes with a fixed value of one of the 
parameters. Therefore, the graphs shown in Fig. 7 
were constructed for a fixed value of Fie (= 1.4 x 
cm9) in some close regimes. The electron tempera- 
ture a t  the center of the column does not depend on the 
longitudinal magnetic field, which is characteristic of 
the majority of the Tokamak installations, and increases 
linearly with increasing current in the plasma. The de- 
pendence on current i s  not so  strong as in the T-3A in- 
stallationc2'; by i ts  nature i t  is close to the data obtained 
on the ORMAK installation. ''I 
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We consider spatially non-uniform collective oscillations of singular weak turbulence spectra. We study the 
modulational instability of Langmuir turbulence spectra leading to collapse. We find its maximum growth 
rate and study the non-linear stage. We formulate equations describing the non-linear stage of the 
parametric instability in a non-uniform medium. We study the collective oscillations of a system of 
parametrically excited waves. We consider also the analogous problem of the effect of sample boundaries 
on the distribution of the oscillations. We estimate the dimensions for which a transition to the spatially 
non-uniform solution occurs. 

PACS numbers: 47.25. -c 

$1. INTRODUCTION quasi-particles" with a large change in their momentum, 

The traditional way to describe weak wave turbulence while the left-hand side i s  the total derivative dn,/dt. 

in a spatially non-uniform situation is to use the kinetic The spatial dependence can be caused by the inhomoge- 
neity of the medium and may occur spontaneously due to equation 
the non-linear interaction of the oscillations. 

an, auk an, am, an, - St  {nk) .  
a t  ak d r  ar ak 

(1.1) For  applications of Eq. (1.1) it i s  necessary to satis- 
fy the adiabaticity condition kL>> 1, which presupposes 

It describes waves as weakly interacting quasi-parti- that the inhomogeneity dimension L is large compared 
cles; i ts  right-hand side is caused by the "collisions of with the wavelength k-'. Moreover, in order that the 
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waves might be considered a s  quasi-particles with well- 
defined coordinates it is also necessary that L exceed 
the coherence length ("size of the quasi-particles") 1: 

where Ak is the size of the packet in the direction of the 
inhomogeneity. One must state that Eq. (1.1) may be 
valid even if the criterion (1.2) i s  not satisfied. How- 
ever, for this it i s  necessary to impose additional re- 
strictions on the form of the solution, on the structure 
of the matrix elements, and s o  on, taking into account 
the specific nature of the problem. Generally speaking, 
the kinetic equation (1.1) is thus not applicable for de- 
scribing wavepackets which a r e  narrow in some direc- 
tion. 

In the case when the wavepacket i s  concentrated near 
a point k, in k-space, i. e., is a quasi-monochromatic 
wave, there is another way to describe the wave field- 
using equations for envelopes which have a dynamic 
character. They have been known for a long time in 
non-linear opticst" under the name "reduced equations" 
for  the amplitude of the light field, and have been ap- 
plied for  describing narrow packets of electromagnetic 
waves in a plasma, c21 spin waves in ferromagnets, and 
s o  on. 

We wish to draw attention to the fact that for a whole 
se t  of physically interesting situations it i s  necessary to 
study "singular" wavepackets which a re  concentrated 
near a surface o r  a line in k-space. For instance, the 
emission spectrum of a powerful laser with a large num- 
ber of longitudinal modes i s  concentrated near a line 
segment in k-space. The turbulence spectra of an iso- 
thermal p l a ~ m a [ ~ ' ~ '  a re  singular, concentrated on lines 
o r  surfaces of k-space. A third example i s  the para- 
metric excitation of waves with a non-decay dispersion 
law-spin waves in ferrodielectrics, waves on the sur- 
face of a liquid, sound in crystals, and so on, when the 
stationary wave amplitudes a re  large only near the "res- 
onance surface" wp = w, + w-, where wp is the frequency 
of the external action. 

To describe such singular distributions in a spatially- 
non-uniform situation neither the kindetic equation (1.1) 
for the correlator n,(r) nor the dynamic equation for the 
wavepacket envelope is applicable. 

In the present paper we propose an intermediate "qua- 
si-dynamic" method for describing singular weak turbu- 
lence spectra using, on the one hand, the weakness of 
the interaction and the randomness of the phases which 
a re  due to the extension of the wavepacket in one or  two 
directions and, on the other hand, the narrowness of the 
packet in the remaining directions: the randomness of 
the phases enables us in the derivation of the equations 
(see 82) to decouple the quaternary correlators in terms 
of the binary ones and to restrict ourselves to the ap- 
proximation of the self-consistent field. The narrow- 
ness of the packets enables us to simplify the equations 
for n,,. = (azn, ,), writing them down in the r-representa- 
tion, similar to what i s  done when deriving the equa- 
tions for the envelopes. As a result we get the relative- 
ly simple Eq. (2.5) for  the binary correlator of the 

wavefield. We discuss in 82 the limits of applicability 
of the obtained Eq. (2.5) and i ts  connection with other 
ways of describing the system. We use this equation in 
what follows to solve a number of concrete problems. 

In 83 we study the general properties of the spectrum 
of the collective oscillations of singular weak wave tur- 
bulence spectra and discuss the cri teria for their insta- 
bility. We pay special attention to the modulational in- 
stability of Langmuir oscillations. The description of 
Langmuir packets which a r e  broad in frequency, using 
various variants of Eq. (1. I) ,  only enables us to deter- 
mine the fact that they a r e  unstable. [=] In our paper we 
have succeeded not only in obtaining the maximum 
growth rate of the instability but also in examining i ts  
non-linear stage (see 84); we have also studied the self- 
focusing of the emission from a single-mode laser. We 
obtain in 8 5 the non-linear equations for the decay in- 
stability in an inhomogeneous medium, taking into ac- 
count the anomalous correlators. These equations gen- 
eralize the basic equations of the S-theory to the spatial- 
ly non-uniform case. 

In 86 we obtain the spectrum of the collective oscilla- 
tions in a system of parametrically excited waves and 
we consider the problem of the stability of the "ground 
state" of a system of parametric waves with respect to 
the violation of spatial uniformity. We also consider 
the related problem of the effect of the boundaries of the 
sample on the distribution of the wave amplitudes. 

92. THE QUASI-DYNAMIC EQUATION 

1. Derivation of the equations. As usual we s tar t  the 
description of weak turbulence with the canonical equa- 
tions of motion for the complex amplitude of the wave 
fieldt8': 

($ + iwk)  ak=-i J Tk,,,@:a2a& (k+k.-kz-ks)dkI dk, dk.. (2.1) 

Here wk i s  the dispersion law of the waves, and T12,34 
a r e  the matrix elements of the four-wave interaction 
Hamiltonian. We assume that the three-wave processes 
a r e  forbidden by the conservation laws. It i s  necessary 
to add that one can often use Eq. (2.1) to describe waves 
.in a non-conservative medium; in that case w, and T,,,,, 
acquire anti-Hermitean additions: 

In f i rs t  order in the interaction, i. e., decoupling the 
quaternary correlators in terms of the binary ones, we 
get easily from Eq. (2.1) 

a [- at t i ( u . , - u ; ) ]  rz-*r.-k2ij dk, d*, dks(T.~.,.nk,n,. 

In what follows we assume for the sake of simplicity that 
the spatial inhomogeneity is one-dimensional (the z-axis 
is the direction of the inhomogeneity). In that case 

68 Sov. Phys. JETP, Vol. 45, No. 1, January 1977 V. S. L'vov and A. M. Rubenchik 68 



Using the fact that for fixed k, the packet nkL(k,, k:) i s  
concentrated in a narrow layer: Ak,<< k, we can expand 
wb,, kz) in (2.3) in a ser ies  in k, - k: (k: is the center of 
the packet: k:= f (k,)) and neglect the dependence of 
TI,,, ,  on k, - k:. The equations obtained can be simpli- 
fied after changing to the r-representation in the coordi- 
nate z: 

Here 

We must understand in Eqs. (2.5) and (2.6) the vector 
k to be {k,, k: = f (k,)). In deriving (2.5) we assumed that 
the condition that the interaction i s  small was satisfied, 
which guaranteed the randomness of the phases: 

where (~k),,, i s  the maximum dimension of the packet. 

Equation (2.5) obtained by us i s  essentially an equa- 
tion with a self-consistent field, since it differs from 
the linear equation for the correlator n,(z, z') only by the 
renormalization of the frequency (2.6) by the interac- 
tion. Of principal importance i s  the neglect of the colli- 
sion term. The criterion (2.7) which guarantees that 
this term is small and which enables us  to evaluate it in 
second order of perturbation theory in Hi,, i s  only nec- 
essary. The determination of a sufficient criterion re- 
quires taking into account the concrete specific nature 
of the problem and i s  therefore irrelevant here. We 
note merely that in our Eqs. (2.5) we retained terms of 
first order in Hi,, and there may therefore easily occur 
many situations when one can indeed neglect the colli- 
sion term. 

2. Connection with other methods of description. , 

A. For a broad packet in a medium with a slow inhomoge- 
neity, nk(z, z') depends more weakly on z - z' than on z 
+ z' by a factor equal to the parameter of (1.2)  LA^)-'. 
This enables us to expand $(z) - Gk(zf) in (2.5) in terms 
of z - z' and after changing to the momentum represen- 
tation in terms of z - z' to write (2.5) in the form 

One of us obtained Eq. (2.8) incg1; it i s  analogous to Eq. 
(1.1) in the case when the spatial inhomogeneity i s  not 
given, but determined by the distribution of the oscilla- 
tions. 

B. Establishing the connection between Eq. (2.5) and 
the equation for the envelopes we note that (2.5) has an 
exact solution in factorized form nk(z, 2 ' )  = Akk)A:(zf) 

where Ak(z) satisfies the equation 

- 
a,=ak-ir,+2 J Tk,,IAk*(z) I Z  dk,'. 

This equation is a generalization of the equation for the 
envelope of a monochromatic wave to the case of an ex- 
tended packet: Ak(z, t) i s  a function of k,. If we substi- 
tute A, a 61'Z(k, - k,,) in (2.91, we get for Ak0(z, t) an 
equation that differs from the equation for the envelope 
solely by the coefficient 2 in front of Tk,+,; this factor 
two is, clearly, due to the randomness of the phases. 

3. Possible generalizations of the quasi-dynamic Eq. 
(2.5). A. If the medium is inhomogeneous and when 
there a r e  no waves, this can be taken into account in the 
quadratic Hamiltonian: 

Using this fact and repeating the whole discussion and 
assuming that the inhomogeneity i s  slow we a re  again 
led to Eqs. (2.5) and (2.6) in which wk will now depend 
on r :  

B. If we drop the assumption that the inhomogeneity 
is one-dimensional Eq. (2.5) retains i ts  form, but the 
expression for the renormalized frequency Gk will no 
longer have the simple local form (2.6). If the distribu- 
tion is almost one-dimensional (arbitrary line), but the 
inhomogeneity i s  two-dimensional, we can from (2.3) 
obtain for the quantities 

xexp i[k,r,-k,'r,'-k,"r,-r,') ] 

the simple equations 

ak(r,) =0*+2 Tkk.nk. (r,, r,') dk.'. 

For simplicity we have not written out here the diffrac- 
tion term proportional to w". We can obtain a local ex- 
pression for Gk for  any inhomogeneity, if T,, , = const, 
and in some other special cases. 

C. The generalization of (2.5) to the case when it is 
necessary to take into account the anomalous correla- 
tors  (aka-$ is, a s  we noted already earlier,  given in 85 
in connection with the consideration of the non-linear 
stage of the parametric instability in an inhomogeneous 
medium. 

$3. COLLECTIVE OSCILLATIONS OF JET 
DISTRIBUTIONS AND THEIR INSTABILITY 

I. Dispersion relations. First  of all we make some 
remarks about the nature of the spatially uniform solu- 
tions of Eqs. (2.9). We look for  them in the form 
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A ( z ,  t)=A,O exp(-ibt),  6k = Re i3k-o,+2 Tu,IAkroIz dk', (3. 1) 

4 is the frequency of the waves including the interac- 
tion and A: i s  found from the equation 

Hence i t  follows that in a transparent medium the dis- 
tribution of waves can be arbitrary; it is determined by 
the conditions of excitation. The structure of the sta- 
tionary spectra in an absorbing medium has been studied 
in detail in a number of  paper^^^-^' using the Langmuir 
turbulence of an isothermal plasma a s  an example. In 
this case the oscillations are,  a s  a rule, concentrated 
on lines and surfaces in k-space. Their location and the 
intensity of the oscillations a r e  determined from (3.2) 
and the condition a rk/ak = 0 which is necessary for the 
stability with respect to the excitation of waves outside 
these surfaces. 

Equations (2.9) make i t  in principle possible to solve 
the problem of the stability, including stability with re- 
spect to a violation of the spatial uniformity. For this 
it i s  necessary to linearize them above the background 
of the stationary spectrum A!: 6Ak = bk exp(- ih t ) .  Put- 
ting bk(t, z ) a  exp - i(nt - xz) and introducing new vari- 
ables rkt = Wb: f C. C. ) we get 

-'120"xaY+ - (Q-xu) Y-=41A,01a j T,vYk,+ dk,', 
(3.3) 

(Q-xu) Y+-'/,oUxT-=-4ilAkoI' j qkk,Yk.+ dk,'. 

For  x =  0 Eqs. (3.3) split up. The first  of them gives 
n=O which reflects the indifferent equilibrium solutions 
of Eq. (3.2) relative to a change in the phase A!. From 
the second we get a dispersion relation for 9+ describing 
the uniform change in the amplitude of the oscillations 
along the jet. These oscillations a re  sound propagating 
without damping along the stationary spectrum in k- 
space. [lo' For us it is important that both types of 
modes in Eq. (3.3) a re  indifferently stable for x = 0 s o  
that of special interest is the study of collective oscilla- 
tions with small, but finite x which may become un- 
stable. 

2. Spatially non-unvorrn types of oscillations. Equa- 
tions (3.3) make i t  possible in principle to study spa- 
tially non-uniform oscillations of singular spectra. 
However, it i s  impossible to carry  out such an analysis 
without simplifications corresponding to the concrete 
physical situation. In the present section we restrict 
ourselves therefore to a study of the spectra of oscilla- 
tions with a quadratic dispersion law which makes i t  
possible to assume that w" is independent of k. Such a 
form of the spectrum corresponds to a very wide range 
of physical phenomena-spin waves, optical phonons, 
Langmuir oscillations. Moreover, a narrow wavepacket 
in an arbitrary medium i s  also described by a quadratic 
dispersion law. We consider a few concrete examples. 

A. A narrow packet in a transparent medium: qkk. 
= 0, Tkk , = T. We get in this case easily from (3.3) 

It is clear that for w"T < 0 there occurs a spontaneous 
breaking of the spatial uniformity which i s  a generaliza- 
tion of the modulational instability of a monochromatic 
wave. 

B. In the opposite limiting case when the scale of the 
distribution considerably exceeds the dimension of the 
kernels q and T we put A!=A0 and, assuming the ker- 
nels to be to depend on the difference, we change to the 
q-representation 

For the sake of simplicity we shall additionally assume 
that HI V. It then easily follows from (3.3) that 

where 

q, = J q,e-'qk dk,  T, = j The-'"dk. (3.7) 

Bearing in mind that 17, and Tk a r e  real  and that 
= - q-k, Tk = T-k we find that q, is an odd, purely imagi- 
nary function of q and T, a real  even function of q. When 
x= 0 there follows a "sound spectrum" from (3.6): a, 
=21A0121~1 a q  a s  9-0. The instability whenx+O can 
ar ise  only when w " ~ ,  < 0, and for fixed q the least sta- 
ble perturbations a re  those with -A =no, w"xt= 4 ~ ,  IAO1 ', 
for which 

For  the occurrence of an instability i t  is thus neces- 
sary  that 

By virtue of the antisymmetry q(0)=0. Therefore, if 
~ ( 0 )  + O  the condition w ' ' ~ ( 0 ) <  0 i s  necessary for insta- 
bility. 

C. We consider in more detail Langmuir oscillations 
in an isothermal plasma. Their non-linear interaction 
is caused by induced scattering by ions, and the matrix 
elements a re  determined by the 

o,.' (kk')' o h - o k r  
Tkk.+iquv = 4.r. -- i : k r .  '(-1 = 

Here wk= wpe(l+ 3 ' ~ : )  is the frequency of the Langmuir 
waves (w"> 0), up, the plasma frequency, and r, the 
Debye radius. For long waves kr, < J(m/M), f r;: - 1 and 
in accordance with the criterion (3.8) the singular dis- 
tributions a re  always unstable. When kr, >J(m/M) the 
structure of the function f is well described by the ex- 
pression 

f (x) = [ (x+ir.lQa)'-11-', x = ( o ~ - o i * ) / Q . ,  (3.10) 

in which y, and SZ, are  the damping rate and frequency 
of the ion-sound oscillations. When T i  << T ,  Eq. (3. 10) 
is exact. When the ion temperature increases y, in- 
creases and when T i  - T, we shall have y,- n*. The 
characteristic size of the function f is k,,, = ? ' ; ' d m ) -  
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the spacing of the diffusive energy transfer along the 
spectrum. For spectral distributions which change 
smoothly over a distance kafi we can use the general 
Eq. (3. 6) in which T ,  and q ,  a r e  calculated from Eqs. 
(3.7), (3.9), and (3.10): 

nq=-inTo ~i*(qkdiu) e x p  

T,=-nTosin(lqlkditt)exp 

It is clear that w"T,<O for qk,,,, < h, but I T,I = Ig,l and 
the criterion (3.8) for the occurrence of the instability 
is not satisfied. It turns out that in our approximation 
the least stable perturbation reaches the boundary of 
stability. An instability can occur i f  a more exact ap- 
proximation i s  made of the matrix element Tkk ,  but i t s  
growth rate will have an additional small factor k,,,/k. 

It was shown int5' that for temperatures T i s  T ,  jet 
spectra turn out to be strongly cut up-with a deep mod- 
ulation of order unity and scale length k,,,. We show 
that this fact leads to a strong spatially non-uniform in- 
stability. To do this we consider an extremely strongly 
cut-up spectrum (satellite approximationt5'): 

Writing 9' in the form 

(2 i s  the number of satellites) we find that the solution 
of the dispersion relation (3. 3) has the form (3.6). How- 
ever, in this formula [A' l' is the amplitude in one sat- 
ellite (see (3. 12)), while q, and T,  in contrast to (3. 7) 
a r e  given by the formulae 

Now we have Iq,l # I T,I and an instability occurs. When 
q << n/kd,, i ts  growth ra te  is small, but when qkdiif = n 
we have g, = 0, T ,  = 0. 5 To for T << T ,  and the instability 
develops with a growth rate 

I ts  characteristic scale (in coordinate space) is 1'-  wtt/ 
~ ~ 1 ~ ~ 1 ~ .  In momentum space the development of this 
instability means in accordance with (3.13) the increase 
of the amplitude of every other one of the satellites. 

$4. THE NON-LINEAR STAGE OF THE 
DEVELOPMENT OF THE INSTABILITY 
OF THE COLLECTIVE OSCILLATIONS 
IN A TRANSPARENT MEDIUM 

It is necessary to emphasize here once more that the 
quasi-dynamic equations generalize the equations for the 
envelopes of a narrow wavepacket and that the instability 
found by us is similar to the modulational instability. 

However, the development of the modulational instability 
of a quasi-monochromatic wave was studied in detail in 
a number of papers both analytically and by means of a 
computer. c11-133 In particular, the conditions were elu- 
cidated under which a singularity is formed after a finite 
time in the distribution of the waves-the oscillations 
show self-focusing (collapse). We generalize below 
these results to the case of wavepackets which a re  broad 
in one o r  two directions. 

In a transparent medium Eq. (2.9) is Hamiltonian in 
nature. For transverse perturbations ( x -  r = 0) the 
Hamiltonian has the form 

and is, clearly, an integral of motion. Moreover, Eq. 
(4.1) conserves also the total "number of waves" for 
each k : N,= J IA,I ' d r , .  Here k,, is the wavevector along 
the surface (or line), and r ,  a r e  the spatial coordinates 
in the transverse direction. 

Following the ideas ofC12', we consider the essentially 
positive quantity R =  Jr ; I A , I  'dr,dk, ,  and by direct calcu- 
lation we find 

where n is the dimensionality of the inhomogeneity. In 
the case when the oscillations are  distributed along a 
line in k-space, n = 2 and we have from (4.2) d ' ~ / d t  ' 
= 8H or  R =4flt2+ cut + B ,  where o! and 0 a r e  constants of 
integration. It is clear that when H <  0 the quantity R 
becomes negative after sufficiently long time which is in 
contradiction to i t s  definition. The fact i s  that in deriv- 
ing (4.2) we integrated by parts, i. e., we assumed that 
the solution was differentiable. The contradiction ob- 
tained thus means the formation of a singularity in the 
solution. 

We describe qualitatively how this proceeds. Initially 
the modulational instability of the mode with the largest 
growth rate develops. When q = 0 this is the mode (3. 5) 
with q = g o  corresponding to the maximum T,. When 
T,,, is close to a constant q = 0 and the A, increase si- 
multaneously along the whole line. If, however, the 
kernel T,,, is well localized, i. e., decreases fas t  when 
k - kt > h k  (in the example with a plasma considered 
above h k  = k ,,,), we have q, = n/h k and in the process 
of the growth of the wave along the line groups (spots) 
develop with a characteristic size along z of the order 
of Ak. Simultaneously the uniformity of the distribution 
in the transverse (x, y ) direction in coordinate space is 
broken and humps a r e  formed in the amplitude A(%, y )  
with a scale of the order lo  : l o=  wM/hw,, . In the non- 
linear stage of the development of the modulational in- 
stability the scale of the humps lo decreases fast  (in the 
framework of the idealized equation) to zero after a fi- 
nite time t ,  (tk'2-lo/\IW") and by virtue of the conserva- 
tion of N, the amplitude at the center of the humps in- 
creases a s  IA (0, t )  1 ' ac ~ - ~ ( t ) .  

When T,,, = To this process goes on until the limit of 
applicability of Eq. (2. 5) according to the criterion 
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(2.7), i. e. , until 1 - X= 2n/k. The further fate of the 
filament obtained which is long in the z-direction and 
strongly focused in the transverse direction depends on 
the actual specific features of the problem (in particu- 
lar, on the dispersion law of wk). When w,= wo+ cuk2 and 
T,, = To< 0 in this stage there occurs a breaking of the 
spatial uniformity along z with a scale k-' and the col- 
lapse of the envelopes changes to a collapse of the sepa- 
rate waves: "luminous filaments will flare up" in space 
a t  distances of the order of 2, along x and y, will disin- 
tegrate afterwards into separate "points" of size k-', and 
then collapse. 

In the case of a localized kernel Tbk, the contraction 
of a filament which is uniform along z will proceed only 
down to a scale 1 - ( ~ k ) - '  ( ~ k  is the "size" of the kernel). 
For such a scale the amplitude A a t  the center of the 
hump (x =y = 0) increases up to a magnitude A: 

which follows from the fact that the Hamiltonian (4.1) is 
conserved. The criterion for randomization (2.7) of the 
initial equations is then violated and i t  is no longer pos- 
sible to assume that the phases of the waves within the 
limits of each spot with respect to k, with dimension Ak 
a re  random. Bearing in mind, however, the localiza- 
tion of the kernel we can in f i rs t  approximation neglect 
the interaction of "spots" with different k,. When 1 Ak 
< 1 the phases inside each spot a re  completely corre- 
lated and each spot can be described by the dynamic 
equation for envelopes. In the framework of that equa- 
tion there is an instability with respect to a spatial mod- 
ulation in z;  the two-dimensional collapse of the fila- 
ments therefore changes into a three-dimensional col- 
lapse of separate, not mutually correlated, spots. 

Of course, in concrete situations the collapse process 
described above can stop under the action of factors not 
taken into account in our equation, for instance, a posi- 
tive non-linear damping. 

$5. NON-LINEAR EQUATIONS FOR THE DECAY 
INSTABILITY IN  A NON-UNIFORM MEDIUM 

For a study of the decay instability we restrict  our- 
selves to the simple and often encountered case when 
the pumping is spatially uniform h (r, t )  = h exp(i w,t). The 
pumping leads to an additional term in Eq. (2.1): 

ih exp ( iopt)  Vka-<. (5.1) 

The coherence of the pumping leads to the fact that the 
description of the system of waves in terms of then,, 
is insufficient and i t  is necessary to introduce anoma- 
lous correlat~rs" '~:  

If the spatial inhomogeneity is one-dimensional, we have 
(cf . (2.4)) 

As in 62, we change to the r-representation with respect 
to k, and k:: 

o*(z', 2 )  =a-,(z,  2' )  

=&J dk. d k . P ,  ( 4 ,  k.')exp(i[k>(z-d)-kIz+k.Izl]} (5.4) 

and using the narrowness of the wave distribution we get 
instead of (2. 5) the set  of equations 

Here 6 and v, are  defined in (2.6) 

and for  the sake of simplicity we dropped, a s  a rule, un- 
important terms with the anti-Hermitean parts of S and 
T and also the diffraction t e rms  proportional to w" .  

In the spatially uniform case Eqs. (5.5) and (5.6) 
change to the basic equations of the S-theory. C71 If the 
pumping amplitude h changes slowly (as compared to the 
wavelength k-') in space, h in (5.6) is h(z). Like (2.51, 
the equations given here allow a factorized solution of 
the kind 

where A,(e) satisfies the equation 

We emphasize that Eqs. (5.5) obtained in the self- 
consistent field approximation do not contain randomiz- 
ing factors and just because of this they admit of the dy- 
namical solution (5.7). If, however, there a re  external 
causes for stochastization, for instance, due to initial 
o r  boundary conditions, the wave turbulence will be de- 
scribed by solutions of a more general form. 

66. COLLECTIVE OSCILLATIONS IN  A SYSTEM 
OF  PARAMETRICALLY EXCITED WAVES'' 

Spatially uniform stationary solutions of the S-theory 
Eqs. (5.5) have been studied in detail in a number of 
papers. It has been shown that the solution is concen- 
trated on a resonance surface 

The actual form of the distribution n, on the surface 
(6.1) depends in an important way on the coefficients V,, 
S,. in the Hamiltonian and on the form of the function 
y, on that surface. In the simplest case when S,. =S, 
V, = V, y, = y the wave distribution is isotropic on (6.1) 
and the integral "amplitudeJ' N and the phase of the pairs 

a r e  determined from the relations 
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(SN)'=(hV)' -y2 ,  hV sin 8 = y ,  cD=cpk+cph,  (6.2) 

N = n,, ah=nih exp (-icp,) . 
k 

In an axially symmetric situation and not too fa r  above 
the threshold waves a r e  excited only on parallel lines 
corresponding to the maximum of Vk with the character- 
istics (6.2). The problem naturally ar ises  of the sta- 
bility of uniform distributions of pairs of waves with re- 
spect to spatial modulation of their amplitude and phase. 
For a study of this problem it is necessary to linearize 
Eq. (5.8) above the uniform background: A, =A: + b,(r) 
and searching their solution in the form b,(r), b:(r) 
cc exp{i[wr- at]}, we find the spectrum ~ ( n )  of the col- 
lective oscillations. We give the results for two simple, 
but interesting cases. 

1 .  Isotropic model: S,,, =S, T,,, = T, V, = V. The de- 
pendence of the frequency of the collective oscillations 
on their wavevector is determined by the dispersion 
equation 

where 

Q t = 4 S ( 2 T + S ) N Z .  

At xv << no the solution of (6.3) is of the form 
. 

Q ( x )  =-iy*[Qo2+ ( x u ) ~ - ~ ~ ] ' ~ .  (6.4) 

When r-=0, (6.4) changes to the expression for the 
frequency a(0)  of the spatially uniform collective oscil- 
lations studied experimentally and theoretically inc'S"81. 
For negative an instability develops. The least sta- 
ble oscillations have x = 0, the instability region extends 
to xv = +ao, and fo r  0; >O the stationary solution is sta- 
ble for all w .  

2. The case of axial symmetry. We study the spec- 
trum a(x)  of the collective oscillations in the case which 
is important for experiments in ferromagnetics when the 
amplitude of the waves is non-zero a t  latitudes 8 =go and 
8 = - Oo. In cubic ferromagnetics for parallel pumping 
and for being above criticality by up to 6 to 8 dB 8 = & 
(equator), for transverse pumping the case 9 =& is of- 
ten realized. The function ~ ( x )  looks simplest in the 
case when ;I. is parallel to the axis of symmetry. For 
each axial harmonic with number p we can obtain 

where 

Here 

T f ,  S, a re  the Fourier harmonics of the coefficients in 
Eq. (5.8) which depend only on q? - p' because of the ax- 
ial symmetry. When a2(x) >0  Eqs. (6.5) correspond to 

collective oscillations with frequencies * A  and a damp- 
ing rate y equal to the damping rate of the waves. When 
a:(%) <O, 1m6, > 0, which corresponds to an exponential 
growth of the collective oscillations, the spatially uni- 
form distribution of the parametric waves is unstable. 

We analyze Eqs. (6.5) which we have obtained for the 
frequencies of the collective oscillations. When H = O  

This expression for the frequency of spatially uniform 
oscillations was obtained earlier and confirmed 
by a ser ies  of experiments on ferromagnetics. C'5"61 The 
oscillation with aPl(O) is stable, if s,(T; + T; +Sp) >O. 
The oscillation with aP2 is indifferently stable. For 
small XU we have 

,2SP+Tp+-T,- Tp--T,+ 
B, ,2=Bp,2(0)  + ( x u )  , Q,,Z=(xu)'-  

SP 
. (6.7) 

SP 

Thus, if S,(T; - T;) >O the branch of collective oscil- 
lations a,, becomes unstable a t  .A #O. Putting A:' >0, 
A: >O, we find that the branch a,, is stable for all x 

while the instability region of &2,, is enclosed between 
r.= 0 and x=xo, where (x,u)~ =A:. 

In cubic ferromagnetics there may ar ise  situations 
when xu = 0. For instance, when the waves a re  excited 
on the equator and we a re  interested in a perturbation 
perpendicular to i t s  plane, or  when due to the anisotrop- 
ic dispersion law the group velocity for the excited 
waves v vanishes for 8 =8,. In that case (6.5) simpli- 
fies to the form 

For the sake of simplicity we put T' = T -=  T. The rela- 
tion is always satisfied, for instance, for waves excited 
a t  the equator. The second branch of oscillations a,, of 
(6.5) is then always stable. It is clear from Eq. (6.8) 
that even when ~ : ~ ( 0 )  >0 the occurrence of an instability 
is possible in the region w'k2 - (T +S)N, if w "(T +S) <O. 

~ n ~ ~ ~ * ~ ~ ~  it was shown theoretically that the develop- 
ment of an instability with x=O leads to the occurrence 
of self-oscillations of the integral amplitude of the 
waves. For a parametric excitation of spin waves in 
ferromagnetics they appear experimentally a s  self-os- 
cillations of the magnetization. c'8*191 

The sign of w" in cubic ferromagnetics depends on the 
strength of the external field H and can easily produce a 
situation where the spatially uniform oscillations a r e  
stable: 1rnn(O) <O and an instability localized in the re- 
gion w"n2-SN. AS a result of the development of this - 
instability there may occur a stationary spatially non- 
uniform pattern A,(r) with a characteristic scale (w"/ 
SN)'", a depth of the modulation of the order of unity, 
and an average level of the order of (6.2). C201 An inter- 
esting problem ar ises  of finding such stationary states 
and of studying their stability in the framework of Eqs. 
(5.8). It is of interest to attempt also to discover this 
effect experimentally. 

In conclusion we consider briefly the problem of the 
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effect of the boundaries of the sample on the stationary 
amplitude of the waves beyond the threshold for the 
parametric instability. It is clear that in the bulk of the 
sample the solution of the S-theory (6.2) is realized, 
while a t  the boundary the amplitude differs from (6.2). 
Of great interest is therefore the problem of the nature 
of the approach of the solution A(z)  ta the uniform dis- 
tribution (6.2). It is clear that the equations obtained 
a r e  identical with Eqs. (6.5) studied in the problem of 
the collective oscillations, if we put there %/et=O. We 
obtain therefore the dispersion equation for x directly 
from (6.5) putting a(%) = 0: 

As the a;,,,,, a s  functions of x a re  polynomials the 
merging into the asymptotic behavior of the S-theory 
(6.2) carr ies  an exponential character. We determine 
the characteristic scales of the approach to the uniform 
solution. 

A. Excluding the case when the waves propagate par- 
allel to the sample boundary, we can neglect in (6.9) the 
terms with w ' k 2  and (6.9) then simplifies to  the form 

The approach to the uniform solution occurs only when 
A; <0, i. e., when the mode turns out to be stable. 

B. If, however, the waves propagate parallel to the 
boundary, nu = 0 and T' = T -. We obtain the dispersion 
equation for x by putting a(n) equal to zero in Eq. (6.8): 

Negative xZ a re  a solution of (6.11) only in the case 
where S(T +S) >O, w"(T+s)>o. 

Turning to (6.8) we see that these requirements a re  
the same a s  the conditions for the stability of the ground 
state. The exponential asymptotic behavior of the ap- 
proach to the uniform solution of the S-theory is thus 
closely connected with the stability of the ground state 
with respect to collective oscillations: just in the stable 
case there exist only complex solutions of the equation 
for &2#(n). If, however, the ground state is unstable with 
respect to spatially non-uniform perturbations, there 
exist, a s  we noted already above (see alsoc201) apart 
from the uniform also quasi-periodic distributions of the 
oscillations with an average level -SN. In that case, 
real x obtained from (6.101, (6.11) indicate that we 
found the simplest solutions of such a kind-"fine do- 
mains" in the terminology ofceo1. 

We want to thank V. E. Zakharov for discussing a 
number of problems connected with the present paper. 
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 he results of this section were partially published in a pre- 
print by one of the authors. 
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