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The vibrational states of molecules with degenerate modes are considered. It is shown that anharmonicity 
leads to the removal of degeneracy and to the formation of level "bands" which may "overlap" the 
harmonic levels. The population kinetics for an almost resonant multilevel system is discussed. It is shown 
that there are two qualitatively different ways of populating the upper vibrational levels, which are 
designated as the tunneling and the classical mechanisms. The results obtained from this analysis are used 
to explain the instantaneous dissociation of polyatomic molecules. Estimates are given for the probability 
of dissociition of an excited molecule in a laser field. 

PACS numbers: 33.80.Gj 

Theoretical analysis of the cascade population of the 
upper vibrational states of a molecule can be divided 
into two main stages. The first  stage involves the de- 
termination of the spectrum of energy levels of the 
molecule, which are involved in the cascade process, 
and the second stage is concerned with the population 
dynamics for this energy level scheme. The spectrum 
of energy eigenvalues of molecules has been under in- 
vestigation for a considerable time. The Morse oscil- 
lator has been proposed for  the analysis of 
the population of high vibrational states. In general, 

1. Polyatomic molecules having an axis of symmetry 
of order greater than 2 have degenerate vibrational 
modes. The presence of degeneracy may substantially 
facilitate the purely radiative accumulation of vibration- 
al energy in the molecule exposed to a laser field. Let 
us consider the energy spectrum of a triply degenerate 
mode by considering a molecule XY, with 0, symmetry. 
We sh+ confine our attention to the vibrational Hamil- 
tonian Ho for the mode v,, assuming that the vibrational 
energy has been averaged over the other vibrational 
modes. 

this model corresponds to the diatomic molecule and, in In the coordinate frame attached rigidly to the mole- 
this case, the intensity necessary for the effective popu- cule, the Hamiltonian can be written in the form 
lation of high vibrational states is too high and exceeds, 
for example, the gas breakdown threshold. The quasi- 
continuum model was discussed in our previous paper.[31 ko =I (~,'+m'o'r~)+A(x'+y'+z')+~(x~~'+x~2+~'r~+~[r~]'. 

This model corresponds to the case of polyatomic mole- 2m ~-..P,z 

cules, and i s  based on the idea that, a s  the vibrational (1) 
quantum number increases, there is a rapid increase in 
the level density of polyatomic molecules, so  that reso- 
nance transitions take place to high vibrational states. 
Much lower intensities are  required by this model for 
reaching the high vibrational levels, and these intensi- 
ties are in good agreement with experimental 
Further analysis of the quasicontinuum model requires 
the inclusion of the degeneracy of vibrational modes of 
the molecule. Removal of this degeneracy through the 
inclusion of anharmonicity leads to the appearance of 
bands of relatively well resolved transitions on the qua- 
sicontinuum background, and this facilitates the excita- 
tion of high vibrational states of the molecule. 

In this paper, we consider the excitation of molecules 
with degenerate vibrational modes by a strong laser 
field. In Sec. 1, we shall determine the energy eigen- 
values for a triply degenerate mode and will show that 
this spectrum is localized in the neighborhood of nEw 
when the molecular parameters satisfy certain condi- 
tions. In Sec. 2, we shall develop a method for describ- 
ing the excitation kinetics for multilevel systems and 
~ i l l ~ d e t e r m i n e  the parameter values which will ensure 
the effective population of the upper levels. The results 
obtained in Sec. 2 a r e  used in Sec. 3 to analyze the 
model developed in Sec. 1. Numerical estimates are  
reproduced, and the results are  discussed. 

This expression includes terms up to the fourth order in 
the potential energy. The anharmonicity of the vibra- 
tional modes is characterized by the three constants A, 
B, and C, and the symmetry of the molecule is taken 
into account. This tensorial anharmonicity removes de- 
generacy, and the energy levels are  shifted from their 
"harmonic positions," forming a band of energy states. 
The spectrum will be calculated within the framework 
of perturbation theory. The zeroth approximation will 
be taken in the form of the harmonic oscillator wave 
functions 

The secular equation (6) must be solved to determine 
the first-order corrections. To do this, we shall seek 
the @ function in the form 

For the coefficients byqq and the correction E to the 
harmonic value of the energy, we have the equation 
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The matrix elements have the form 

( V I ,  02, U J  IHI v , ,  U Z ,  v ~ ) = ~ ( u ~ ' + Y ? ' + v ~ ~ )  + $ ( V ~ U ~ + V ~ V ~ + V J V ~ ) ,  

<u1-2, u2+2, usIHIv , ,  u,, u , ) = < v , ,  u2+2, us -2IHlu , ,  u2, u3> 

- r ( u t + l )  (u2+2) ,  

{u1+2, ~ 2 - 2 ,  U ~ I H I U , ,  U Z ,  U J ) = ( V , + ~ ,  U Z ,  u , -21Hlul ,  u:, u3> 

= y ( u r + i )  ( u r + 2 ) ,  

(01-2 ,  uz, ~ t + 2 I H l u t ,  U Z ,  ~ s ) = ( ~ i ,  ~ r - 2 ,  ~ r + 2 l H l ~ ~ ,  UZ,  u,> 

= r ( ~ J + l )  ( v a + 2 ) ,  

where 

We have confined our attention to terms that a re  quadrat- 
ic in v because the linear and constant terms lead to an 
unnecessary overdefinition of the resonance frequency. 

Equation (2) is solved for the lower vibrational states 
using the generating function 

where 5, q, 5 are  formal parameters. From (2), we 
have the following equation for 9: 

and the solution of this is a polynomial of degree v. 
Table I lists the value of & for v = 1,2,3,4 and different 
vibrational symmetries. It is clear from the table that, 
if we know the position of the v = 1 and v = 2 levels, we 
can determine the anharmonic constants a, p, and y. 
For v >> 1, the correction E can be estimated approxi- 
mate:~ by including only the diagonal terms in the ma- 
trix H: 

The correction to the energy, regarded as  a function 
of vl, v2, and v3, has three extrema, namely: & = av2, 
E = (a + /3)v2/3, and & = (2a + /3)v2/4. The f i rs t  of these 
determines the position of the edges of the resulting en- 
ergy band, and the last corresponds to its center of 
gravity (the trace of the matrix f i  divided by the number 
of levels in the band). The nondiagonal elements do not, 
therefore, affect the position of the band center. When 
the condition 

TABLE I. 

is satisfied, the band overlaps the position of the har- 
monic energy level. It isimportant to note that the in- 
clusion of nondiagonal elements of the matrix l? can lead 
only to an additional expansion of the band. 

Y 

0 
1 

2 

3 

4 

The spectrum of the triply degenerate mode of the 
molecule XY, with the symmetry T, has been analyzed 
in a similar way. In this case, one must take into ac- 
count cubic anharmonicity as well. However, this does 
not alter the form of the secular equation (2) and the 
condition given by (5). 

Condition (5) is very likely to be satisfied for real 
molecules. Thus, the spectra of overtones and the com- 
posite vibrational modes of ZrC1, were obtained incT1. 
It follows from these data that condition (5) is satisfied 
for the constants a and /3. Our own measurements of 
the overtone spectra for the vibrational mode v3 of SiF, 
yield a= - 2.5 cm" and 8~ 12 cm-', which also satisfy 
the condition given by (5). Thus, the level bands for 
these molecules definitely overlap the "harmonic posi- 
tion" of the energy level. 

Level symmetry 

Correctron to enerky 1 Ta 1 Oo 

We note that the formation of vibrational bands for 
molecules of the form XY,, XY, with Oh, T, symmetries 
is a consequence of the nonrandom Fermi resonance for 
the states of one vibrational mode. In addition to this 
type of Fermi resonance, polyatomic molecules exhibit 
Fermi resonances between levels corresponding to a 
particular symmetry type but belonging to different vi- 
brational modes, independently of whether degenerate 
modes are  present. This is connected with the fact that, 
as the energy of the vibrational state increases, there 
is an increase in the level density in this region. Fermi 
resonances of both types produce the mixing of vibra- 
tional states and the formation of vibrational level bands. 
Transitions between levels belonging to neighboring 
bands are  allowed because of the anharmonicity of the 
molecular vibrations. The bands do not have sharp 
boundaries, but the transition strengths decrease be- 
tween band centers and the edges. The case of degen- 
erate vibrational modes differs from that of nondegen- 
erate modes by the higher strength of dipole transitions 
and the greater width of the bands. 

The spectrum of the triply degenerate vibrations of 
molecules with T, or Oh symmetries is thus found to 
have a band structure. Since the size of a band and the 
degree of degeneracy increase in proportion to the 
square of the vibrational quantum numbers, on average, 
the level density in a band remains constant. When con- 
dition (5) is satisfied, the band overlaps the position of 
the harmonic level. Since dipole transitions within a 
band are  allowed, we may conclude that this "net" of 
levels can ensure the cascade takeup of energy by the 
molecule. Moreover, since the density of levels belong- 
ing to all the modes of the polyatomic molecule in- 
creases rapidly with increasing vibrational energy, the 
above net of Levels may substantially b c m a s e  the dipole 
moments of intermode transitions as a result of the 
random Fermi resonances, and this may lead to an ef- 
fective inclusion of a large number of levels belonging 

A*# 
F I ,  
A I .  
E, 
Frr 
A2 
Fz . 

2XFI, 
2XA,, 
2XE, 
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to other modes in the cascade process. It is clear that 
this effect may substantially facilitate the takeup of en- 
ergy by the molecule. 

2. The description of the excitation of high vibration- 
al states of a molecule and the determination of the ei- 

. . genvalues of i ts quasi-energycs1 can be carried out in the 
language of the "diffusion" approximation, based on the 
replacement of discrete variables and functions by con- 
tinuous equivalents. Let u s  consider the "diffusion" 
equations for the $ functions of a molecule in an external 
alternating field of constant amplitude E. In the reso- 
nance approximation, the Hamiltonian has the form 

sented by (10) is purely formal and i s  unsuitable for fur- 
ther calculations. To analyze (91, we must then write 
the equation for &(t)  =C,S,,,(t)$,(O) and confine our atten- 
tion to a weak change in the transition dipole moment 
with level number such that f '(n) << f(n): 

We must now proceed to the diffusion representation. 
To do this, we introduce the sufficiently smooth func- 
tions d ( [ ) ,  $([I, and A([) such that 

where <, and <, are the over- and sub-diagonal com- 
ponents of the dipole moment operator. If the spectrum 
En is localized in the neighborhood of niiw, then we can 
confine our attention to the near-diagonal terms in i, 
i. e., assume that 

where d is the characteristic dipole moment of the tran- 
sition. 

In accordance with the Floquet-Lyapunov theorem,ce1 
the evolution operator U ( t )  for a system with the Hamil- 
tonian given by (6) can be written in the form 

~ ( t )  = S ( t )  exp ~ t ,  (7) 

where I? and s(t) are constant and periodic operators, 
respectively. In our case, 

A 

The unitary operator exp Kt produces the transitjon to 
the quasi-energy representation. The operator S satis- 
fies the equation 

where 

Equation (9) can be solved, at least in principle, with 
the aid of the well-known procedure described by 

where the integration contour Q runs around all the ei- 
genvalues of the operator p. This procedure can be 
concluded in two interesting special cases, namely, En 
=&w, f(n)=l,  n c N  and E,,=&w, f(n)=&, n ~ ~ . ' ' ~ ~  
The first  case corresponds to the N-level oscillator with 
equal transition dipole moments, and the second to the 
N-level harmonic oscillator. 

However, in the more general case when {A,,}={E,, 
- nEw}f 0 and dn,,,+i = dfln) = d,,, the procedure repre- 

and replace the difference operator by a differential 
 erato tor^^'*'^^ as  follows: 

The boundary condition for (12) is $(0, t) = 0. In the spe- 
cial case when d([) = d, the fundamental solution of (12) 
can be written in the form of the Feynman integral 

b tb 

f 

(13) 
The precise evaluation of this integral i s  not possible 
but the representation of the solution of (12) in terms of 
(13) may be useful for evaluating the corrections to the 
eikonal app ro~ ima t ion~ '~~  [see Eq. (18) below] and for 
the analysis of a system of levels with a substructure. 
Equation (12) can be reduced to the Schrodinger equation 
when 

This condition is satisfied for sufficiently strong fields, 
and essentially indicates that the entire domain of [ is , 

classically accessible. In this case, the quasi-energy 
levels z can be determined by expanding cosha/8[ in 
powers of 8/85 in the neighborhood of the origin, and 
writing (12) in the form 

The eigenvalues of this equation determine the spectrum 
of quasi-energy z < 0. Since the quantity (A - z)/E - d 
- 2) is, in effect, the potential energy, Eq. (15) and the 
requirement that z < 0 signify that the quasi-energy level 
z lies at a distance less than 2E. d from the bottom of 
the potential well, and this is a sufficient condition for 
the validity of the expansion in powers of a/a.$'. 

To determine the quasi-energy level z > 0, w_e can ex- 
pand cosha/a[ in the neighborhood of ir. For $,, =$,, efrn, 
we then have 

and the eigenvalues of this equation determine the posi- 
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tive values of the quasi-energy spectrum. Thus, Eqs. 
(15) and (16) can be used to determine the approximate 
quasi-energies in fields that are strong enough for the 
dynamic Stark effect to compensate the detuning due to 
anharmonicity, right up to high vibrational states. 

However, even in relatively weak fields, when condi- 
tion (14) is not satisfied, qualitative analysis of (12) is 
possible on the basis of the quasiclassical approxima- 
tion. To do this, let us write the Hamiltonian in the 
classical limit: 

H'=2Ed cos p+A. (17) 

In the first quasiclassical approximation (the eikonal ap- 
proximation), we have 

A-z 
p,=exp{iSc,  (z)) =C, c x p  {if arccos -dj) 2Ed 

where S,, i s  the classical action. The expression given 
by (18) can be improved still further with the aid of per- 
turbation theory and the integral over the trajectories 
given by (13). From (18) and from the asymptotic be- 
havior of arccosx for x -* *, it i s  clear that, in the 
case of large detuning 

$,=c, exp {- J h 2 d j  2Ed 

and this gives us an estimate f o r h e  population for high- 
ly detuned states $,- (2E - @(A -z)-", which agrees with 
that obtained, for example, incs1 on the basis of different 
ideas (d and are the geometric averages of d and 
A-2). 

Thus, near the bottom of the well, the solutions of 
(12) are satisfactorily reproduced by solutions of the 
Schrbdinger equation (15), (16), whereas, in the case of 
tunneling through a high ba.rrier, or  in the case of pas- 
sage through a deep well, we have the approximation 
given by (19). It is clear from (19) that both a deep well 
and a high barrier lead to an exponential attenuation of 
the $ function. 

Before the rate of population of high vibrational states 
can be determined, we must know the time taken by a 
"particle" produced at the origin at time t = O  to reach 
the point 5 =N. The solution of the problem for "classi- 
cally accessible regionsJ' I A - z I 12E dl can be ob- 
tained by the well-known procedure in which 

which yields an estimate for the time taken to traverse 
the classically accessible region: 

In classically inaccessible regions for which I A - z I 
> 12E. dl , the function S,, can be used to determine the 
tunneling timec6' 

We note that this result is valid for any number of highly 
detuned levels. When the number of levels i s  n 6 3, the 
problem admits of an exact solution.c141 

The population distribution in an N-level system depends 
on the way in which the external field i s  introduced. There 
are two limiting cases: adiabatically slow, for which rf 
>> max(t,, t,,), and instantaneous, rt<< mi&, to,), where 
rf i s  the length of the laser pulse front. The character- 
istic feature of the instantaneous establishment of the 
field is the presence of beats, i. e., the "population 
flicker"c101 due to the simultaneous population of all the 
quasi-energy levels. The adiabatic establishment of the 
field leaves the system in the same quasi-energy level, 
but the level itself (its eigenvalue and eigenfunction) is 
slowly detuned, which leads to a certain stationary dis- 
tribution of populations over the states of the molecule. 

The Feynman integral can be used to generalize the 
results obtained for a set of single levels to that of a set 
of levels with a substructure. By substructure, we shall 
understand a set of sublevels with close energy values 
which can be reached only by transitions from the sub- 
levels of other levels. Preliminary analysis shows that 
the principle of least action predicts that the cascade 
takeup of energy by the molecule i s  localized at levels 
detuned by more than 2E. d from the harmonic energy. 

Let us now summarize the main results of Sec. 2. 
Regions with l z - A I > 12E. dl are  classically inacces- 
sible, and the tunneling time through them is  given by 

In classically accessible regions, we have (21), which 
enables us to estimate the parameters of motion over 
levels with small detuning. 

3. To estimate the excitation efficiency, let us 
choose a particular form for the functions A([) and d(5). 
We shall assume that the excitation is initially localized 
within the limits of a particular mode and that, in this 
region, d([) = dl= 3X 10"' cgs. In accordance with the 
results of Sec. 1, we shall suppose that, since anhar- 
monicity does not accumulate, the detuning of the lower 
levels i s  restricted to values determined by the anhar- 
monic constants of the molecule. Moreover, the inclu- 
sion of rotations and, consequently, the possibility -- of 
vibration-rotation transitions without a change in the 
rotational energy, or  with a change by i 2BJ in this en- 
ergy, leads to an increase by a factor of 3 in the level 
density for a given value of J. The maximum detuning 
A from resonance i s  A = 6/6, where 5 i s  the separation 
between levels within the band, calculated in Sec. 1. 
For molecules such as SF, and SiF, the value of A does 
not exceed 1-2 cm-'. It is important to note that the 
choice of the value of 3 is dictated by the laser field fre- 
quency and its variation within the linear-absorption 
band may lead to a substantial reduction and, possibly, 
complete compensation of detuning for several low-lying 
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levels.c51 The range of values of J covered by the field 
is, clearly, determined by the ratio n, - E ~/BJ .  

However, even when anharmonicity is not compensated 
on the lower levels, the latter can be efficiently tra- 
versed a s  a result of the tunneling mechanism. Accord- 
ing to (22) (Sec. 2), the tunneling time is determined by 
the probability of finding the system in the nth level and 
the rate of transition to a higher state: 

The necessary condition for efficient traversal of the 
lower detuned levels in this case is that this time must 
be of the order of the laser  pulse length. When r,= 10" 
sec, A = 1  cm", &= lo-'&, and n=5,  the probability of 
traversing the set of detuned levels i s  close to unity 
when the intensity exceeds the threshold value I,, =20 
MW/C~ ' .  For intensities below this value, the proba- 
bility of traversing the set of detuned levels is propor- 
tional to 1"". 

Further increase in the quantum number due to an in- 
crease in the level densitycs1 and, consequently, in the 
probability of formation of random Fermi resonances 
between levels in a given band and those corresponding 
to other modes and composite vibrations, results in a 
reduction in detuning and the formation of a quasicontin- 
uum. The transition dipole moment in the quasicontin- 
uum, including the Fermi resonances, can be esti- 
mated from the expression 4 =xd,/w = lo-'&, where x 
is the intermode anharmonic constant. Using (25) and 
restricting the energy takeup time to the laser pulse 
length r,, we can estimate the number of absorbed pho- 
tons from the formula 

For a pulse intensity of 10 h4w/crn2 and r, = 10" sec, we 
have N = 150. This is in agreement with experimental 
data on the dissociation of molecules during the excita- 
tion of degenerate  vibration^.'^' These estimates also 
show that, even for intensities 1 = 10 IvIw/cm2, the pro- 
cess of cascade takeup of energy by molecules with vi- 
brational degeneracy is very efficient. The net result 
is that the molecules take up a very large amount of en- 
ergy (15 eV), much greater than the dissociation energy. 
However, in all probability, the breakup of the molecule 
is not at all a trivial problem. In fact, experiments on 
the dissociation of SF, c51 show that the enrichment coef- 
ficient is very dependent on intensity (1') and this cannot 
be explained within the framework of the above energy 
takeup model. It would appear that, to explain this fact, 
one must consider the behavior of the molecules in the 
upper vibrational states. 

In conclusion, let us consider a possible mechanism 
for the dissociation of a highly excited molecule in a 
laser field. We shall  confine our attention to the disso- 
ciation of a molecule into two fragments. The vibra- 
tional energy of a molecule is then given by 

where E ~ , ~  is the vibrational energy of the first  and sec- 
ond fragments, respectively, and c,, is their kinetic 
energy in the center of mass system. For a bound state, 
&,,,< 0 and dissociation is not possible. The kinetic en- 
ergy deficit can be compensated through the absorption 
of a photon of energy Aw, and the kinetic energy then be- 
comes of the order of Aw. The dipole moment for a 
transition to a singlet state can then be estimated from 
the formula 

where the wave function in the free state is $,- v-'I2 and 
the wave function for the bound state is $,-Y-~"; V is 
the quantization volume for translational motion, Y i s  
the amplitude of the molecular vibrations, d =e?, and e 
is the effective charge of atoms in the molecule. This 
yields I dl - er5/'~-"'. In a laser field, the rate of tran- 
sitions to the free states is w =E"d s EAn, where An - E d~mw/A'c is the number of free states "covered" 
by Stark broadening, and rn is the reduced mass of the 
fragments. The final estimate for the dissociation prob- 
ability is 

The molecule will dissociate during the pulse length T, 

provided the energy density in the laser  pulse satisfies 
the condition 

For r=O.5 A, m = 1 0 - ~ ~  g, W = I O ~ ~  sec", and e=4.8 
x 10" cgs, this is equivalent to the following order of 
magnitude result 

We note that we have obtained only the lower limit for 
the threshold of instantaneous dissociation of an excited 
molecule in a laser pulse. In general, the threshold 
may, in fact, be higher if the effective charge e and the 
vibration amplitude Y a re  somewhat lower than the val- 
ues adopted above. 

Thus, the above qualitative analysis suggests an addi- 
tional dependence of the dissociation rate on laser field 
intensity. 

The authors are  indebted to A. M. Prokhorov fo r  his 
attention and interest in this work. 
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Effect of coherent radiation on the translational motion of 
atoms 
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(Submitted July 8, 1976) 
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We consider the action of a traveling monochromatic wave on freely moving atoms having a transition that 
is at resonance with the light (between levels 1 and 2). A direct solution is obtained for the self-consistent 
quantum problem of the simultaneous effect of the field on the internal and external (translational) degrees 
of freedom. It is established that the effect of motion on the periodic variation of the populations of levels 
1 and 2 (nutation) reduces to averaging the known solution (without allowance for the motion) over the 
momentum distribution, the form of which is the same as the initial one but the center of which is shifted 
by half the momentum of the traveling-wave photon. It is shown that if the momentum distribution is so 
narrow that the spread of the Doppler shifts is small in comparison with the nutation frequency, then the 
initial coordinate wave packet is divided by the light into two packets with different velocities, of which 
one spreads out more slowly than in the absence of the action of light, while the other spreads more 
rapidly. The conditions under which the spreading of the first packet is anomalously slow are obtained. 

PACS numbers. 32.80. --t 

1. INTRODUCTION transitions on the translational motion of the atoms. 

Monochromatic radiation that is at resonance with one 
of the atomic transitions causes periodic changes (nuta- 
tion) in the populations of the levels that a r e  included in 
the process. The dynamics of this process has been 
thoroughly investigatedc'-" neglecting the influence of 
the translational motion of the atom on the nutation and 
the effect of the nutation 0x1 the motion. The presence of 
translational motion leads to averaging of the nutation 
process over the distribution of the frequencies of the 
atomic transitions, which is the result of the Doppler 
shift. However, the initial momentum distribution, 
which is responsible for the Doppler broadening, is al- 
tered by the interaction, since the light-induced transi- 
tions between the resonant terms change in the momen- 
tum of the atom. In fact, the form of this distribution 
can be determined only by directly solving the self-con- 
sistent quantum problem of the simultaneous influence 
of the field on the internal and external (translational) 
degrees  of heedom. The solution of this prablem makes 
it possible not only to determine the influence of the 
translational motion on the dynamics of the nutation 
transitions, but also to describe the reaction of these 

In addition to the general physical importance of a 
rigorous solution of the problem of resonant interaction 
of light with atoms, this interaction i s  of interest also 
for some applications of laser  optics. We have in mind, 
in particular, acceleration of atoms by resonant radia- 
tion, [s-101 which makes it possible to separate from 

atomic beams particles that a r e  at resonance with the 
light field. 

We consider in this paper the effect of a traveling 
monochromatic wave on freely moving atoms that have 
a transition resonant with the light. I t  is established 
that the effect of the motion on the light-induced transi- 
tions between two nondegenerate levels reduces to an 
averaging of the solution of the known nutation problem 
over the momentum distribution, the form of which is 
the same as the initial one, but the center i s  shifted by 
fik0/2 (tilt0 is the momentum of the traveling-wave pho- 
ton). - We-obtain the time evolution of the shape of the 
wave packet. It i s  shown that in the case  of a sufficiently 
narrow initial momentum distribution, when the Doppler- 
shift spread due to the momentum uncertainty is small 
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