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Collisions of identical atoms in a strong resonance radiation field E,cosot for which the period of 
oscillation of an atom in the field is comparable to the collision time of the atom are considered. The 
problem of the absorption of light in such collisions is reduced to the problem of inelastic transitions in a 
three-level compound system "two atoms + electromagnetic field." Probabilities and cross sections for 
inelastic scattering are calculated for transitions between levels of such a system in two limiting cases-the 
impact case (rapid collisions) and the static case (slow collisions). In the general case these cross sections 
depend nonlinearly on the intensity of the field E,. For values of E, which are small compared to a 
certain critical value E,' the results agree with the well-known linear theory of resonance broadening. For 
E,>E; a decrease in absorption (with increasing E,) is observed in the wing of the l i n e t h e  medium 
becomes "more transparent." The kinetics of absorption of light in a medium of identical atoms are 
considered taking into account collisions and inelastic spontaneous relaxation. The principal characteristic 
feature of the kinetics is the nonlinearity with respect to the occupancy by the atoms of the levels of the 
compound system. Stationary solutions are investigated. The results obtained are of direct interest for the 
observation of nonlinear effects both in the kinetics of light absorption, and also in the scattering of 
atoms, since these effects appear already in moderate fields E;- lo4-10' V/cm. 

PACS numbers: 34.10. + x 

$1. INTRODUCTION Taking into account the effect of the EM field on the 

The problem of resonance broadening of spectral lines Process means that we are 

and the problem associated with i t  of collisions of iden- essentially with a nonlinear theory of resonance broaden- 

tical atoms has been repeatedly discussed in the litera- ing in which the atomic scattering cross  sections de- 

ture (cf., for example, the reviewc']). From the most pend on the intensity Eo of the EM field. For structure- 

recent papers on this subject we draw attention to arti- less perturbing particles the nonlinear theory of broad- 

clesc2*31 in which the cross sections for resonance scat- ening was developed inc5-81. The distinctive features of 

tering and the line shape of the radiation in a medium of the case under investigation of identical particles a r e  

identical atoms have been obtained in the most consistent associated with the existence of "double resonance": in 

manner. the system "atom +EM field" and in the system of two 
atoms. The fact that both colliding atoms possess in- 

The process of resonance collision and light absorp- 
tion a r e  usually discussed separately: a t  f i rs t  the scat- 
tering cross sections a re  calculated and they a re  then 
utilized in the equations for the kinetics of light absorp- 
tion in the medium. Such an approach is justified, a s  
can be easily understood, for sufficiently weak electro- 
magnetic (EM) fields which do not affect the process of 
atomic collisions. In strong fields this approximation 
breaks down. We estimate the order of magnitude of 
the EM field E t  a t  which the events of absorption and 
collision can no longer be separated. In order to do this 
we compare the characteristic atomic collision time 
T-~,,,/V with the period T of oscillations of the atom in 
the EM field (p,,, is the effective impact parameter for 
the collision, v is the velocity of the atoms). In the 
case of a dipole-dipole interaction between atoms V - d2/p3 (d is the dipole moment for the transition) the 
characteristic collision radius is equal to p,,, - d/fi 
(the Weisskopf radius"p4') from which we have T-d/v3I2. 
Comparing T with the period of oscillation of the atom 
in the EM field T - (d~,)- '  we obtain the magnitude" of 
E,*: 

Assuming (in atomic units) d -  1, v - lo-', we obtain 
E: - 10" - lo4  ~ / c m - a  value easily attainable in laser 
physics. 
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- 
ternal structure brings the given problem closer to the 
so-called radiation collisions. This means, in par- 
ticular, that there is no sharp distinction between 
broadening (optical) and radiation collisions. 

Below we consider collisions of identical atoms in a 
monochromatic (laser) field E, coswt the frequency w 
of which i s  close to the frequency wo of a transition in 
the atom s o  that 

The effective ranges of interaction p,,, and the veloc- 
ities of the atoms a r e  such that in the collision process 
one can neglect the spontaneous relaxation of atoms and 
the spatial inhomogeneity of the field which is legiti- 
mate when 

where y is the radiation width of the upper level, X is 
the wavelength of the radiation. 

The atomic collisions a r e  assumed to be binary @air) 
and this is valid under the condition 

where N is the density of atoms. Within the framework 
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of the limitations indicated above only effects linear in 
the density of the broadening particles N a r e  taken into 
account. This means, in particular, that the quasi- 
static distribution of intensityc1p41 can be realized only 
in the remote (binary) wing of the line. 

In this paper we shall be interested in the main quali- 
tative regularities of resonance broadening in a strong 
light field. Therefore a t  the basis of the present in- 
vestigation lies the simplest two-level model of an atom 
widely used in laser  physics. [lo] In actual fact a t  least 
the excited state of atoms is degenerate with respect to 
the component of angular momentum. A generalization 
of the corresponding results taking such degeneracy 
into account does not encounter any difficulties in prin- 
ciple, even though it  does significantly complicate quan- 
titative calculations. Therefore we shall take i t  into ac- 
count only in those cases when it  leads to new qualita- 
tive consequences (cf., § 4). In other cases we shall 
neglect it. 

82. THE BASIC SYSTEM OF EQUATIONS FOR 
ATOMIC COLLISIONS IN  AN EM FIELD 

The wave function \k for a pair of interacting atoms 
X and Y in an EM field satisfies the Schradinger equa- 
tion with the Hamiltonian 

where go, and &, are  the Hamiltonians for the free 
atoms X and Y, P, and P,, a r e  their interactions with 
the EM field, cxy(t) describes the interaction of the 
atoms with each other. 

Restricting ourselves to the dipole approximation we 
have 

VFx=-dxEo cos at, I/*,,=-dyEn cos at, (2.2) 

where R2(t)2 R;, +v2 t is the distance between the 
atoms, while dx and d, a r e  the operators for the dipole 
moments of the atoms. 

When the condition (1.2) is satisfied the wave function 
9(t)  can be sought in the form 

We have introduced the notation X and Y distinguishing 
between the atoms only for the convenience of the argu- 
ment. In what follows one should have in mind that X 
and Y a re  identical atoms. The functions QOx and 
correspond respectively to the lower and the upper 
states of the atom. 

It is convenient to introduce the coefficients 

The coefficients c2 and c, correspond (after being sub- 
stituted into (2.4)) respectively to the even and the odd 

combination of the atomic wave functions $ox$ly and 

Qix *or. 

Substituting (2.4) and (2.5) into the Schrirclinger equa- 
tion we obtain a system of equations for the coefficients 
ci: 

~ , = - i ~ o ~ ~ + 2 " ' i ~ ~ c ~ ,  E2=21hi (VD~c l+V0cI )  -iV ( t )  cI,  

~ 3 = i ~ ~ c 3 + 2 C i ~ O ' ~ Z ,  C , = i ~ ( t ) c . ,  
(2.6) 

where Vo = do,- Eo/2 and V(t) = 2  1 I2/~'(t). 

It can be seen that the amplitude of the odd state c, 
is not connected with the other amplitudes. The system 
(2.6) corresponds to the model of three levels with en- 
ergies + Aw, 0, - Aw, which a r e  described respectively 
by the amplitudes cl, c2, c,, and c,. The levels cl and 
c3 a r e  coupled to cz by the electromagnetic interaction 
Vo, while the interatomic interaction V(t) is diagonal. 

If we assume that the interaction V(t) =O, then we ob- 
tain a system of equations with constant coefficients the 
eigenvalues of which determine the levels of the com- 
pound system "two atoms + EM field. " We now formu- 
late the main assertion: transitions between these new 
levels of the compound system a re  responsible for light 
absorption. These transitions appear when the interac- 
tion V(t) is switched on between the atoms, i. e., they 
a re  brought about by optical collisions (OC) of the atoms 
atoms. The assertion which we have just made can be 
easily verified by calculating the change in the average 
energy of the atoms in the EM field before and after a 
collision, cf., ''I and § 3. 

We obtain the basic system of equations which de- 
scribes transitions between levels of the compound sys- 
tem brought about by collisions. Setting V(t) =O, we 
find the matrix A(Eo, Aw), which diagonalizes the sys- 
tem (2.6) and which realizes the transformation to the 
compound system "atom + EM field": 

It can be easily verified that the matrix 2 is unitary: 
a' = 1. The energy eigenvalues Zi of the compound sys- 
tem a r e  equal to 

We now transform the complete system (2.6) with the 
aid of the mat r ixd  introducing the new amplitudes b in 
accordance with the relation 

Substituting (2.9) into (2.6) we obtain after some un- 
complicated transformations 
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I jn FIG. 1. The level scheme for the compound 
4 w )  system "two atoms + EY field." Arrows in* 

1 I 1. dicate possible collision transitions. 

4- 

where /3= 2 I V ~ / A W  I ,  

0 0 0 

0 0 -8 

b,(t )=b,( -m)exp i V ( z ) d z  . t i  -- (2.11) 

Equations (2.10) and (2.11) a re  the basic equations on 
the basis of which we shall be able to calculate theprob- 
abilities of transitions and, consequently, the absorp- 
tion of light in the OC process. Thus, the problem of 
absorption (emission) of light in a collision i s  reduced 
to the problem of inelastic transitions in a three-level 
compound system "two atoms + EM field. " We note that 
in the case of broadening by external (structureless) 
particles the corresponding system was a two-level 
one. ''I The scheme of levels of the system (2.10) and 
the possible transitions within i t  is shown in Fig. 1. 

$3. THE SCATTERING MATRIX I N  A COMPOUND 
SYSTEM. CHANGE I N  ENERGY AS A RESULT OF 
A COLLISION. 

V ( t )  & + i  - 
1+B' 

We introduce the evolution operator i(-m, t) in the 
compound system: 

Here i ( - m )  a r e  the amplitudes prior to the switfhing on 
of the interaction ~ ( t )  (v(- a )  = 0). The matrix ~ ( t )  is 
equal to 

B s 
)fT 

-,1 

-- is" B 2 '  B -- 
2 f2 2 

The matrix S is unitary (SS+= 1) and satisfies the ini- 
tial conditions: S(-m, -w) = 1. 

- 
b (2.10) 

The squares of the corresponding nondiagonal matrix 
elements of the scattering matrix S(-m, +m) define, evi- 
dently, the probabilities of inelastic transitions between 
the levels of the compound system. In order to relate 
these probabilities to absorption of light i t  is necessary 
to calculate the change in the energy of the atoms in the 
EM field after a collision. 

We shall be interested in the internal (electronic) en- 
ergy g of the atoms averaged over a period of oscillation 
of an atom in the EM field 2rt2-'. It is not difficult to 
express i t  in terms of the initial coefficients c ,  (2.5), 
and then, utilizing (2.9) in terms of the coefficients b,: 
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where 8, and g1 a r e  the energies of the atom in the lower 
and upper states ( ~ 4 ,  -go = wo). 

The energy A 8  absorbed (or emitted) in a collision is 
equal to the difference between average (over a period) 
energies after and before a collision: 

Expressing 8 in terms of the amplitudes b frflm (3.3) 
and taking into account the relationship 6(+w) =S(- w, 

+m)g(-w) we can express A g  in terms of the elements 
of the scattering matrix S and the initial amplitudes 
b(-m) for atoms in an EM field. We now take into ac- 
count the fact that the atoms X and Y begin to interact 
with the EM field a t  random times t, and t, (since they 
a r e  situated randomly in the gas). Only the initial am- 
plitudes b,(-m) depend on the instants of switching on 
t, and t,. In order to obtain this simple dependence it 
is sufficient to compare the expressions for the wave 
function @(t) expressed on the one hand in terms of the 
coefficients bi(t), and on the other hand in terms of the 
products z,b,(t, t,); z,b,(t, t,) of the wave functions of an 
atom in an EM field that has been switched on respec- 
tively a t  the instants t, and t, (cf., '"I, the problem as-  
sociated with § 40). Then by averaging the quantity A% 

over the instants of switching on t, and t, we obtain2' 

The physical meaning of (3.5) is obvious: the ab- 
sorbed energy is proportional to the transition probabil- 
ity (for example, IS,, 1 ') multiplied by the difference in 
the populations of the initial and the final states (for ex- 
ample, bi - bf). 

With the aid of (3.5) i t  is not difficult to write the ex- 
pression for the power &,, absorbed in collisions. In- 
deed, the quantities I bi 1 ' a r e  the probabilities of find- 
ing the compound system in corresponding states (Fig. 
1). If we express these probabilities in terms of the 
densities NI and N,,  of a single atom in an EM field in 
levels I and I1 with the aid of the relations 

then the energy absorbed by the atoms per unit volume 
per unit time because of OC will be obtained by multiply- 
ing (3.5) by N'V and by averaging over a l l  velocities and 
impact parameters: 

Here N ,  and N,, a r e  the densities in the levels of the iso- 
lated atom in an EM field, while W,, a r e  the ra tes  of the 
corresponding transitions: 

w,~= (uJ Znp dpt~ ,~(p .  u) 1%)  = < u 0 3 ~  (3.8) 

((. . .), denotes averaging over the velocity). 
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We note that, just a s  the cross sections o, 
(and the rates w,) for the transitions depend not only on 
the characteristics of the colliding atoms but also on 
the characteristics of the external laser field (E, and 
Aw). 

The fact that Q,, vanishes as Aw - 0 does not mean 
that there is no absorption a t  resonance. As was shown 
inc7] (cf., also § 5) the total absorbed power Q is made 
up of two terms: Q,, and Q,,-absorption due to in- 
elastic (spontaneous) relaxation. For  Aw = O  and Vo >> y 
(y is the maximum width of the levels) the medium be- 
comes saturated, the role of absorption Q,, associated 
with elastic relaxation diminishes and the absorbed 
power is determined entirely by the inelastic relaxa- 
tion, cf., [lo]. 

$4. THE IMPACT AND THE QUASISTATIC 
APPROXIMATION. NONLINEAR EFFECTS I N  
SCATTERING 

The system (2.10) represents a typical three-level 
system in the theory of atomic collisions. There exists 
no general solution of it and, therefore, we restrict  our- 
selves to an investigation of two basic limiting cases: 
rapid and slow collisions. 

The rapid collisions correspond to the criterion 

which serves a s  the basis of the impact approximation 
in the theory of broadening. C4971 This criterion indi- 
cates that during the collision time the atom "does not 
have time" to oscillate in the EM field. This means in 
turn that the events of collision and absorption here can 
be separated. Therefore the cross  sections for scat- 
tering in the impact approximation do not depend on the 
parameters of the EM field and coincide with the cor- 
responding results of the usual impact theory. C41 This 
can be easily verified if one neglects in the solution of 
(2.10) the terms containing the quantity 51. 

Of the greatest interest (from thepoint of view of the 
effects under discussion here) is the case of slow col- 
lisions which correspond to the criterion inverse to 
(4.1). Here, however, one must take into account the 
nature of the space quantization of the atoms. Indeed, 
in the case of a slow collision of atoms in an EM field 
there a r e  two defined directions in space: the vector of 
the EM field E, and the vector of the interatomic dis- 
tance R. Below we shall consider the case 

The criterion for the slowness of collisions has the form 

The principal feature of the problem when the condi- 
tions (4.2), (4.3) a re  satisfied can be easily discerned 
directly from the system (2.10). Indeed, for p =  I v,/ 
AW l = 0 and with a gradual increase in V the two levels, 
1 and 3, of the compound system (Fig. 1 )  remain un- 

changed, while level 2 is linearly displaced with in- 
creasing V. It is clear that for a certain value of V - 51 = Aw a point of intersection occurs between level 2 
and level 1 (or 3). These points according to the Lan- 
dau-zenercnl theory of inelastic transitions a r e  the fac- 
tor  responsible for transitions in the compound system. 

As has been noted already, in the case of slow colli- 
sions the nature of the quantization of the atom i s  sig- 
nificant, and, therefore, i t  is necessary to generalize 
the initial system (2.6) taking into account the degener- 
acy of the states with respect to the component of angu- 
lar momentum. We set  the angular momentum L of the 
upper state to be equal to unity, and of the lower one to 
zero. Then the amplitudes ci in (2.6) will depend on the 
quantum numbers of the components of angular momen- 
tum. Thus, for example, c,"R denotes the amplitude of 
the state in which the atom X has the component of angu- 
l a r  momentum m, while the atom Y has the component 
k. 

Introducing further the symmetric and the antisym- 
metric combinations of the amplitudesg' 

We obtain instead of (2.6) two systems of equations-the 
symmetric one: 

and the antisymmetric one: 

The matrix of the interatomic interaction in the sys- 
tem of coordinates with the Oz axisllR has the form 

I(, 12 -2 0 0 
v,,. ( t )  = 2 L -  

R S ( t )  1 0 0 1 1  O O ' 

When condition (4.2) is satisfied in order to obtain the 
levels of the quasimolecule composed of the pair of 
atoms we set in (4.5), (4.6) the interaction with the EM 
field V,, equal to zero. Then the levels of the compound 
system a s  functions of V will have the form shown in 
Fig. 2. For Aw <O the levels cl and c g  change places. 

We obtain the transition probabilities w at  the points 
of intersection by means of the Landau-Zener formulac111 

Here Vo is the nondiagonal matrix element for the transi- 
tion between the levels under consideration; ~ ( t , )  is the 
derivative of the potential at the point of intersection tk 
determined by the condition 

Ido,"'12 Id "I' " i 
V ( t k ) = T = A w ,  R k = ( e )  , tk=-(R2-pl)"'. (4.9) 

R* 
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FIG. 2. Intersection of levels of a compound system. 

The values of the nondiagonal matrix elements of Vo 
for the components of angular momentum m = O  and m 
= * 1 are  equal to (OzllR) 

When the level 2 intersects with the system of degenerate 
levels c, i t  can be easily shown that the nondiagonal ma- 
tr ix element should be replaced by the effective matrix 
element 

We consider the geometry of the collision of the atoms 
in the EM field (Fig. 3). The field Eo is at  a.n arbitrary 
angle 0 to the normal n to the collision plane defined by 
the vectors p and v. The condition for the intersection 
of the levels (4.9) is realized a t  two points: R, when 
the atoms approach each other and Rk+l when they a re  
separating. The angles I9', O", formed by Eo with R, 
and R,,, a re  different, and, consequently, the nondiag- 
onal matrix elements (and together with them the tran- 
sition probabilities) a re  different at the two points. 
Therefore the total transition probability in passing 
through the two points of intersection i s  equal toC121 

where w, i s  determined by (4.8). 

Taking the geometry of the collision into ~ccount  the 
matrix elements (4.10) can be written in the form 

Id I' I V:'O~~ = --%EOZCOs2 
3 

ldo,12 EO, sinz (p cos cp*vtb sin 9)' =- 
3 RkZ 

(4.12) 

- (p cos cp*vtr sin cp)' 
3 2 R*? 

(4.13) 

where the signs i correspond to the points R, and Rk+l 
(Fig. 3). 

In order to obtain the total transition probability we 
have to average (4.11) over all the angles O f ,  19" (or 8, 
cp), and also over the impact parameters p. The quan- 
tities averaged in this manner obviously determine the 
cross sections for inelastic transitions between sub- 

levels of the compound system. Thus, for a transition 
between the energy levels t;., and cl in Fig. 2 we have 

1 22 (1-2) (t COS' cp+ (I-t)sinf cp) 
--Jdcpexp[-. 

I F t  
1). (4.15) 

2n 1 

Similarly for the cross sections u;., and a',.,, we find 

(4.16) 
The functions A,(z), A2(z) and A3(z) behave alike for 

z < < l :  

For z >> 1 the function A1(z) plays the principal role: 

11, (z) e 4  (n/z) %/x, ZWI,  (4.18) 

while the functions A2(z) and A,(z) a re  of a higher eider 
of Smallness (A,(z)m l/z and A3(z) cc e - L ) .  

As follows from (4.14)-(4.18), the cross  section for 
an inelastic transition between levels of the compound 
system (and thereby also the absorption of light) under- 
goes a qualitative change for fields Eo greater than a 
certain critical field E,* which is equal, according to 
(4.14) and (4.16), to 

Setting Aw - v/p,,, " 7 we obtain the estimate (1.1) 
given above. 

In weak fields Eo << the absorption of light i s  of the 
usual nature, which can be easily obtained with the aid 
of (4.17): 

i. e., the absorption is proportional to the intensity of 
light (E;) and has the usual spectral distribution for 
resonance broadening in the wing of a line (m ~ / A W ~ ~ ' ~ ) .  

For resonance broadening the distribution in the 
"negativeJJ region (Aw <O) is of the same nature a s  in 
the region Aw >O. For other broadening mechanisms 
the line can have a sharp asymmetry associated with 
the exponential falling off of the "negative" wing (cf., 
and the literature quoted there). We note that this fall- 
ing off is of the same nature as the exponential falling 
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off of the transition probability between two noninter- 
secting levels in the case of slow collisions (i. e., in the 
case of a large value of the Massey parameter ~Aw/v). 
This result was obtained inc6' within the framework of 
the single-particle Spitzer approximation. A more rig- 
orous calculationc'~"' shows that the terms neglected 
in this case a r e  of a higher order of smallness in terms 
of the binary parameter Np :,, << 1. 

For strong fields E, >> 6 the absorption diminishes 
with increasing E,. Indeed, with the aid of (4.18) we 
obtain 

The dependence om l / ~ ,  is typical for the behavior of 
the nonlinear cross section in the wing of the line. C12981 

It is of interest to note that (4.21) does not depend on 
the frequency detuning Aw. The specific nature of the 
resonance form of the interaction manifests itself in 
this. 

85. KINETICS OF ABSORPTION OF LIGHT IN A 
MEDIUM 

In going over to the calculation of the kinetics of light 
absorption we note the following. Our investigation is 
based, followingc7', on the elementary equations de- 
scribing the balance of populations in the compound sys- 
tem "atom + EM field" utilizing transition probabilities, 
the absorbed energy and other quantities averaged over 
a period of oscillation of the atom in the EM field. In- 
deed, the time evolution of an atom is of a more com- 
plex nature associated with the quasiperiodic variation 
of the populations of the levels of the atom in the field. 
In the case of an analogous problem in NMR this was 
the first  shown inc151. A detailed analysis of the time 
evolution of a two-level system in an EM field has been 
carried out inCl8'. Therefore in what follows we re-  
strict  ourselves to an investigation of the rougher char- 
acteristics, and in particular of the stationary absorbed 
power in a medium of identical atoms. 

In order to obtain a stationary picture i t  is necessary 
to include in our investigation the processes of inelas- 
tic (for example, radiation) relaxation between the 
levels of an atom. Let the rates of transition between 
these levels be characterized by the relaxation con- 
stants y,, and y,, (for spontaneous transitions y,, 50). 
As has been pointed out already in (1.3), we shall ne- 
glect relaxation in the process of collision. For the 
evaluation of absorbed power i t  is necessary to know 
the densities N, and N,, associated with the levels I and 
I1 of the compound system "atom + EM field." These 
densities a re  determined by the balance between tran- 
sitions brought about by inelastic relaxation and by col- 
lisions. For the inelastic relaxation we have the equa- 
tionc7' 

where y,, , and y, ,, a r e  the rates of inelastic transition 
in the compound system "atom + EM field": 

In order to be able to state the ra tes  of transition due 
to collisions we note the following. We know the transi- 
tion probabilities in the system "two atoms + EM field, " 
while in kinetics i t  is necessary to know the transitions 
in the system "one atom + EM field. " The problem is 
solved with the aid of the connection between the ampli- 
tudes of the system "two atoms + EM field" with the den- 
sities N, and N,, characterizing the levels of the system 
"atom + EM field. " For  example, the population N,, a s  
can be easily seen from Fig. 1, is equal to 

Formula (5.4) can be easily verified by the substitution 
of (3.6) and taking into account the equation 

Starting from (5.4) we obtain for the change AN, in 
the population of the lower state a s  a result of one col- 
lision event (OC) we obtain 

while the rate of change in the population of the level 
I is equal to 

where W,, a r e  the rates of transition: 

(the symbol (. . .),,, denotes averaging over the distribu- 
tion of velocities of the particles and the impact, pa- 
rameters). 

Combining (5.1) and (5.7) we obtain the desired equa- 
tion for the balance of the occupancies in the system 
"atom + EM field" which takes into account inelastic 
relaxation and collisions: 

dNI/dt=O=y~r INII-TI IINI 

-'l?(Nr-Nn) {NrrWtz+N~W~zfZlYWi. 
(5.9) 

Equation (5.9) in the general case is nonlinear in con- 
t ras t  to the case of broadening by structureless par- 
ticles. The nonlinearity of the equation is associated 
with the very formulation of the problem: the transfer 
of excitation between atoms depends on the density of 
the excited atoms, i. e., on the absorption which, in i t s  
turn, is determined by the collision transfer of excita- 
tion. Such a formulation differs from the usual treat- 
ment of resonance broadening where the density of emit- 
ting excited atoms is essentially an independent param- 
eter. 

In the case when the transition probabilities in the 
system "two atoms + EM field" (Fig. 1) W,, and W,, a r e  
equal, Eq. (5.9) becomes linear: 
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Qoc=2yto~Nnxx (a, A), 

We investigate the stationary solution ( 5 . 9 )  which cor- 
responds to the case dNI/dT =O. In the impact limit 
(8 4 )  the rates of transitions Wl, and W,, a re  equal and 
we arrive at linear kinetics (5 .10) .  This case differs 
from the case of broadening by structureless particlesc7] 
only by a redefinition of the frequency of optical col- 
lisions. Therefore the corresponding results coincide 
withC7] (8 4 )  and we shall not dwell upon them here. 

We examine in detail the quasistatic limit correspond- 
ing to conditions (4 .2 ) ,  ( 4 . 3 ) .  Here in accordance with 
the results of § 4  the rate of transition W,, vanishes 
while the rates W12 and W,, in the general case a re  not 
equal to each other. We introduce two characteristic 
dimensionless parameters: 

characterizing the degree of nonlinearity of the kinetics, 
and 

characterizing the ratio of inelastic relaxation to col- 
lision broadening. Below we shall consider the case of 
radiation relaxation when yo, =O. When condition (4 .2 )  
i s  satisfied i t  follows from (5 .2 ) ,  ( 5 . 3 )  that for the case 
under consideration 

' f r ~  1 ~ 7 1 0 ,  71 I I = ~ O I = O .  

Taking (5 .11)  and (5 .12)  into account the stationary 
case of equation ( 5 . 9 )  can be written in the following 
form 

where n, =N,/N i s  the density in level I in units of den- 
sity of perturbing particles N. 

The solution of (5 .13)  has the form 

(5 .14)  
The sign before the square root in (5 .14)  i s  chosen to 
be the minus sign from the condition of finiteness of n, 
for A = 1  and the requirement n, 2 0 .  The solution exists 
if the descriminant A in (5 .14)  i s  greater than zero, 
i. e. 

and this i s  satisfied for all c >O and A>O. 

It i s  not difficult to find the power Q,, ( 3 . 7 )  absorbed 
in collisions. Taking (5 .9 ) ,  (5 .5 )  and (5 .14)  into ac- 
count we have 

(5 .16)  
For absorption due to inelastic relaxation Q, ,  we write 

the expressionc71 

Then the total absorbed power Q i s  equal to 

We should remember that n,,(c,  X )  in (5 .18)  depends in 
accordance with ( 5 . 8 ) ,  (5 .12) ,  and (5 .14)  on the char- 
acteristics of the EM field Yo and Aw. 

We investigate limiting cases of formula (5 .18) .  Let, 
a s  i s  usually the case, the pressure broadening be large 
compared to broadening brought about by spontaneous 
decay. Then for fields Eo= E: (cf., (4 .19) )  the mag- 
nitude of the cross section i s  according to (4 .14)  of the 
order of n ~ :  and for the quantity c =c* (5 .12)  we ob- 
tain" 

In this case it  follows from (5 .14)  and (5 .15)  ( A -  1 ) :  

i. e., we obtain a result corresponding to saturation of 
the medium. 

The quantity c  can become large compared to unity 
in two particularly interesting cases: Eo << E$ and 
Eo>> E,*. In the first case utilizing (4 .17)  and taking 
into account (4 .14) ,  (4 .16)  and ( 4 . 9 )  we obtain A = 9 / 2 .  
In the second case utilizing (4 .18)  we obtain A<< 1 .  Then 
expanding (5 .16)  in a series for c >> 1  we obtain for both 
cases indicated above 

i. e., a result independent of A. 

Substituting (5 .21)  into (5 .18) ,  we obtain taking (5 .12)  
into account 

For Eo << E$ utilizing (4 .20)  we have 

where a, = 32n2/27.  Thus, for weak fields absorption 
is, as  i t  ought to be, proportional to the intensity of 
light v!, and the collisional and radiation widths a re  
simply additive. 

For E, >> E: utilizing (4 .21)  we obtain 
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It can be seen from (5.24) that in strong fields absorp- 
tion associated with collisions is reduced-the medium 
becomes more transparent, cf., C6-81. The transparency 
effect is the principal special feature of absorption of 
powerful EM radiation in the wing of the line. It is im- 
portant to note that the absorbed power Q for Eo>> E: 
is proportional to the temperature of the medium 
(m T"~), SO that this effect canbe utilized to determine T. 

The latter remark concerns the nature of approach 
to a stationary state. The nonlinearity of stationary 
equations noted above indicates that the very nature of 
approach to a stationary state will be different than in 
the case of linear equations. Without claiming to de- 
scribe a nonstationary solution in the general case we 
restrict  ourselves to the case of weak fields I AW I >> Vo, 
cf., (4.2), where we can count on approximate validity 
of the balance equations. 'I6] The nonstationary equa- 
tion for this case (cf., (5.13)) has the form 

where t' =NW3, t i s  a dimensionless time. 

The solution of (5.25) has the form 

For large times '(t' - m) the solution (5.26) goes over 
into the stationary solution (5.14). The characteristic 
time to reach stationary conditions is determined by 

This time, a s  follows from (5.15), depends on 
the parameters E and h, i. e., on the ratio of the relaxa- 
tion constants in the compound system. 

It can be seen from (5.251, (5.26) that the nature of 
the solution changes in going over to linear kinetics 
(h = 1). 

56. DISCUSSION 

We examine the principal results of the above investi- 
gation. First  of all  we note that the kinetics of light 
absorption developed for a compound system ($5) to- 
gether with the "dyamic" system (2.10) represent a 
closed formulation of a nonlinear theory of broadening 
for a resonant interaction. Its principal difference 
from the case of broadening by external particles'71 con- 
sists of the fact that the dynamic behavior of the system 
i s  described by a three-level scheme, while the kinetic 
equation for the absorption of light becomes nonlinear. 
These results refer to the simplest two-level model of 
an atom. Their generalization to a multilevel case 
taking the degeneracy of levels into account does not 
contain, a s  is clear from § 4, any difficulties of prin- 
ciple. However, taking degeneracy into account con- 
siderably complicates specific quantitative calculations. 

We touch still another aspect of the problem, viz., 
the scattering of identical atoms in a resonance EM 
field. This aspect was practically not discussed above, 
although corresponding results can be obtained on the 
basis of system (2.10). Indeed, in (2.10) there a r e  es- 

sentially contained potentials for the interaction of atoms 
with each other in the presence of an EM field. These 
potentials can be directly substituted, for example, into 
the quasiclassical scattering formula and one can ob- 
tain the corresponding cross  sections dependent on the 
intensity of the EM field. 

The problem discussed above is of direct experimental 
interest, since we a r e  dealing with a very simple sys- 
tem-a medium consisting of unexcited identical atoms. 
For the lasers  a t  present in existence apparently the 
most convenient media a r e  the vapors of alkali elements 
(Na, Rb, Cs) for which the transition from the ground 
to the f i rs t  excited state l ies within the range of laser 
frequencies. Here two types of experiments a r e  of the 
greatest interest. Firstly, i t  is possible to observe 
nonlinear effects in the absorption of light, particularly 
in the wing of the line (the effect of "the medium be- 
coming transparent, " § 4), directly when the gaseous 
medium is irradiated by a laser. Secondly, one can 
measure the scattering of atomic beams in the field of 
laser  radiation. The required values of the intensity 
of the laser  field can be easily estimated by means of 
formula (4.19). At the present time there exist experi- 
mental data of the first type obtained by A. M. Bonch- 
Bruevich and collaborators and reported in the re-  
viewL1". In these experiments inelastic scattering of 
laser  light was observed in rubidium and cesium vapors. 
The observations were made in the far  wings of reso- 
nance lines where the difference from the resonance 
nature of the interaction between atoms is already sig- 
nificant. At intensities of the laser field Eo-5x10' V/ 
cm a deviation from the linear dependence Q m  E i  in the 
direction of diminished absorption becomes noticeable. 
Although a direct comparison of these results with 
theory is premature, they indicate directly the existence 
of the effect itself-absorption of light in the process of 
collision of atoms. 

We note that the effects of interest to us of absorp- 
tion accompanying collisions manifest themselves usu- 
ally in the far  wings of spectral lines ~ w ~ v / ~ , , , - v ~ ~ ~ /  
d- T-I (cf., (1.1)) where the Doppler broadening is no 
longer significant (for example, the experiments men- 
tioned above correspond to moving out into the wing of 
the line by an amount of Ah-1000 cm-'). This state- 
ment can be easily checked by comparing the magnitude 
of the Doppler broadening Aw, - wo v /c  with the value of 
the inverse collision time 7"- ~ ~ ' ~ / d ;  under gas-kinetic 
conditions for v -  10' - 10' cm . sec-' and W, S 1015 sec-' 
(optical frequencies) the inequality Aw, T << 1 is satis- 
fied, which enables us not to take Doppler broadening 
into account. The simultaneous taking into account of 
broadening collisions and of the Doppler effect is con- 
sidered inc'8*191. 

The authors a re  grateful to S. I. Yakovlenko for valu- 
able discussions, to A. I. ~ u r s h t e r n  for critical com- 
ments and to V. I. Kogan for support. 

$'We set e = A = m = l .  
 he averaging being carried out over a period of oscillation 

of an atom in an EM field does not allow us in the general 
case to investigate the detailed time behavior of the popula- 
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tions of the atomic levels, which a r e  of a quasiperiodic na- 
ture. Therefore these results a r e  utilized below for obtain- 
ing the stationary absorbed power for  which the utilization 
of the averaged values leads, a s  was shown in'", to the well- 
known result of Karplus-Schw inger. 

"TO avoid misunderstandings we note that the amplitudes cy 
introduced here differ from the amplitudes (2.5). In order 
to  establish the correspondence between the systems of 
equations (2.6) and (4.51, (4.6) it i s  sufficient to neglect the 
difference in the states with different components of angular 
momentum. Then, evidently, c: , cT , c g  ( ~ 2 ~ 0 )  from (4.4) 
correspond to the amplitudes c2, c4 and c3 from (2.5). 

4 ' ~ e r e  and later we do not caryy out a consistent averaging 
over the velocity, assuming it ,  a s  i s  usually done in the 
theory of broadening, to be equal to a certain characteristic 
velocity of the Maxwellian distribution. 
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