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The formulas for the bremsstrahlung and pair production processes in lepton-nuclear collisions are 
extended to the case when these processes are accompanied by arbitrary excitation of the nucleus (or of 
any other target with a structure). Exact expressions are obtained, and approximations valid only at 
relativistic energies are made. It is shown by way of example that the nuclear electromagnetic form-factor 
is taken into account, the cross section for brernsstrahlung from a muon in a nuclear field decreases by 
1045%. 

PACS numbers. 25.30. -c 

I. INTRODUCTION 

It has become necessary of late to carry  out more 
accurate calculations of the cross  sections of a number 
of electromagnetic processes, primarily the cross  sec- 
tions for the production of pairs of charged particles 
when electrons o r  muons interact with atoms, a s  well 
as the bremsstrahlung cross  sections. This is caused 
mainly by two circumstances. First, certain experi- 
mental dataClg1 on the interaction of high-energy muons 
with nuclei in cosmic rays point to the possible exiu- 
tence of additional mechanisms whereby muons lose 
energy (assuming that the known loss mechanisms 
have been accounted for with sufficient accuracy). Sec- 
ond, a number of experiments a re  presently performed 
and planned for the purpose of verifying the validity of 
quantum electrodynamics and finding new particles (in 
particular, heavy leptons) in bremsstrahlung and elec- 
tromagnetic pair-production processes. c4'51 

versa1 in the sense that they do not depend on the tar- 
get mass; a l l  that matters is that there exists for the 
target a laboratory system (1. s. ) in which the target 
a s  a whole is at  rest. It i s  in this system that the cross  
section is calculated. The motion and interaction of 
the component parts of a complex target (electrons in 
an atom, etc.) is already accounted for in the depen- 
dence of Wl and W2 on q 2  and v (see the following text 
fo r  the notation), the determination of which is a differ- 
ent problem and is not considered in the present paper 
(exceptfor particular cases). This approach was proposed 
i n c 8 ~  , where the differential bremsstrahlung cross  sec- 

tion was obtained for the first  time in terms of W, and 
W2 (without integration over phase space). In the pres- 
ent paper we obtain, besides the bremsstrahlung cross  
section, also the pair-production cross  section, and the 
integration is carried out over those variables with re-  
spect to which it can be performed exactly. A transi- 
tion to the relativistic approximation is made. We con- 

The hitherto calculated bremsstrahlung and pair-pro- sider the particular case where the target is a screened 
duction cross sections pertain either to the case of a nucleus that interacts elastically, and show that allow- 
Coulomb field, o r  to interaction with a free electron ance for  the nuclear form factor decreases the muon 
(see the reviewc6'). The form factor of the nucleus is bremsstrahluw cross  section by 10-15°/0. 
taken into account approximately in the bremsstrahlung 
cross  section, [ ' v ~ '  but the method by which this account 
is taken, and accordingly the quantitative results, dif- 
f e r  strongly in different papers. Recognizing that the 
correction that must be introduced into the muon brems- 
strahlung cross  section because the nucleus is not 
pointlike can be relatively large, this question calls for 
a final solution. In addition to the fact that the nucleus 
is not pointlike, the cross section can also be influenced 
by other possible target-excitation channels, for ex- 
ample breakup of the nucleus, pion production, etc. 
(it is assumed, of course, that only leptons and y rays 
from the lepton parts of the diagrams of the process a re  
registered in the experiment). 

The known formulas for the bremsstrahlung and pair- 
production cross  sections a r e  generalized in the pres- 
ent paper to include the case of an arbitrary interaction 
with the target. This is attained by describing the tar- 

. get by means of electromagnetic structure functions Wl 
and W2 that depend on the momentun and energy trans- 
ferred to the target. The formulas derived a r e  uni- 

u 

To conclude this section, we note that we use in the 
main a covariant-integration t e c h n i q ~ e ~ ~ * ' ~ * ' ~ '  which is 
well known in applications to problems of this type. 
Therefore, some methodological aspects a re  either 
treated very briefly o r  omitted completely. They can 
be found in the cited references, particularly in the 
book of ~ a T e r ,  Katkov, and Fadin. 

II. PARTICLE PA1 R PRODUCTION 

1. The process is characterized by two block dia- 
grams (Fig. l) .  We consider f i rs t  the diagram I. Let 
particles with momenta PI and p, have a mass p (muons) 
and let an e+e- pair be produced. The c ross  section is of 
the form 

e6 E -- 1 1  d3p+ d'p- d3pr 
do, = - MaB'vK=PWpV --- (zn) 2[ ( p , ~ ) z - p l a ~ z l ' l s  q'kk 2 2e+ %e- Ze, , (1) 

where W,, is the hadron tensor describing the lower 
vertexce': 
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FIG. 1. 

M,": is the Compton tensor: 
(2) 

and finally, the tensor K,, describes pair production: 

Expression (1) can be rewritten in the following form, 
by introducing two additional 6-functionsLB1: 

where E: is the positron energy in the 1. s. The use of 
gauge invariance leads to the following expression for 
the contraction of the tensors in (6): 

In the contraction (8) (but not in the expressions (7) 
and (9)) we have changed over to the 1. s., in which the 
subsequent calculation of the cross section will be made. 
The calculation of T, and T2 yields (k* = (k2 + w2)'I2 ) 

To calculate the cross  section i t  is necessary to know 
also the components and the contractions of the Comp- 
ton tensor which enter into (8). Calculating the traces, 
we obtain (v = q,,) 

The expression for  ~ ' a ,  is obtained from M i l  by mak- 
ing the substitutions q2 - k2, w - V, - H 1- Ha. 

We now make in (6) the following change of variables: 

dak cPp, np' - -+ -do  dv dq' dx,dx, ,  
2 0  2e2 4p11A 

Taking (6), (8) and (12) into account, we obtain the fol- 
lowing expression for the c ross  section in the 1. s. : 

2. We now discuss the question of the integration 
limits. We integrate in the following sequence: with 
respect to x,, and then with respect to x2, q2, V, and 
k2. The limits with respect to x, a r e  determined by 
the zeroes of the function A. "' We determine the lim- 
i t s  with respect to x2 and q 2  by starting from two re-  
quirements: in the 1. s., the vector k is directed along 
p, while the vector p2 i s  directed along P'. This leads 
respectively to the following equations (q* = (q2 + v2)'I2): 

The integration region specified by these equations is 
shown in Fig. 2. The points of intersection of the 
straight lines u$,"*'~' and the curves xi can be easily 
obtained from (16): 

Figure 2 shows the case when q2 < q,, i. e., k * < A. If, 
however, k * >p2, then q2 > qS and the integration region 
is deformed in obvious fashion. 
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FIG. 2. 

stitution k*- - k*. There is a possibility of obtaining 
unphysical (complex) solutions corresponding to the 
case when the straight line xA2' lies higher than the 
curve x;. Equating the radicand in (22) to zero, we 
obtain the corresponding boundary equation with re-  
spect to k 2  and w: 

One more boundary equation for k 2  and w is obtained 
from the condition q: aq:, o r  ~ ; ~ ~ a  xi1': 

- ' l rkz+M(el -o)  -oe,+k'p,=Mp. (25) 
If the interaction with the target is elastic; i t  is 

necessary to put v =  - q 2 / 2 ~  in (16). We then obtain Equations (16), (18)-(20), and (22)-(25) suffice for a 
complete determination of the region of integration with 

q2 x a * = A I L - L ( e l  -o--) 
pz 2 2M 

respect to x2 and q2 in the case of elastic interaction 
2M with the target. 

*{(I¶+&) [ ( e , - o -&)  ' - p a ] ] ] .  (18) 
Let us return to the general case. The kinematic 

The n: curves converge a t  q 2, = ~ M ( E ,  - w - p), with 

The maximum value of 4 is given by the expression 

The form of the region of integration with respect to n, 
and q 2  depends on the actual values of w, k2, and M and 
is determined from Eqs. (16) and (18)-(20). Figure 3 
shows schematically the region for the case  xi"<^^(^^) 
< K;'' and nzmp. > ~ 6 " .  The case M = m < p is consid- 
ered inc"'. In that case x;(q 2) <o, i. e., the point 
where x ', and H i converge leaves the integration re-  
gion. This means that at  M <  p the vector p, cannot be 
antiparallel to P '. 

The limiting values of q 2  in the elastic case a r e  
easiest to determine directly from the conservation 
laws, since the configuration of the momenta is sim- 
plest at  the limiting points-all the particles move 
along one straight line. In particular, if k is parallel 
to p,, then, by solving this sum of equations 

After which the values of qf,, a re  obtained from the 
relation 

.The values of q i ,  are  obtained from the same formulas 
(22) and (23), in which i t  is necessary to make the sub- 

- 
limits of integration with respect to v and ka a re  ob- 
viously 

It is now necessary to integrate with respect to H, and 
H ,. Integration with respect to v., between the zeroes 
of A gives r ise  to the integrals 

d x ,  n 

where a(n,) and c(x2) a r e  defined by Eq. (13). These 
two integrals suffice because the symmetries of expres- 
sions (11) and of the regions of integration with respect 
to substitutions x1 - n2, and pi-- & allow us to confine 
ourselves to integration of only the terms written out 
in (11). The remainder is obtained by making the sub- 
stitution pi - - &. It follows from (11) and (28) that 
the problem of integrating with respect to x, reduces 
to the evaluation of five integrals: 

Since c c a n d  f--ii a r e  simple functions of x,, all  these 
integrals can be easily evaluated. The result is ex- 
pressed in terms of n ,, =, and a a t  the limits 
of the integration region 

FIG. 3. 
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3. So far,  the analysis was exact. We proceed now 
to the relativistic approximation. We assume that 

>> p2; E: >> m 2; k2, q 2, v 2  << cf, and confine our - 
selves to the case v2 << wZ. Finally, we consider in this 
article only the region w2 >> p2 (actually i t  is sufficient 
to have w exceed p by several times). In this region of 
w, a s  follows from (17) and (23), we have q:>> p2, SO 

that we shall use the following simple limits for the in- 
tegration with respect to q 2  and x2: 

Because of this, al l  the subsequent expressions can be 
used both for the general case and for the elastic case 
(in the latter case it is necessary only to replace v by 
- q 2 / 2 ~  everywhere and to leave out the integration 
with respect to v). 

For  the integrals (29) we obtain in the relativistic 
approximation the following expressions: 

n I sr 
I,=-(i--)-F~ny, 2ez26r y E Z  

1 6 % I*=-. X 
pEmr 4[L(l+f)  1% ln { [ 1 + 4 ~ + 4 ( 6 ( 1 + ~ ) ' ~  - (,) ] 
5 166(1+6) ) ' I ;  [6 ( l+ i )  1'. X [ ( I - ~ +  Liz 

Y 
n o r  n o q z  

Inz, ([y2-85y+166 (1+~)]',2-1-45} ---;-ln y = - L I , ' ,  
P 81 p'el el' 

% 6 r  
I,=-lny, J,=2x--(y-1). 

p2e2 P. 
(34) 

We have used here the notation 

Substituting these expressions in (11) and (15) we obtain, 
retaining only the highest-order terms, 

The limits of integration with respect to k2 and q 2  in 
this approximation a r e  

and since in our case w > p, we can neglect k every- 
where in comparison with w2 (it follows from the form of 
the cross  section that the main contribution is made by 
the k2 near the upper limit of integration). 

4. We proceed now to calculation of the calculation 
made to the cross  section by diagram 11. We write 
down in analogy with (1) 

(see Fig. 1). It was expedient here to change the no- 
tation somewhat. The particles with momenta PI and 

a r e  now the (e+e-) pair, and the particles with mo- 
menta and p, a r e  muons. In formula (38), is 
a Compton tensor that differs from (3) only in the sub- 
stitutions &,, -- pi,, k,, - - k, s p -m and in the com- 
mon sign; 

The tensor W,, has the same meaning a s  before. 

We now make the change of variable 

dSpl d3pr m' ---+n- d3p n 
d e ,  dv dqzdx,' dx,', 2 + - d o  dkz ,  (40) 

2 ~ 1  28% 4kYX1 2e, 2p ,  

where A1 differ from n,,,, A in the substitutions 
k,, -- k,, A* - - PI,, 1 -m. From a comparison of (40) 
and (12) we obtain the following substitution rules: 

Substitutions similar to those given above lead to the 
result 

- W,L,A::~- w ~ L ~ A : J ~ ~ ~  dv dq2, 

where 

It follows from (41) and (42) that to calculate the cross 
section dull in the relativistic approximation w-e can use 
the earlier formulas (34)-(36) but with the substitutions 
cl -- cl, W-- W, p -m. The limits of integration with 
respect to k2 in this approximation a re  

Ill. BREMSSTRAHLUNG 

1. The diagram of the process is shown in Fig. 4. 
The cross  section i s  written in the form 
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FIG. 4. 

where M$:, is a tensor that differs from (3) only in that 
now k2  = 0. Gauge invariance yields 

We change variables in accordance with (12) (with the 
only difference that y2 x, = 2k&, p2 n2  = - 2kp1) and 
write down the cross  section in the 1. s. : 

The tensor 1, has a meaning analogous to that of the 
tensor A(15). All the formulas (16)-(25) with k 2  = 0 
and k* = w a r e  valid for the integration with respect to 
n,  and n,. In the relativistic approximation we ob- 
tain, using relations (36) with k2 = 0, 

where we have used the notation (see (34) and (35)) 

Only the zeroth term of the expansion of J, (see (34)) 
in powers of f' has been retained in (49), since the fac- 
tor that contains J, in (49) i s  significant only in the r e -  
gion of small L', when the higher-order terms a r e  
cancelled out. Retaining only the terms linear in t;', we 
obtain 

1 
( 

I 
+--(e:+e:) b2(yi-I)-qz ( I  --) -26v ln y. -1Zawi do du dq2. 

P2 Y 1 ) 1 1 
(51) 

This expression should be used for the numerical cal- 
culations in the case of small  q2, and the general for-  
mula (49) must be used for q22p2. 

In the particular case W2 = - b(v), W, = 0 (i. e. , v = 0), 
we obtain from (51) the known expressionc121 

case when the target is a zero-spin nucleus screened 
by electrons and heavy enough to be able to neglect re-  
coil (v = 0). We then have (F, and F, a r e  the nuclear 
and atomic form factors) 

If F, = 1 then, integrating (49) with respect to q from 
6 to m, we obtain 

To estimate the extent to which the c ross  section is 
influenced by the form factor of the nucleus, we use a 
simple model with a "step-function" nuclear form fac- 
tor 

In such a model we obtain the same formula (54), but 
with a ( 6 , ~ )  replaced by a ( 6 , Z )  - ~ ( q , ) ,  where ~ ( q , )  i s  
equal to 

This correction does not depend on the degree of 
screening. If we put = a p ~ - " ~ ,  then a comparison 
of the calculations obtained from (54)-(56) with the r e -  
sults of the more accurate calculations yields a =  1.9 in  
the region 2- 10-100. By "more exact" calculations 
we mean here a numerical integration of (49) with the 
functions (53). At a = 1.9 the correction A decreases 
the cross  section in the total-screening region by 10- 
15%. 
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