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1. INTRODUCTION 

The role played by viscosity and the possible viscosity 
mechanisms in cosmology have already attracted the 
attention of many investigators (see, for example, C1'31 

in which further references can be found), primarily in 
connection with attempts to explain the anomalously 
high entropy per baryon in the contemporary universe. 
Our present paper has a more general nature and aims 
at an approximate presentation of all possible types of 
cosmological solutions in Friedmann models when the 
influence of bulk viscosity is taken into account. It is 
assumed that the coefficient of this viscosity is a func- 
tion of the energy density, which i s  approximated by 
arbitrary power-law dependences in the region of small 
and large values of i ts  argument. Otherwise, the be- 
havior of the coefficient of viscosity is hardly restricted 
at all. 

It should be emphasized that new effects appear of 
course when the viscosity terms become of the same 
order as  the other terms in the gravitational equations 
or even exceed them i n  order of magnitude. In these 
cases, the description of a dissipativeprocess by means 
of just one coefficient of bulk viscosity may, strictly 
speaking, become invalid since none of the remaining 
terms in the expansion of the dissipative correction to 
the energy-momentum tensor in the velocity gradients 
may be small. However, allowance for  the complete 
set (i. e., the transition from the hydrodynamic to the 
kinetic description) i s  extremely complicated and not 
amenable to simple analysis. Thus, the use of equa- 
tions with hydrodynamic viscosity must be regarded as 
a model that describes dissipative processes, and it 
is naturally of interest to establish everything that such 
a simplified approach can give. However, in the light 
of what we have said it must be remembered that the 
results of this paper have, generally speaking, a quali- 
tative nature and provide merely an idea of what could 
happen in cosmology when there is energy dissipation. 

The most exotic effects occur in the stages of the 
cosmological evolution when the viscous terms in the 
equations become dominant. We shall call these stages 
"superviscous." One of these effects is the already 
notedc4' "matter creation" by the gravitational field at 
the initial time of the big bang (see the explanation below 
in the text to Fig. 4). It seems to  us that this effect 
can be regarded a s  a phenomenological description of 
quantum particle creation in a strong gravitational 
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field. The idea that particle creation could be inter- 
preted in terms of c1assica;l viscosity has already been 
put forward by other authors. C5*61 

Some new effects also occur in the more realistic 
cases when the viscous terms a r e  smaller but of the 
same order as  the remaining terms in the gravitational 
equations. These effects include the unbounded ac- 
cumulation of entropy during the later stages in the ex- 
pansion of the universe (already noted inL4'), which oc- 
curs  in certain types of solutions shown below in Fig. 2. 
In a closed model, these solutions describe expansion 
of space that i s  never replaced by contraction. Another 
phenomenon is the "slow big bang" described in the 
caption to Fig. 4. It occurs only in a closed model and 
represents a universe that begins from a singular state 
in the infinitely distant past (t - - "3). The matter be- 
gins to expand in this model infinitely slowly because 
the Hubble "constant" H = A / R  at the initial time is zero 
despite the zero value of the radius R of the universe 
itself. 

There also exist solutions in which viscosity does not 
lead to any qualitatively new effects. 

2. GENERAL ANALYSIS OF EINSTEIN'S EQUATIONS 

We write the Friedmann metric in the form1' 

-ds2=-dtZ + RZ (t) (dza+dyZ+dz2) 
[l+k(2i-y2+z') 141" 

where the cases k =+ 1, k = - 1, and k = 0 correspond to 
closed, open, and flat models. 

In the case of isotropic cosmological evolution, there 
is no displacement of the matter layers with respect to 
one another, s o  that the shear (or first)  viscosity does 
not appear, and the gravitational equations a re  the same 
as in the case of vanishing of the coefficient of this vis- 
cosity. Taking into account only bulk (or second) vis- 
cosity, whose coefficient we denote by c, we obtain the 
energy-momentum tensor in the form 

In homogeneous models, all scalar products depend 
only on the time t ,  and we can assume that the pres- 
sure p and the coefficient of viscosity 5 are  functions 
of only the energy density E. Taking a comoving co- 
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FIG. 1. Curves of ordinary Friedmann solutions when the 
coefficient of viscosity is zero. Above (If > 0) the expansion 
stage, below (H< 0) the contraction stage. The parabola E 

=3n2 corresponds to the solutions for the flat model. Within 
it, the paths of the closed models, outside it, those of the 
open models. The figure corresponds to the case y < 4/3. For 
y =4/3, all  curves in the region of large E run parallel to the 
parabola E =3112, but for y > 4 / 3  they begin to converge on it. 
The equation of the phase curves is & - 3 H 2 = 3 k ( ~ / ~ 0 ) 2 / 3 y ,  where 

is an arbitrary constant. 

ordinate system in which uO = 1, ua =O, we obtain for 
the effective pressure p' 

where 

is the Hubble constant (here and below the dot denotes 
derivatives with respect to t ) .  The hydrodynamic equa- 
tions T :;, = 0 and the Einstein equations R: - $6:  R = T: 
reduce now to the following three relations: 

FIG. 2. Picture of the integral curves for the case v<&. The 
angle between the curves and the axis E = 0 at the points of their 
intersections depends on the particular curve and the expo- 
nent v. The figure corresponds to values v < 0. For  v = 0, the 
angles a re  slightly different, and for O< v<h all curves touch 
the axis E = 0, moving away from the points of tangency down- 
ward (as in Fig. 3 as  well). The bundle of curves between the 
separatrices ON and OQ for v=0  goes into the origin, forming 
now a nonzero angle with the horizontal axis; for 0 < v< &, the 
angle is ~ / 2 .  The disposition of the curves near the node K 
corresponds to the case when 3y(l- 2v) > 4; if 3y(l- 2v) <4 ,  
then all the curves (except one) go into the node, touching the 
parabola E = 3 ~ ~ .  However, the qualitative behavior of the 
solutions described in the text does not depend on these de- 
tails. 
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FIG. 3. Integral curves for 4 < v c  1. The picture corresponds 
to the case when 3y(l- v) < 1. If 3y(l- v) > 1,  the bundle of 
curves between the separatrices OK and OL emanating from 
the origin 0 disappears. All curves below the arm OK of the 
parabola then begin from points of the axis E = 0 with H $0. 
Otherwise, the qualitative picture remains the same. 

where w denotes the enthalpy, w =& + p .  

As usual, the hydrodynamic equation (5) is a con- 
sequence of Eqs. (6) and (71, and the relation (7) is a 
f i rs t  integral of Eqs. (5) and (6). Equation (5) is re- 
lated to the law of increase of entropy. In the case con- 
sidered here, the entropy density o i s  

o=const.exp I delw (e) , (8) 

and Eq. (5) can be written in the form 

The quantity U R ~  describes the change with time of the 
entropy in a distinguished volume of comoving space 
(or in the whole of space for a closed model). All the 
factors on the right-hand side of Eq. (9) a re  positive by 
virtue of their physical meaning, from which it follows 
that the law of increase of entropy is satisfied for evo- 
lutions that develop in the direction of increasing time 
t. In what follows (in Figs. 1-6) the arrows on the in- 
tegral curves indicate this physical direction of evolu- 
tion. 

We now note that for  given equation of state W(E) and 
given dependence c(&) Eqs. (5) and (6) describe a dy- 
namical system in the phase plane (H, c ) ,  the investi- 
gation of which can be conveniently made by qualitative 
methods. This system does not depend explicitly on 
the parameter k and applies equally to all three types 
of Friedmann model. At the same time, the integral 
(7) indicates the region of the phase plane in which the 
curves of each of the types lie. In the case of flat 
Friedmann model (k =0), the integral curves lie on the 
parabola & =3H2. Within this parabola, i. e., E > 3H2, 
we have the paths of the closed model corresponding to  
the case k = 1. Outside the parabola, where E < 3~ 
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FIG. 4. Picture of integral curves for v b 1. To be specific, 
we have shown the case v >  1. If v = 1, the only change is  that 
the separatrix NS and all the neighboring curves do not crowd 
toward the axis H = 0 a s  E - - but toward the horizontal straight 
line H = ( * - 2 ) / 9 ( ~ .  

we have the paths of the open Friedmann model (k = - 1). 
The construction of the picture of the integral curves 

requires, above all, knowledge of the asymptotic be- 
havior of the functions g(&) and w(&) for large and small 
values of &. It i s  interesting to note that, essentially, 
this is the only information needed for our qualitative 
analysis. In fact, besides this we only require that, be- 
tween the points E = O  and & =-, the functions g(&) and 
w(c) do not have zeros or  infinities and a re  sufficiently 
smooth. Under these conditions, a s  is readily seen from 
Eqs. (5) and (6), no integral curve can go off to infinity 
with respect to the variable H except either a s  & - 0 or a s  
E - a. In other words, between these regions, i. e., 
for finite and nonzero values of &, the curves can begin 
and end only at singular points with finite value of the 
coordinate H. It is easy to see that such points can lie 
only on the parabola & - 3~~ = O  and only on its upper 
arm, where H > 0, and where the condition 3tH - w = 0 
can be satisfied. It follows from this that the coordi- 
nates of these points (we shall denote them by Ho and 
co) can be found from the relations 

FIG. 5. Integral curves for the case when the coefficient of 
viscosity is approximated by a power-law dependence for both 
small and large E, but the exponent in the limit E - 0 is greater 
than or equal to unity while in the limit E - m the exponent is 
less than 4. In addition, the curves T(E) and w(E)/(~E) ' / '  do 
not intersect, so that there are no singular points (H,, E ~ ) .  
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- -. - - - - 
FIG. 6. Integral curves for the same asymptotic dependence 
of the coefficient of viscosity: for low values of the energy 
density I; =const .&"1, where vl > 1, while for large 5 =const - ~ q ,  where v2 < i. In contrast to the preceding case (shown 
in Fig. 5) the curves S(E) and w ( E ) / ( ~ E ) ~ / ~  intersect twice, 
which gives two singular points (Ho, eo)-the saddle S and the 
node K. 

Small variations of H and & near H ,  and &, can be ex- 
pressed in the form of linear combinations of the two 
exponentials exp(klt) and exp(&t), with the character- 
istic numbers 

From the geometrical point of view, the position of 
the singularities (Ho, E, )  i s  determined by the intersec- 
tions of the curves t (&) and w(&)/ (~E) ' /~ ,  and their na- 
ture (i. e., the sign of k,) is determined by the differ- 
ence of the slopes of the tangents to these curves at 
their points of intersection. For XI< 0, we have an ab- 
sorbing, or attracting, node, and for XI >O a saddle." 
If the singular point is a saddle, then one of the two 
separatrices which enter the saddle lies above the upper 
arm of the parabola & = 3~~ (in the region of an open 
model), while the other enters the singular point below 
this arm, from the region in which the curves of the 
closed model lie. The outgoing separatrices coincide 
with the part of the parabola & = 3~~ itself on which the 
saddle point lies, i. e., they a re  curves of the flat 
model. 

If the asymptotic behavior of the functions 5(&) and 
W ( E )  at the origin and at infinity a re  given, then to find 
all the types of solutions one must consider all possible 
behaviors of these functions between the asymptotic 
regions and in each case establish the disposition, num- 
ber, and nature of the singular points (Ha, E,). This 
analysis can be simplified by noting that the qualitative 
picture of the integral curves i s  determined by the num- 
ber and nature of the singular points and does not de- 
pend on the remaining details of the actual dependence 
of the functions g(&) and w(&). Therefore, without loss 
of generality we can represent these functions by any 
simple dependences, retaining only the most important 
properties. 

We now consider more definite examples. 
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3, INVESTIGATION OF SOLUTIONS WITH CONCRETE 
DEPENDENCES c(E) AND W ( E )  

In this paper, we restrict ourselves to an equation of 
state of the form 

With regard to the coefficient of viscosity, we shall as- 
sume that for both small and large values of & the de- 
pendence S(E) is a power law with corresponding power 
for each asymptotic region. In this section, we shall 
above all consider the special case when 5 i s  given by 
a single power function everywhere: 

We shall see that the results then obtained a re  deter- 
minative and enable one to construct the picture of in- 
tegral curves for all possible more general cases (with 
power-law asymptotic behaviors] as well without any 
additional calculations. 

Under the conditions (12) and (131, the curves C(E) 
and w(E) / (~&)~/ '  have one and only one point of intersec- 
tion if v + b. 3' But if v = b, then these curves do not in- 
tersect. This last possibility corresponds to cases 
when there are  no singular points. We shall not con- 
sider this possibility separately, but in the following 
section we shall consider more general variants of this 
kind. From (10) and (11) we obtain for the f i r s t  char- 
acteristic number h1 = (v - $ ) y ( 3 ~ ~ ) ' / ~ .  Thus, for v <  $ 
the resulting singular point &,, E,) i s  a absorbing node, 
while for v> b it is a saddle. 

We have investigated equations (5) and (6) qualitatively 
under the conditions (13) and (12) (for the case v #  $) by 
compactifying the phase space of the dynamical system; 
for this the reader i s  referred to the Appendix. The 
resulting pictures of the integral curves in terms of the 
variables H and E are shown in Figs. 2, 3, and 4. Fig- 
ure 1 shows for comparison the paths of the standard 
Friedmann models without viscosity and with the equa- 
tions of state (12). 

Figure 2 shows the integral curves for the case v <  $, 
when there is one node K on the upper arm of theparab- 
ola & = 3 ~ ' .  In the closed model (interior of the pa- 
rabola) there are  three classes of solutions, which we 
list in order of increasing importance of viscosity in 
them. 

1. Solutions whose curves begin in the region (H, &) 
=(+my +a) ,  intersect the axis H =0, and go off into the 
region (H, E )  = (- m, + a). These solutions describe one 
evolutionary cycle of a closed universe (from initial ex- 
plosion to collapse) and are  qualitatively the same as 
in the absence of viscosity. The first asymptotic terms 
in the expansion of these solutions for large E are  ex- 
actly the same as for a perfect fluid since the viscous 
term 35H in Eqs. (5) and (6) in the limit E - is neg- 
ligibly small in the case considered. During the whole 
course of the evolution, the inequality 135HI < w is 
maintained here, going over into 135H I << w as & - m. 

4 Sov. Phys. JETP, Vol. 45, No. 1, January 1977 

2. The class of solutions represented by curves of 
the bundle that come out of the region (H, c) = (+m, +m), 
pass through the origin (H, c )  =(O, O), and are bounded 
by the separatrices ON and OQ. These solutions de- 
scribe an expanding closed Friedmann model in which 
a phase of contraction never occurs. The expansion 
begins with the usual initial big bang (with the same 
asymptotic behavior as without viscosity), but contin- 
ues without end to t = m. During the final stages of in- 
finite expansion, the viscous term 35H becomes deci- 
sive and of the same order as w, although, as before, 
the inequality 35H< w is everywhere satisfied. All 
curves of this family merge into a single curve as the 
origin 0 is approached, the equation of this curve near 
0 having the form 35H/w = (3y - 2)/3y (from which all 
the asymptotic behaviors a re  readily obtained). The 
radius R (tf of the universe for these solutions increases 
monotonically from zero to  infinity. The entropy of 
the universe (which is proportional to U R ~ )  increases 
from some initial value to infinity a s  well. These quan- 
tities increase as a power with the time t .  

3. The third type of solution corresponds to curves 
that again come out of the region (H, E )  = (+a, +oo) but 
go into the node K (the curves between the separatrix 
ON and the upper arm of the parabola OM). They also 
describe an expanding closed model without contraction 
phase, but with an even stronger influence of viscosity. 
The start  of evolution corresponds as before to a big 
bang, near which the viscosity is unimportant; however, 
on each curve there is now a point after which the in- 
,equality 35H< w is replaced by its opposite: 35H> w 
(at these points 35H = w  and dH/d& =m).  In the super- 
viscous phase that then follows, the expansion contin- 
ues, as before, but the energy density & begins to in- 
crease. The evolution terminates at the node K at 
t =a. The energy density and the Hubble constant tend 
to finite values Ha and cO, while the radius R ( t )  of the 
universe and the entropy, const. uR3, become infinite. 
These quantities now tend to infinity as t-m in accor- 
dance with extremely rapid exponential laws with re- 
spect to the time t. 

Outside the parabola & = 3 ~ '  in Fig. 2 we have the 
curves of an open Friedmann model. Here, we have 
the following three types of solution. 

1. In the region H< 0, below the lower arm of the pa- 
rabola E = 3 ~ '  there are  the curves of a contracting open 
universe. These curves begin at points lying on the 
axis E = O  at  finite H values. The angle between the 
curve and the axis E = 0 depends on the exponent v and 
the particular curve (see the caption to Fig. 2). A 
common feature i s  however the fact that the contrac- 
tion of the universe begins at a certain finite time t, 
with a certain finite value of the scale factor R(t), and 
ends in the region @I, E) = (- m, +m) of the ordinary 
Friedmann singularity with negligible influence of vis- 
cosity. During the initial stage of contraction, viscosity 
is predominant and 1 3tHI >> w; during the final stage of 
collapse, I 35H I<< w. Evolutions with a beginning of 
this kind cannot have any sensible interpretation in the 
framework of classical hydrodynamics. Such curves 
require continuation into the region of negative values 
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of the energy density &, and we shall not here discuss 
the possible meaning of such solutions. It is to be as- 
sumed that specification of the coefficient of viscosity 
in the form 5 = (u&" with V< $ is perfectly suitable for 
large values of & but unrealistic for a classical fluid as 
& - 0. In this region one must have at least v2 1, since 
it i s  for such values of the exponent that, as  we shall 
see later, the curves with the above exotic behavior 
disappear. 

2. Above the upper arm of the parabola & = 3~~ there 
are the integral curves of an expanding open model. 
The bundle of curves that come out of infinity, (H, &) 

= (+ m, + m), and i s  bounded by the separatrices KL and 
KM, goes into the node K. The solutions correspond- 
ing to the separatrices KL and KM themselves are in- 
dependent types and will be noted separately. The re- 
maining curves of this family describe evolution with 
an initial singularity of ordinary Friedmann type, near 
which the influence of viscosity can be ignored. During 
the initial stage 25H << w, and thereafter 35H -( w al- 
ways, equality being attained only at the end point K, 
where the influence of viscosity becomes decisive. The 
evolution ends at K at t = m ,  and R and U R ~  become in- 
finite. 

3. The separatrix KL corresponds to a singular (and 
unique for v< i )  solution which describes cosmological 
evolution of the same kind as in the preceding case but 
with strong influence of viscosity near the initial singu- 
larity (H, &) = (+m, + m )  as well. For all curves between 
KL and KM the equation as & - is the same as without 
viscosity, i. e., H = const E 'I2 (see the caption to Fig. 
I), but the asymptotic equation of the curve KL as & - m is H =  const E''" (in the case considered, 1 - v 
> i). This leads to quantitative changes in the initial 
behavior of the solution, but the expansion begins as 
before at a certain finite time with zero value of the 
radius R. The final behavior of the solution near the 
node K is in no way distinguished and i s  the same as 
for all the other solutions described in the preceding 
paragraph. 

4. The last possible type of evolution in an open mod- 
el corresponds to curves that begin at points of the axis 
& = O  with finite positive values of H and then go into the 
node K. The expansion begins in this case at a finite 
time t with a certain finite radius R(t) and ends with 
R(t) becoming infinite as t - a  at the node K. On each 
curve there i s  a time at which the value of 35H - w be- 
comes zero. This time separates the superviscous 
phase (35H> w) from the final stage of evolution, in 
which the influence of viscosity i s  less ( 3 5 ~  -( w) but 
nevertheless important. Solutions of this type, like 
those discussed earlier in the first paragraph (the 
curves below the lower arm of the parabola & = 3 ~ ~ )  
have a beginning that cannot be realized in the frame- 
work of classical theory. 

Finally, it remains to discuss the evolutions in the 
flat Friedmann model, whose curves lie on the parab- 
ola E =3@* Here there are possible solutions. 

1. The lower arm of the parabola describes contrac- 
tion ending with the usual singularity without appreciable 
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influence of viscosity (with 135HI << w). However, at 
the start  of the process viscosity plays a decisive role, 

1 3SH I>> w, and, as  a result, contraction begins with 
some finite value of the scale factor R(t). The time 
corresponding to the start  depends on the exponent v. 
If 0 v <  i, then the time i s  - m; but if v< 0, then the 
initial time is finite. In either case, the initial stage 
of this solution does not have a simple interpretation, 
as for all the cases noted earlier that begin at points of 
the axis & =O. 

Out of the origin 0 there also comes the curve OK, 
corresponding to expansion in the flat model. The prop- 
erties of the solution near the origin are  exactly the 
same as in the preceding case. The evolution ends at 
the node K at t = m  with infinite values of R(t) and the 
entropy. During the whole of the evolution, the energy 
density & increases, despite the expansion, tending to 
a constant limit &,, as t - *. This solution consists en- 
tirely of a single superviscous phase, for which 35H 
> w. It is interesting to note that for 0 6 v< $ the ex- 
pansion begins at t =-a, with some finite radius R(t) 
and ends with R(t) becoming infinite at t =a, i. e., we 
here have an example (of course, extremely special! ) 
of a cosmological solution that is unbounded in time and 
free of singularities in the sense in which they are usu- 
ally understood. *' 

3. The part of the parabola MK describes expansion 
from a Friedmann singularity (without appreciable in- 
fluence of viscosity) to an infinite value of the radius 
~ ( t )  and entropy equal to const . U R ~  at the node K as 
t-m. The influence of viscosity is important during 
the late stages of the expansion, but 35H -( w every- 
where (equality only at K). 

We now describe the new types of solutions that arise 
when v> i. Figure 3 shows the curves for the case 
i <  v <  1. Compared with the preceding, this case i s  
characterized by a more significant effect of viscosity 
in the region of large & and a less significant effect in 
the region of low energy densities. Thus, we here al- 
ready have classes of solutions whose asymptotic be- 
havior near the origin (H, &) = (0,O) i s  free of the in- 
fluence of viscosity. But in the asymptotic region & - there i s  now no solution at all with negligible in- 
fluence of viscosity. Let us consider first  the types of 
evolution in a closed Friedmann universe, of which 
there are three. 

1. Solutions describing a complete cycle of evolution 
in a closed model, whose curves go from the big bang 
region at (H, E )  = (- a, + m) to the final singularity at 
(H, &) = (- m, +m), intersecting the axis H =O. The ini- 
tial singularity corresponds to a certain finite time t 
and a vanishing value of the radius R, but the asymptotic 
behavior of the solution depends on the coefficient of 
viscosity. The asymptotic equation of the integral 
curves in the region (H, E )  = (+m, +m) is ~ C H / W  = (3y 
- 2)/3y, from which it follows that 35H and w are of the 
same order. During the final stage of evolution there 
is a superviscous phase, when I 3bHI >> w, and the evolu- 
tion ends (at a finite time) with a singularity of unusual 
form in which the radius R tends to some finite and non- 
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zero value but the derivative & becomes minus infinity. 
Features of this kind have already been encountered in 
int4 3. 

2. The class of solutions represented by curves 
covering the region NSM describes expansion of a closed 
universe without a subsequent contraction. The be- 
havior of the solution near the initial singularity is ex- 
actly the same as in the preceding case. At the start  
of evolution 35H< w, and the energy density decreases 
during the expansion, but then occurs a time after which 
35H> w and & begins to increase. The evolution ends 
with 3gH >> w and a singularity of the same unusual na- 
ture as in the preceding case: the radius of the uni- 
verse R, in~reasing,  reaches a finite value, and the 
derivative R tends to infinity (but now positive). This 
singularity corresponds to a finite time t. 

3 .  A singular solution corresponds to the separatrix 
NS. The process begins here in the same way a s  the 
solutions described in the two previous paragraphs. 
The evolution consists of a single phase of expansion, 
during which 3SH w (equality a t  the point S) and ends 
at t with R and the entropy const -OR' becoming in- 
finite exponentially fast with respect to f at the saddle 
point S. 

We now list  the possible classes of solutions for an 
open model. As can be seen from Fig. 3 ,  we here have 
five types of evolution. 

1. Below the lower arm of the parabola c = 3 ~ '  are  
the curves corresponding to contraction. The curves 
between OK and OL describe contraction of an open uni- 
verse, beginning with ordinary Friedmann stages with- 
out viscosity. On these curves, near the origin 0, the 
inequality I 35H I << w is satisfied, this being replaced at 
the end of the evolution by the opposite 1 3gH I >> w. The 
final singularity in the region (H, E)  = (-m, +m) is of the 
same unusual type a s  in the solutions described above 
for the closed model that go into the region (H, E )  

=(-m, +m) (i.e., t-const, R-const, R--m). 

2 .  The curves below the separatrix OL correspond 
to solutions with a final singularity of the same nature 
as  in the preceding case, but with an entirely different 
beginning. The process of contraction begins here with 
I3CHI >> w at a certain finite time t with finite scale fac- 
tor  R. The curves begin at points of the axis & = 0, 
touching it. Evolutions of this kind are  incomplete and 
belong to the already considered (in the case v <  i) class 
of solutions that require continuation into the region of 
negative energy densities, which in the framework of 
classical hydrodynamics is devoid of meaning. 

3 .  All the paths above the upper arm of the parabola 
& = 3 ~ ~  have an initial stage of this unphysical kind, a s  
can be seen from Fig. 3 .  The asymptotic behavior near 
the origin is here the same (except that now H >  0). All 
these solutions can be divided into three classes, de- 
pending on the nature of the final stage of the expansion. 
The paths below the separatrix PS give solutions that 
end above the. unusual singularity, when R - const a s  
t- const but R - m. During the whole of the expansion 
we have in this case 36H> w. 
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4. The separatrix PS itself corresponds to  expansion 
to an infinite value of R (at the same time, uR3 also 
tends to infinity) a s  t-m in accordance with an exponen- 
tial law. During the whole of the evolution 35H 2 w. 

5. Finally, the curves below the separatrix PS reach 
the origin 0, near which the influence of viscosity dis- 
appears. At the s tar t  of evolution 35H >> w, but at the 
end 3gH<< w, and the expansion during the final stage 
is purely Friedmann. 

It remains to consider the solutions for the flat Fried- 
mann model corresponding to the following three parts 
of the parabola & = 3 ~ ' .  

1. The lower arm of the parabola OK corresponds to 
contraction from a purely Friedmann state (without 
significant influence of viscosity near the origin 0) to 
a state with the previpusly discussed "unusual" singu- 
larity (R ,  t - const, R- m) characteristic of all the 
neighboring curves. At the s tar t  f 3SH I << w and a t  the 
end I 3LHI >: w. 

2 .  The separatrix SO gives an evolution during the 
whole of which 35H w. The expansion begins at the 
point S a s  t - - 06 with zero value of the radius R and 
ends at the point 0 at t =+ m with infinite value of R. 
During the final stage of expansion 35H << w, and there 
is no effect of viscosity. A solution of this type has 
been described by Murphy. [I1 

3 .  The separatrix SM corresponds to a solution in 
which the expansion, which begins with zero value of 
R at t = - m, abruptly ends at a certain finite time with 
a finite value of R but infinite value of the derivative 
R, i. e., with the unusual singularity discussed earlier. 

Figure 4 shows the curves for  the case when v 2  1. 
The changes in this case a r e  due to the even stronger 
influence of viscosity in the region of large E and its  
weaker influence at low energy densities. There i s  no 
need to go through all types of evolution again; we men- 
tion only the main differences of the solutions corre- 
sponding to the curves of Fig. 4 from the preceding 
case (Fig. 3 ) .  

For  a closed Friedmann model, the qualitative nature 
of the solutions and their asymptotic behavior change 
only near the initial time of the big bang. As in the 
preceding case, the asymptotic equation of the separa- 
tr ix NS and all neighboring curves (as E - 50) has the 
form 3 6 ~ / w  = ( 3 y  - 2 ) / 3 y .  It can be seen from this that 
in the region & - Oo all these curves have a common 
horizontal asymptote H = const for v = 1 and H = O  for  
v >  1. In both cases the expansion begins at the time 
t = - with zero value of the radius R, but the Hubble 
constant H at the initial singularity is finite and even 
equal to zero in the general case when v >  1. An initial 
singularity of this kind can be called a slow big bang in 
the infinitely distant past. The final stages of evolution 
in these solutions, a s  can be seen from Fig. 4, can be  
divided into three possible classes, which a re  just the 
same as in the preceding case (Fig. 3 ) .  The final as- 
ymptotic behaviors of the solutions of all three types 
a r e  the same. 
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In an open Friedmann model, the behavior of the in- 
tegral terms i s  changed significantly only in the region 
of small c. We see  that for v 3 1 the solutions finally 
disappear that we have called incomplete and which must 
be continued in some manner into the region of unphys- 
ical c values. All integral curves corresponding to con- 
traction now come out of the origin 0, near which 13cHI 
<< w, and viscosity i s  not important. This initial stage 
is purely Friedmann. During the final stage of con- 
traction 13gHI >> w, and we again have the same unusual 
asymptotic behavior a s  in the previous case. All curves 
describing expansion now begin in the region (H, E )  
=(+a, 0), where there i s  a true singularity. The ex- 
pansion begins a t  a certain finite time t with zero value 
of the scale factor R. The energy density a t  the initial 
time i s  zero, increasing then with the later evolution. 
This phenomenon of matter creation by the initial singu- 
larity has already been noted by us inc4'. Near a s tar t  
of evolution of this kind we have a superviscous phase, 
for which 3cH>w. As in the preceding case, the final 
stages of the evolution in these solutions can be divided 
into three types with the same asymptotic behaviors. 

In the solutions for the flat model there a r e  no quali- 
tative changes from the preceding case at all. 

4. CONSTRUCTION OF INTEGRAL CURVES IN  
MORE GENERAL CASES 

The results of the preceding section enable us to con- 
struct readily the picture of the integral curves for 
more complicated behavior of the function ~ ( 6 )  with 
power-law asymptotic behavior at the ends & - 0 and 
c - -. Indeed, the foregoing analysis contains a de- 
scription of all possible pictures of the behavior of the 
paths at both small and large values of & for any pos- 
sible value of the exponent in the asymptotic dependence 
[(c). Knowing the behavior of the curves in these as- - 
ymptotic regions, we can readily join them up for each 
particular case determined by the nature of the singular 
points (H,, e,), i. e., for each particular course of the 
function C(E) between the points E = O  and E =-. 

As an example, let us consider the situation in which 
the coefficient of viscosity has the following asymptotic 
behavior: 

E=const.ev~, v,>l (as E-0), 

~=const~eV*,  v ~ < ' / ~  (as €+OD). 

We choose this variant as the most reasonable from the 
physical point of view. In this case, in the region of 
small E the curves do not begin at points of the axis 
E = 0 (which occurs when v, < 1 and leads to a situation 
not readily interpretable, as we have already discussed), 
while in the region 6 - we do not have the "unusual" 
singularities mentioned earlier, for which the evolution 
ends with a finite .and nonzero radius but infinite value 
of the derivative R. 

It is now easy to see  that under the conditions (14) 
the curves 5(e) and w(~) / (QE)"~  =y(&/3)'Iz either do not 
intersect at all or  have an even number of points of in- 
tersection. In the f i rs t  case, there a re  no singular 
points (H,, c,), and in the second there a re  an even num- 
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ber. The f i rs t  of them (counting from the side of small 
e )  must necessarily be a saddle point, and then all the 
singular points follow in accordance with the rule sad- 
dle-node-saddle-node-. . . . We shall consider only 
the case when there are  no singular points and when 
there a re  two. The cases when there a re  more than 
two can be omitted without loss of generality since they 
do not introduce qualitatively new types of solution. 

The integral curves a re  now constructed by means of 
the results of the preceding section and simple con- 
siderations of a logical nature. Figure 5 shows the 
curves under the asymptotic conditions (14) when there 
a re  no singular points (H,, c,). We shall not list once 
more all types of solutions and their asymptotic be- 
havior, since they a re  all (except one) already de- 
scribed in Sec. 3. The new type of curve is represented 
by the bundle between the separatrices LO and MO. 
The only novelty is that this bundle now goes straight 
into the origin 0. This corresponds to expansion in 
an open model from an initial singularity (without in- 
fluence of viscosity) to an infinite value of R as t - - 
and, again, with negligibly small viscosity during the 
final stages of the expansion (near 0) .  

Figure 6 shows the integral curves under the same 
conditions (14) when there are  two singular points (H,, 
&,)-a saddle S and node K. Using the information con- 
tained in Sec. 3, one can readily describe all the solu- 
tions corresponding to these curves. 

APPENDIX 

Here, in general features, we describe the qualitative 
investigation of the system of equations (5)-(6) in vari- 
ables in which the phase space is compact. In such 
variables i t  is easy to establish the nature of all singu- 
l a r  points of the system, including the infinitely distant 
ones, and the behavior of all the separatrices i s  unique- 
ly determined. The inverse transformation enables one 
to establish then the picture of the behavior of the 
curves in the phase plane (H, E). 

We consider the case of a linear dependence of the 
enthalpy w =& + p  on the energy density and an arbitrary 
power-law dependence of the coefficient of viscosity on 
c : 

j=aeY, w=ye ( i < y ~ 2 ) ,  (A. 1) 

where a, V, y are  constants. Instead of H and c we in- 
troduce new variables cp and J ,  by means of 

e/3H2=l+tg cp, 3tH/e=r-'/,+tg g , (A. 2) 

and we replace t by the new time variable T by means 
of the law 

d~ldt=3H/cos cp cos $. (A* 3) 

With allowance for (A. I), the system of equations (5)- 
(6) now takes the form 
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TABLE II . 
qlc:r-+[ --- FJ n/z -------- 

tgtp=fl-Zv)/311-v) 

5 - - - - - - - 
tqy =Z/3 

FIG. 7. Diagram of the singular points of the system (A. 4). 
The position of the point F, depends on the value of the expo- 
nent v and to  be specific we show ones corresponding to val- 
ues v >  1 (for v = 1  this point i s  absent). The arrows (in the 
direction of increasing value of the parameter T) indicate only 
those directions that do not depend on the values of v .  The 
physical part of the square ( rp  > - n/4) below the straight line 
tanJ,=2/3-y corresponds to positive values of H, and here 
growth of the parameter T corresponds to increase of the 
physical time t .  In the physical region below this straight 
line H is negative and the directions (of increasing T) are op- 
posite to the physical direction of evolution. This circum- 
stance must be remembered when the picture is  translated 
into the phase plane @I, E). 

dcpldr=- (sin cpfcos cp)sin cp cos cp sin $, 
2 -- -- d$ 1 , = 

[( 7- T )  cos $+sin $ sin p sin $ cos $ (A. 4) I 

We shall investigate these equations only for v* i. The 
special case of the square-root dependence of 5 on & 

must be considered separately since the transformation 
(A. 2) is degenerate for v = i. 

Positive values of the energy density & correspond to 
variation of the variable cp in the interval - r/4 -( p 

r/2, i. e., where 1 + tancp 2 0. The values of tang 
are in no way restricted, and the variable 11, ranges 
over the interval - n/2 -( I I ,  -( n/2. However, the system 
(A.41, in contrast to the system (5)-(6), can also be 
continued smoothly into the region cp< - r/4, where 
& < 0. Disregarding the physical meaning of this region, 
we shall consider formally the complete range of varia- 
tion for both variables cp and g: 

Thus, the phase space of the dynamical system (A. 4) 
is a square whose edges (the straight lines cp =i n/2 
and $ =i n/2) are, as is readily seen, integral curves of 
of the system. Within the square there are  three fur- 
ther integral straight lines: p = - r/4, cp = O  and tan$ 

TABLE I .  
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sin % - 
V2 

- sin rp0 
-sin $0 
sin $o/VZ 

= 2/3 - y. All the singular points of the system (A. 4) lie 
either on the edges of the square o r  on these three inter- 
nal integral straight lines. In the general case there 
are 16 singular points, whose position together with all 
the straight integral curves (solid lines) are shown in 
Fig. 7. These straight trajectories are  separatrices 
and divide the phase square into six rectangles, beyond 
the edges of which the integral curves can be continued 
only through singular points. Among the complete set 
of singular points there are  six universal ones, in the 
sense that their behavior is completely independent of 
v. These are  the points Ul-U,. The first  four of them 
Ul-U4 lie at the corners of the square and are saddles. 
The points U, and U, are noses. The behavior of the 
curves near these points are  shown in Fig. 7. In ad- 
dition, the directions on the rectilinear trajectories 
between the pairs of points F1F3, Fplo, and F4F2 are 
universal. All the remaining properties of the singular 
points depend on the intervals of variation of v, and 
they must be considered separately for each case. 

The nature of the ten singular points F is given in 
Table I, in which the following notation is adopted: 
RN, repulsive node; AN, attracting node; S, saddle. 
The abbreviations RN-S and AN-S denote complex 
equilibrium states: repulsive node-saddle and attract- 
ing node-saddle. These complex states arise only at 
the points F5 and F,, in the neighborhood of which Eqs. 
(A. 4) cannot be linearized and require separate treat- 
ment. Near the remaining points F, the system (A. 4) 
is linear. If we write 

cp=cpo+6cp, $=$0+69, (A. 5) 

where (po, go) are the coordinates of the singular points 
F, and bp and 611, are small deviations, then near all 
the singular points (except F5 and F6) the system (A.4) 
reduces to 

d6cp/dr=AcScp, d6$/dr=Bi6cp+Bd+. (A. 6) 

The constants A, B1, and B, together with the coordi- 
nates pO, II,, are given in Table 11, where we have in- 
troduced the notation o = [3y(l- v) - 1]/3$!. Note that 
for v=1  the constants B1 and B, for the points F1 and 
F, are zero. To construct the integral curves, one 
must here make an additional investigation, but the 
nature of these points for the case v = 1 is  given in 
Table I. 
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Equations (A.4) near the singular points F5 and F ,  
require a special investigation, which we shall not 
make here. We merely point out that for v < $ there 
exists a bundle of curves that enter the point F ,  from 
below and the left (from the third quadrant) and have 
near F,  a common tangent, s o  that, taken as a whole, 
F, is in this case a complicated node-saddle type state. 
But if v> $, the point F ,  only repels the curves. The 
main bundle in this case comes out of F,  upward and to 
the left (into the second quadrant), having a common 
tangent. The point F,  for v< $ attracts curves from the 
f i rs t  quadrant (upward and to the right), and for v> $ 
there is a bundle of curves that go out of i t  downward 
and to the right (into the fourth quadrant). In the last 
case, F5 is a complicated node-saddle state. 

Having elucidated the behavior of the integral curves 
of the system (A.4) in the physical region of the phase 
space (cp 2 - n/4) for every range of variation of v, we 
can, using the transformations (A. 2) and (A. 3), then 
establish the picture of the integral curves in the vari- 
ables (H, c); this is shown in Figs. 2-4. 

''we use a sys tem of units in which the velocity of light and 
Einstein's gravitational constant a r e  equal to  unity. The 

metric i s  described in the form -ds2 =gi,dxi d 2 ,  where gih 
has the signature (-+++). Latin indices take the values 0,  1 ,  
2, 3 and Greek the values 1 ,  2 ,  3 and ( t ,  x ,  y ,  z) =(no,  x i ,  
x 2 ,  x3).  

2 ' ~ e  shall  not consider the special  ca se  A1 = 0 of tangency of 
the curves ,  regarding this a s  too special and unjustified. 
This ca se  i s  considered in detail int4'. 

3 ' ~ e  recal l  that here  we do not include possible intersections 
o r  tangency of these curves  fo r  E = O .  

4 ' ~ n  Murphy's solution, IT' which corresponds to  a flat Fried- 
mann model with viscosity of the fo rm b = const ' E  (v = l ) ,  the 
sca le  factor R(t) i s  nevertheless z e r o  a t  the s t a r t  of expan- 
sion (as  t - - 4. 
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Some considerations are presented in favor of baryon-number nonconservation at the elementary particle 
level if the strong gravitational interaction at short distances is taken into account. A rough and unreliable 
estimate is given for the decay time of nuclei according to this mechanism. 
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The application of gravitation theory to elementary 
particles leads to the conclusion that processes a r e  pos- 
sible which would manifest themselves a s  the conver- 
sion of baryons into neutral particles, e, g., 2 N =  (a', 
n -, a O) with apparent nonconservation of baryon num- 
ber (baryonic charge, in the original). In these pro- 
cesses the r e s t  mass of the baryons i s  totally converted 
into energy. Such a process may occur spontaneously 
in an atomic nucleus and even with an individual nucleon, 
P-e+ + n '. Electrically neutral system can undergo 
oscillations, similar to the kaons; thus, the hydrogen 
atom can go over into i t s  antiatom: H =  (pe-)'*($e+) = E. 
At extremely high temperature processes of the type 
v+ v*N+ N become possible. 

experiments of ~ e i n e s ~ "  and of others. There a r e  
small  chances that the probability is substantially larg- 
e r ,  but the opposite result i s  also possible after a con- 
sistent theory will be developed for this phenomenon. 
Experimental detection of the presumed decay type is 
extremely difficult, On the other hand, a high-tem- 
perature reaction i s  likely to become comparable to 
other processes near the cosmological singularity, when 
the characteristic time is of the order of the Planck 
time s. We assume that no new fundamental 
lengths will appear between the experimentally studied 
region of lengths and times and the Planck units of 
length and timef2' and that no fundamental change of the 
laws of nature occurs there. 

Extremely rough estimates for nuclei (stable with What is the basis of this hypothesis? It has been 
respect to the known decay modes) yield a lifetime of known for a long time that the mass of a three-dimen- 
the order of years, which does not contradict the sionally closed universe vanishes identically. The local 
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