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Several types of simple waves of the magnetic-moment vector, connected with the motion of domain 
boundaries, are investigated within the framework of the Landau-Lifshitz equations. It is shown that the 
existence of a limiting velocity of propagation of a simple wave, found by Akhiezer and Borovik [Sov. 
Phys. JETP 25, 885 (1967)], is not due to the explicit form of the particular analytic solution that they 
obtained, but is a consequence of asymptotic boundary conditions of a definite type. "Fast" simple waves 
are investigated in the limit of a nondissipative medium. It is shown that propagation of a simple wave 
with a velocity above the limiting value is related to precession of the magnetic moment about the 
anisotropy axis on approach to the regions of uniform magnetization. An analytical solution corresponding 
to a "fast" simple wave of the magnetic moment is found for a medium with large uniaxial anisotropy 
energy and small saturation magnetization. 

PACS numbers: 75.60.Fk, 75.30.Gw 

1. One of the first papers on the theory of simple 
waves connected with the motion of domain boundaries 
is that of I. A. Akhiezer and A. E. Borovik. [ll They 
showed, in particular, that in a nondissipative magnetic 
medium the spectrum of velocities of a moving domain 
boundary is continuous and bounded from above, if the 
rotating magnetic-moment vector in the domain bound­
ary remains in a constant plane in a coordinate system 
that moves with the boundary. The possible velocity 
values below the limiting value are determined by the 
orientation of the plane of rotation of the magnetic mo­
ment. In a dissipative medium, as was shown by 
Walker, [21 the orientation of the plane of rotation of the 
magnetic-moment vector is determined by the value of 
the external magnetic field. 

It will be shown belOW, on the basis of the Landau­
Lifshitz[31 equations, that the existence of an upper limit 
to the velocity of propagation of a simple wave of the 
magnetic-moment vector (for example, a moving domain 
boundary) is not due to the explicit form of the particu­
lar analytic solution obtained in[1,21, but is an exact con­
sequence of asymptotic boundary conditions of a definite 
type. Specifically: if the magnetic-moment vector, on 
approach to a region of uniform magnetization, asymp­
totically approaches a plane of rotation with a constant 
orientation in space (in a reference system attached to 
the simple wave), then for magnetic media with anisot­
ropy of the "axis of easy magnetization" type, the ve­
locity of propagation of a simple wave, U, is bounded 
from above by the quantity 

(1.1) 

which is determined by the parameter £ = 27TM~/Kl of 
the medium and the characteristic velocity Uo = 21 Y 1 
x (AK1)l/2M.. Here M. is the saturation magnetization, 
Kl is the uniaxial-anisotropy constant, A is the exchange 
energy, and y is the gyromagnetic ratio. 

The asymptotic boundary conditions mentioned above 
essentially exclude precession of the magnetic moment 
about the anisotropy axis in the regions of uniform mag­
netization. In a number of papers[4,51 containing indica­
tions of the possible realization of domain-boundary mo-
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tions with speeds exceeding the limiting speed (1.1), 
consideration was given to the question of the existence 
of solutions of the Landau-Lifshitz equations that would 
correspond to "fast" isolated simple waves of the mag­
netic moment. 

In the present paper, on the basis of a qualitative 
analysis of the Landau- Lifshitz equations and of numeri­
cal calculations, it is shown that in the nondissipative 
limit, there are solutions of the type of a "fast" isolated 
magnetic-moment wave, whose velOCity of propagation 
may be larger than the limiting velocity found earlier. 
A peculiarity of such waves is a broadening of domain 
boundaries (more accurately, an increase of a charac­
teristic dimension of the forward and rear wave front) 
with increase of velOCity, in contrast to the "dynamic 
compression" of a plane Bloch domain boundary in mo­
tion at velocities less than (1.1). The asymptotic bound­
ary conditions for these fast waves correspond to pre­
cession of the magnetic moment about the anisotropy axis 
in the regions of uniform magnetization. For a problem 
degenerate with respect to the parameter c, an explicit 
form of the solution is found. For £ = 0, the spectrum 
of velocities of simple waves that correspond to a mov­
ing structure of the isolated-domain type is bounded 
from above by the value U m = 2uo. A characteristic fea­
ture of the degenerate solution is that the angular ve­
locity of precession in the region of uniform magnetiza­
tion asymptotically approaches a constant value, deter­
mined by the velocity of the "fast" wave. For U- Um, 
the simple isolated wave degenerates to a small-ampli­
tude wave with almost uniform precession of the mag­
netic moment about the anisotropy axis. For nonvanish­
ing but small c, the solution found, as is shown by quali­
tative and numerical analyses, retains its characteris­
tic features. 

2. For solutions of the simple stationary-wave type 

8(~) =8 (x-ut) , 'l'(~) ='l'(x-ut) , d'l'ldS""1tl (s) 

(where (} and cp are the polar and azimuthal angles of the 
magnetic-moment vector in a spherical coordinate sys­
tem whose axis coincides with the anisotropy axis), the 
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FIG. 1. Contour curves h=const in the plane I) =0; I, contour 
curves h = 0; II, contour curves h = 1; III, points corresponding 
toh=l+E. 

Landau- Lifshitz system of equations has the following 
form: 

~ . 
-d ' -(1+00'+& cos'<p)sin 8 cos 8-h,sin8=uoo sin 8-au-, 

E ~ 
doo d8 
dfsin' 8+200 dE sin 8 cos 8+8 sin 'I' cos 'I' sin' 8 

d8 
=-u sin 8 dE - auoo sin' 8. (2.1) 

Here U=uou is the velocity of the simple wave; the vari­
able ~ = x - ut is referred to the characteristic dimen­
sion of a Bloch wall, (A/Kl)1/2; the external magnetic 
field hz, parallel to the anisotropy axis, is referred to 
the anisotropy field 2Kl/Ms; O! is Gilbert's dissipation 
parameter. [6) 

An important property of the system (2.1) for O! =0 is 
the existence of a first integral 

d8 ' ~= (df ) +00' sin' 8-sin' 8(1+& COS'!jl) +2h, cos 8=const. (2.2) 

We note that (2.2) is identical with the corresponding 
expression for the first integral for walls at rest[7); 
this is a consequence of the gyroscopic properties of the 
system (2.1) when O! =0. 

The equilibrium positions of the system (2.1), corre­
sponding to uniform magnetization parallel and anti­
parallel to the external field (or to the anisotropy axis), 
correspond to the values 

8-+0, ~-++2h, as E-+-oo, 

8-+n, ~-+-2h, as E-++oo. 

Determination of the asymptotic behavior of the values 
of qJ and w reqUires, just as in the static case, [7) an ad­
ditional investigation. 

3. For the nondissipative case, we shall investigate 
the asymptotic behavior of the integral curves for 0 - 0 
and for 0-1f, not assuming in general that the plane of 
rotation of the magnetic-moment vector, which is deter­
mined by the angle qJ, is constant. We note that when 
O! - 0 in (2.2), it is necessary that hz - 0, since other­
wise there is, for O! =0, no simple wave corresponding 
to an asymptotic transition from 0 = 0 to 0 = 1f. In fact, 
for hz '* 0 we have 
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~(O) =2h,*~(n) =-2h,. 

Thus on setting hz = 0 in (2.2), we get 

(d8IdE)'=sin' 8 
X (1 +& cos' '1'-00'). (3.1) 

On substituting (3.1) in the second equation of the sys­
tem (2.1), we get the following equation: 

doo ( d8 ) ( u ) -+ 2 sign- 00 cos 8 +-(1+& COS'!jl-oo')"'+& cos 'I' sin '1'=0. 
dE dE 2 

(3.2) 
We introduce the function 

de ' 
h= (dI / sin e) =1+8 cos' <jl-OO', (3.3) 

by means of it, Eq. (3.2) can be rewritten in the form 

dh ( de) ( u)--=4 sign- oocos8+- ool'h. 
ds dE 2 

(3.4) 

We note that Eq. (3.4), or equivalently (3.2), is an ex­
act consequence of the system (2.1) under consideration. 
Therefore, although the phase space of the system (2.1) 
is four-dimensional, it is convenient to investigate the 
behavior of the integral curves in the three-dimensional 
space (0, qJ, w). For 0- 0, Eq. (3.4) takes the form 

dh ( d8) ( U)--=4 sign- w+- wl'h. 
dE dE 2 

(3.5) 

Figure 1 shows the contour curves h = const in the 
(w, qJ) plane. Since by definition h ~ 0, the region in 
which the integral curves are located is bounded by the 
curves 

00=±(1+e cos' '1')"'. (3.6) 

The derivative dh/d~ in (3.5) changes sign on crossing 
of the lines w = 0 and w = - u/2. On reflection of an in­
tegral curve from a limiting curve (3.6), there is a 
change of sign of the derivative dO/d~, and this entails 
a change of sign of dh/d~. 

We shall consider a Simple wave, supposing that for 
0-0, dO/d~ keeps its sign. In this case, sign (dO/d~) 
= + 1 for ~ - - 00. For a certain ~, let the integral curve 
in question be in the region 

-(1+& cos' <jl)"·<w<-u/2. 

In accordance with (3.5), we conclude that dh/ d~ >0 and 
that for ~ - - 00 the integral curve crosses the contour 
curves h = const, shown in Fig. 1, in the direction of the 
downward-pointing arrows. When - u/2 < w < 0, we con­
clude that dh/ d ~ < 0 and that for ~ - - 00 the integral curve 
crosses the contour curves h = const in the direction of 
the upward-pointing arrows. Consequently, in accor­
dance with the general properties of differential equa­
tions, in the neighborhood of w = - u/2 there must exist 
a separatrix curve, and 
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w=-a/2+0(e, cp) 

for 0-0. 

When the integral curve reaches the line w = 0, two 
cases are possible: 1) the integral curve falls into an 
equilibrium position w = 0, cp (- 00) = cp _; 2) the integral 
curve crosses the line w = O. Since dh/ d ~ > ° in the 
upper w, cp half-plane, for ~- _00 the integral curve 
crosses the contour curves in the direction of the up­
ward-pointing arrows and goes out to the boundary h = ° 
of the region. 

Thus for 0-° the following asymptotic behavior is 
possible for the integral curve that describes the mag­
netic-moment distribution in a simple wave: 1) there is 
an equilibrium position w = 0, cp (- 00) = cp _, corresponding 
to establishment of a constant orientation of the plane of 
rotation of the magnetic moment for 0 - 0; 2) there is a 
separatrix "entrance" to the state 0 = 0, corresponding 
to a precession of the magnetic moment, for which w 
- - u/2 +0(£, cp). 

The investigation for 0 - 1T also indicates two possible 
types of asymptotic behavior of the integral curves: 

We shall investigate in more detail the asymptotic be­
havior of the integral curves when 

for ~_±oo and 0-0, 1T. From Eq. (3.2) it follows that 

(3.7) 

Thus the velocity of a simple wave is connected with CP. 
by the relations 

(3.8) 

Consequently CP. =cp_ +n1T. We note that the value of u in 
(3.8) is bounded from above, just as for a simple plane 
wave (whose magnetic-moment vector is everywhere 
alined in a certain constant plane), by the value 

Thus we have obtained the important result: if the 
asymptotic behavior of the magnetic-moment distribu­
tion in a simple wave is such that, in a system of coor­
dinates attached to it, there is a plane of "entrance" to 
and "exit" from an equilibrium position corresponding 
to uniform magnetization, then the velocity of this sim­
ple wave is bounded from above by the value (1.1). The 
analytic solution found by Akhiezer and Borovik is the 
special case cp (~) =' CP. = const. Therefore motions with 
velocities greater than the limiting velocity (1.1) may 
be possible if, for 0 - ° or 1T, there is a precession of 
the magnetic moment and w*o. 

4. For the problem degenerate with respect to the 
parameter £ (£ - 0), the system (2.1) permits the exis-
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tence of a first integral, because of the fact that in this 
case cp is a cyclic variable: 

w sin' O=J.lo+u cos e. (4.1) 

Here 110 = const is the constant of the first integral. If 
the constants in the first integrals (4.1) and (2.2) are so 
chosen that 0 - ° and w - const for ~ - ± 00, the system to 
be integrated has the form 

d8 ' (d~) =(1-w')sin'8, wsin'O=-a(1-c088). (4.2) 

The solution of this system (4.2) can be written in the 
form 

c088=a 1+pth'1; -1 w = ___ a_. 
i-ptll'!;' i+('089 

(4.3) 

Here the following notation has been introduced: 

p=(2-a)/(2+a); 1;=s(1-a'/4) 'I,. 

The solution (4.3) describes a moving, isolated do­
main, at both ends of which the magnetic-moment vec­
tor, on reaching an equilibrium pOSition, precesses 
about the anisotropy axis. In other words, at the tails 
of the isolated simple magnetic-moment wave, associ­
ated spin waves are excited. The width of the transi­
tionallayer of the wave front is larger than the Bloch 
wall width in the ratio (1 _u2/4)-1/2 and increases with 
increase of the velocity. We note that this result may 
explain qualitatively the experimental data on broaden­
ing of the wall of a magnetic domain during motion with 
a velocity larger than the limiting velocity (1.1). [4) 

According to (4.3), for ~ - ± 00 we have 0 - 0, w - - u/ 
2, which agrees with the conclusions reached in the in­
vestigation of the asymptotic behavior of the integral 
curves of the exact problem (£ * 0). For u- 2, we have 
cosO-1, and there is a wave with almost uniform mag­
netization and with precession of the magnetic moment 
about the anisotropy axis. We note that for £ =0 there is 
also an isolated wave connected with the separatrix 
branch for 0 = 1T. 

To elucidate the behavior of the separatrix integral 
curves for £ *0, we shall investigate by means of Eq. 
(3.4) the behavior of the solutions in 0, cp, w space. 
The surfaces h = const are cylindrical surfaces with gen­
erators parallel to the 0 axiS, and the equation of the di­
recting curves is 

w=±(1+e cos' cp-h) 'I,. (4.4) 

The intersection of these surfaces with the plane 0 = ° is 
shown in Fig. 1. For 0>0, a change of sign of dh/d~ 
occurs on the plane w =0 and on the surface 

w=-u/2 cos 0, (4.5) 

which is a doubly connected cylindrical surface with gen­
erators parallel to the cp axis. Let an integral curve go 
out from the Singular pOint 0 = 0. The asymptotic be-
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FIG. 2. Contour curves h ~const in the plane 6 ~6o; I, II, and 
III, same as in Fig. 1; IV, h~h+; V, h~h_; the straight line 
VI corresponds to the value w ~ - (u/2) cos6 0' 

FIG. 3. 
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havior of w(~) for £: *0, but small, is easily found by 
perturbation theory. To terms linear in £:, we have 

6)(6)= ---'::.-~cos us 
2 8 

s ( u' )'1. +4 1-4 sinus· 

If for some 8, 0< 8< 1T/2, we have -u/2 cos8< W <0, then 
dh/ d ~ < 0, and in the 8, cp, w plane the integral curve is 
directed in the direction of decreasing h (that is, it re­
cedes from the plane w =0). After an intersection with 
the surface (4.5), the sign of dh/d~ reverses, and the 
integral curve is directed in the direction of increasing 
h = const (that is, it moves nearer to the plane w =0). 

By considering the behavior of the solutions in a 
cross-sectional plane 8 = const (Fig. 2), it is easily seen 
that after intersection of the surface (4.5) the integral 
curve cannot escape outside the limits h_ "" h "" h+, where 

h_=1-u'/4cos'6. 

h+=l +E-u'/4 cos' e, 

Consequently, in 8, cp, w space an integral curve that 
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goes out from the singular point 8 = ° is localized within 
the region 

-(1+E cos'rp)'/'<6) 
<-(1+E cos' rp-ho)''', 

where ho =1 +£: -zl'/4. After intersection with the plane 
8=1T/2, the derivative dh/d~<O, and the integral curve 
is directed in the direction of decreasing h = const, to­
ward the limiting surface 

6)=- (1+e cos' rp) 'I,. 

By considering the behavior of an integral curve after 
reflection from this limiting surface, it is easily seen 
that in the absence of damping, there is no fast 180 0 

wave with a 0- 8-1T transition. 

We note that in the system (2.1) the effect of the gyro­
scopic term UW sin8 is similar to the effect of an mcter­
nal magnetic field directed along the anisotropy axis. 
It is known that in the presence of an external magnetic 
field there is no separatrix solution, describing an iso­
lated domain boundary, whereas there is a solution de­
scribing an isolated domain. 

To verify the results of the qualitative analysis, a 
number of calculations were made with a computer. The 
method of finding the separatrix solutions is the same 
as that developed earlier for the static case. [7) Figure 
3a shows the function 8(~) obtained for £: =0.1 and u =0.5. 
Figure 3b shows the function w(cp) for the same values 
of the parameters. The dotted curve shows the solution 
of the degenerate problem, calculated in accordance 
with (4.3). 

1 I. A. Akhiezer and A. E. Borovik, Zh. Eksp. Teor. Fiz. 
52, 1332 (1967) [SOy. Phys. JETP 25, 885 (1967)j. 

2L. R. Walker, quoted in article by J. F. Dillon, in Magne­
tism (edited by G. T. Rado and H. Suhl) , Vol. 3, Academic 
Press, 1963, p. 450. 

3L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 
153 (1935) (reprinted in L. D. Landau, Collected Works, 
Pergamon, 1965, No. 18 and in D. ter Haar, Men of Physics: 
L. D. Landau, Vol. 1, Pergamon, 1965, p. 178). 

4G. J. Zimmer, T. M. Morris, K. Vural, and F. B. Hum­
phrey, Appl. Phys. Lett. 25, 750 (1974). 

5T. Ikuta and R.vShimizu, J. Phys. D 7,2386 (1974). v 
6G. V. Skrotskii and L. V. Kurbatov, in Ferromagnitnyi 

rezonans (Ferromagnetic Resonance), edited by S. V. Von­
sovskil, Fizmatgiz, 1961, p. 69. 

7V. M. Eleonskii, N. N. Kirova, and V. M. Petrov, Zh. 
Eksp. Teor. Fiz. 68. 1928 (1975) [SOY. Phys. JETP 41, 
966 (1975)). 

Translated by W. F. Brown, Jr. 

Eleonskil et al. 1242 


