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We consider the superconducting state that arises in a system with repulsion between the electrons under 
inverse distribution of the quasiparticles. The Ginzburg-Landau equations that describe the behavior of 
such a superconductor in a magnetic field are derived from the microscopic theory. This equation differs 
from the usual ones only in the sign in the expression for the current density. One-dimensional solutions 
of the obtained equations are investigated for the cases of a superconducting half-space and of thin films. 
The question of the vortical state of such a superconductor is considered. 

PACS numbers: 74.20.Gh 

1. INTRODUCTION 

The superconducting state in an electron system usu­
ally sets in when attraction exists between the electrons_ 
This attraction can be due, for example, to electron­
phonon interaction ("ordinary" superconductivity) or to 
interaction between electrons and excitons (excitonic 
superconductivity). Under substantial disequilibrium 
conditions, however, namely in case of inverse distribu­
tion of the quasiparticles, a super conducting state can 
arise also when there is repulsion between the elec­
trons. [1-41 This interaction corresponds to the Coulomb 
interaction between the electrons (Coulomb supercon­
ductor). 

Apart from the fact that such superconductors, like 
the excitonic ones, are of interest from the point of view 
of realizing high-temperature superconductivity, [51 they 
should have certain unusual properties_ Thus, the sign 
of the superconducting current produced by turning on 
an external field is different from the sign of the ordi­
nary current. There is therefore no Meissner effect in 
superconductors with inverse distribution, and the ex­
ternal field penetrates into the superconductor and ex­
periences spatial oscillations. This raises the question 
of deriving the equations that describe a Coulomb super­
conductor in a magnetic field. 

An ordinary superconductor is described by the Ginz­
burg-Landau phenomenological equations, which contain 
two constants: the effective charge and the mass. 
Gauge-invariance requires that the charge should be a 
multiple of the elementary charge, but the mass remains 
arbitrary and should be determined from experiment. 
It might appear therefore that since Coulomb supercon­
ductors produce a paramagnetic response to an external 
field, it is necessary in this case to use a negative ef­
fective mass in the Ginzburg-Landau equations (this 
would correspond to a transition from the quasiparticle 
representation to the quasihole representation). But 
then, in addition to the reversal of the sign in the ex­
pression for the current denSity, the gradient term in 
the first equation also becomes negative. This indi­
cates that in such a system, the inhomogeneous state 
becomes more favored even in the absence of an exter­
nal field. It has been shown, however, [71 that in the 
case of a superconduCtor with inverse distribution the 
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homogeneous state is stable (in the absence of a field). 

It is of interest in this connection to derive from the 
microscopiC theory the Ginzburg-Landau equations for 
a Coulomb superconductor. This is the main purpose 
of the present paper. 

To produce an inverse distribution of the quasipar­
ticles by means of an external source, a priming ener­
gy gap is necessary. We therefore consider below a 
semiconductor with non-coinciding band extrema and 
with a forbidden band exceeding the energy of the Debye 
phonon. To make the superconducting state possible, 
the gap must be smaller than a certain critical value. [11 

In addition, a superconducting gap is produced in this 
case not at the Fermi level but near the extrema of the 
bands, where the denSity of states is small in the three­
dimensional case, so that the analysis is carried out for 
two-dimensional systems with a constant state density 
that does not depend on the energy. 

In Sec. 2 we derive for this model the Ginzburg-Lan­
dau equations for an inverse distribution of the quasi­
particles (at T =0). The equation for t. coincides with 
the usual equation, where the role of the temperature is 
played by the pump intensity /1, and the expression for 
the current denSity has a sign opposite to the ordinary 
one. 

This result is explained by the fact that the first 
equation describes the behavior of the "wave function" 
of superconducting pairs, whereas the second equation 
contains the total current, which consists of the diamag­
netic current of the pairs and the paramagnetic current 
of the quasiparticles. The quasiparticle current then 
turns out to be super conducting, [31 and it is double the 
diamagnetic current of the pairs in the considered case 
of a Fermi distribution. The solutions of the obtained 
equations are considered in the case when all the quanti­
ties depend on only one coordinate. 

Section 3 is devoted to a superconducting half-space. 
In the case of weak fields, the solutions are oscillating, 
the fields varying with a period 27TA and the gap with a 
period A, where A is the analog of the depth of penetra­
tion of the field in ordinary superconductors. Inclusion 
of the terms of higher order in the external field Ho 
shows that the super conducting phase is concentrated 
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near the surface, and that at larger distances the sys­
tem apparently goes into the normal or vortical state. 

In Sec. 4 we investigate the properties of thin super­
conducting films. These films turn out to be paramag­
netic with positive magnetic moments. The phase tran­
sition in the magnetic fields is of second order indepen­
dently of the film thickness. 

An expression is obtained for the parameter 'X = AI ~ 
in terms of the characteristics of the system. Esti­
mates yield a value x »1. One can therefore expect a 
vortical state to be produced in the case of a Coulomb 
superconductor even in weak fields. Section 5 is de­
voted to a discussion of such a state. 

2. GINZBURG-LANDAU EQUATIONS FOR A 
COULOMB SUPERCONDUCTOR 

We consider the model proposed by Kirzhnits and 
Kopaev[ll and constituting an indirect semiconductor 
with narrow forbidden band Eg , in which an external 
source has produced an inverse population characterized 
by a chemical potential Jl, which is the same for both 
bands. The Hamiltonian of such a system is 

, 
de = I: {I: Ea(p)aap+aap + :' I:aap+a:-pQa-paop} 

a=1 p p 

+ ~I .E alP +a;~.pa2_pa2p+ H. c. J 

P 

(1) 

where £1 (p) =~/2m +Eg and £2(P) = - (p _W)2 12m -Eg are 
the dispersion laws for the conduction and valence bands, 
respectively, and go and gl are the constants of the in­
traband and interband interactions (go >0). 

In the absence of an external field, at T = 0, the equa­
tions of motion for the Green's function take the form[S): 

(Ul-e,(p))G,(Ul, p)-it1F,+(Ul, p)=l, 

(Ul+t:,(p))F,+(Ul, p)+it1+G,(Ul, p)=o. 
(2) 

Analogous equations are written also for the second 
band. In the presence of an external field, the system 
(2) is rewritten in the following manner: 

1 a ' 
[Ul+-'-(-fJ -ieA(I')) -Ii,] G,(Ul,r,r')-it1(r)F,+(Ul,r,r')=6(r-r'), 

2m r (3) 

[ 1 ( a ' --Ul+ 2m a;+ieA(r)) -Eg]F,+(Ul,r r')-it1+(r)G,(Ul,r,r')=O. 

Here and below we use the system of units Pi = c = 1. The 
super conducting gap l:;. is obtained from the equation 

(4) 

In the homogeneous case, l:;. is described by the expres­
sion 

t1=[t1,(t1,-2Eg) p, 2~' ( 2 ) ~o=-exp - , 
Ul, No (g,+ g,) 

where wp is the electron plasma density, and No is the 
density of states, which is assumed to be independent 
of the energy, i. e., we consider quasi-two-dimensional 
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systems. It is seen therefore that there exists a criti­
cal value of the pump intensity Jle equal to 

(5) 

below which l:;. vanishes. At pump intensities close to 
critical, l:;. is small: 

In this case, at T =0 and (Jl- JlJI Jle« 1, we can use 
Gor'kov's derivation of the Ginzburg-Landau equations 
for temperatures close to critical. [8) 

Expanding the system (3) up to third order in l:;., we 
obtain from (4) the first of the sought equations in the 
form 

1 fJ 2 1 
{ -(- + 2ieA(r)) P+Q - ---It1(r) i'R}t1+(r)=O, 

6 or go+g, 

P=i S ~Ul S GO(-Ul,s-r)G'(Ul,s-r) (s-r)'ds, 
~" 

Q=i f d: fG'(-Ul,s-r)G'(Ul,s-r)ds, 
-" 

(6) 

R=i S ~Ul SG'(-Ul,s-r)G'(Ul,S-I)G'(-Ul,m-I)G'(ro m-r)dldmds. 
_:T 

Here GO is the Green's function for a semiconductor in 
the absence of an external field and with allowance for 
the inverse distribution. Its Fourier component is of 
the form 

(7) 

where the circuit around the poles takes into account the 
inverse distribution of the quasiparticles. Calculating 
the integrals P, Q, and R with the Green's function (7), 
we obtain an equation for l:;.: 

{ 1 (a )' 1 ( ~ ~ '-2E ' } - --2ieA(r) +- In---'-,-,-' 1t1(r)I' t1(r)=O, 
2m Dr 1]~, 8~, Eg 

(8) 

where the coefficient 1/ is equal to 

(9) 

The current density is determined by the expression[9) 

j(r)={~(V.,-V.) S dUlG(Ul,r,r')_ 2e'A(r) S,dUl.G(c.l,r,r')} 
m 2J'H Tn 2rrl 

(10) 
Similarly, expanding the system (3) up to second order 
in and substituting the functions G1 and G2 in (10), we 
obtain 

{ ie ( a t1 + 0 t1 ) 4e'l ~ I' } 
j(r)= - t1--t1+- ---A(r) C, 

m fJr fJr m 

C=-n(~,'-2Eg')/8~,'E;. 

(11) 

Here n = (2m Jle?/2 131T 2 is the concentration of the non­
equilibrium electrons. 

We introduce the "wave function" I/J(r) defined by the 
formula 
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( fl.o'-2E.' ) 'i, ~ (r) 
1Jl(r)= --,-n -". 

8fl., E, 

Then Eqs. (8) and (11) take the form 

{ 1 ( /) )' 1 [fl.-fl., 1 ]} - --2ieA(r) +- ---·-I1JlI' ~·(r)=O. 
2m or 1] fl., n 

ie (01/> o¢' ) I,e' 
j(r)=- 1Jl'--1Jl- +-I~·I'A(r). 

m or Dr m 

(12) 

(13) 

It is seen from these equations that the first is simi­
lar to the Ginzburg-Landau equation for an equilibrium 
superconductor, where the role of the temperature is 
played by the pump intensity Il. The sign of the current 
density is reversed from the usual one, for the reasons 
indicated above. 

3. SUPERCONDUCTI NG HALF-SPACE 

We consider a superconducting space z >0 bordering 
on a vacuum. The external field is directed parallel to 
the boundary. In this case all quantities depend only on 
a single coordinate z. 

We introduce in the usual manner the new dimension­
less variables by means of the formulas 

r'=r/A,1Jl'=~'hji, A'=Al2","fIA, H'=III2"H, 

lji= (fl.-fl., n )'i', .},=( 16 m2 _,)'i', 1;= (9 rl~, )';', (14) 
fL' ne 'P _Imp 

11 = (2/'el;1.) -'=2 (nh1n) 'i'1ji'. 

The field H is directed along the y aXiS, the vector po­
tential A and the current J are directed along the x aXiS, 
while the function if! can be regarded as real. Then Eqs. 
(13) with allowance for Maxwell's equations assume in 
terms of the new variables the form: 

1 d''P 
-:;;j'd;f+(l-A')1Jl-1Jl'=O, 

d'AI dZ'+1Jl'A=O, 

(15) 

where x = A/~. We have left out all the primes here, 
since we shall be using henceforth, unless specially 
stipulated, the dimensionless variables. 

Equations (15) must be supplemented with the bound­
ary conditions 

z=O: H=dAldz=Ho, d1Jlldz=O, (16) 

where Ho is an external field parallel to the surface and 
perpendicular to the conducting layers.1> The last con­
dition means that we neglect the fact that the recombina­
tion rate on the semiconductor surface is larger than in 
the VOlume, and the condition Il> Ile may not be satisfied. 
This can be done if the diffusion length over which the 
Fermi quasilevel at the surface varies is less than the 
characteristic lengths ~ and A of Eqs. (15). 

Let the external field Ho be weak. Then the approxi­
mate solutions can be obtained by putting 

(17) 

In this case, accurate to terms cpA and cp2, Eqs. (15) 
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take the form 

d'A 
-+A=O. 
dz' 

(18) 

The vector potential can be chosen such that at z = 0 we 
have A =0. In this case the system (].B) is immediately 
integrated and the solUtion, with (17) taken into account, 
takes the form 

A=Ho sin z, J[=dAldz=J[, cos z, 
(19) 

H' ( )G' ) 11'=1 __ 0 l---cos2z . 
" ><'+2 

It is seen from these expressions that the external field 
penetrates in the interior of the superconductor, under­
going oscillations with a period 2lTA, and the quantity if! 
also oscillates with a period lTA. The maximum values 
of if! then correspond to the maximum values of H. The 
reason is that the superconductivity is destroyed not by 
the magnetic field but by the currents produced in the 
superconductor under the influence ot'this field. Indeed, 
the first equation of the system (15) contains the quantity 
A2 (or j2 if account is taken of the second equation), and 
if! decreases when these quantities increase. At large 
values of A 2, the first equation of (15) has only a trivial 
solution. The average value of if! is therefore maximal 
at pOints corresponding to the current j = 0, the mean 
value being 

¢=1-Ho'/4. (20) 

To find the solution in the next approximation, it is 
necessary to substitute the obtained solutions (19) again 
in (15) and take into account the terms of the next or­
ders in Ho. Thus, accurate to terms - H 5 we obtain at 
x«1 

fl=Ho cos Z+I/4flo'z sin z. (21) 

It is seen from this expression that at large distances 
from the boundary the field H o, together with the vector 
potential A, becomes large, and the procedure of find­
ing the solutions in the form (17) is no longer suitable. 
This indicates that the super conducting phase with the 
solution (19) will be concentrated near the surface, but 
at large distances the system will apparently be in the 
normal state, or possibly go over into the vortical state 
discussed in Sec. 5. 

4. SUPERCONDUCTING FILMS 

The one-dimensional equations (15) remain valid also 
in the case of super conducting films. To find the solu­
tions we use the boundary conditions 

dA dljJ 
z=±d: fl = dz = flo, d7 = 0, (22) 

where d is half the film thickness. For sufficiently thin 
films and small x we can assume that if! varies little with 
changing z. We can therefore put 

(23) 
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Equations (15) then assume in first-order approximation 
the form 

1 d' -;- d; -(3IjJ.'-1)<p=""(""'-1)+,,,oA,, 
x Z d'Aldz'+",,'A=O. (24) 

From the second equation, taking (22) into account, we 
obtain 

A = H,sin""z 

"'0 cos ljlod ' 
H= Hocos""z 

cos'i:od . 
(25) 

This solution is valid for films of thickness d < A. In the 
opposite case, the denominator in (25) can vanish. This 
is apparently connected with the fact that for thicker 
plates the method of finding solutions in the form (23) 
with boundary condition (22) is not suitable. In this 
case terms of next order must be taken into account in 
the expansion of (3). 

Substituting (25) into the first equation of (24), we can 
obtain the value of cpo Then, putting cp =0 at Z =0, we 
can relate /fio with the value of the external field. After 
performing all the calculations, we obtain 

1jJo(I\'0'-1) [ h (3 ' )'. 1 <p = - 1- c X .h, -1 "z 
31jJ0'-1 't' 

xHo' { 1-chx(:hpo'-1)'''z 
2~,0 (31jlo'-1)'f, cos'ljlod x (31jJo"-1)" 

x (31jlo'-1) '}, (ch x (31\'0'-1) '}'z-cos 21jJoz } + ----;;----:---:----::-'-::---:--_. 
4"'0'+x'(31jJo'-1) , 

21l ' 
I-·~,o' = {41jlo'+x' (:i'Po'~1) }cos' ~10d 

X {1- sin2"'od x(~ljlo':1)":d}. 
2¢od sh x (.it!'o'-1) "d 

(26) 

(27) 

In the limiting case x =0, of course, cp is also equal to 
zero and 

. " 'I ")_ Ho' ( sin2¢od) ~" ( -~o - [--- . 
2 cos' ~,"d 21\'od 

(28) 

Relations (25)-(28) coincide with the corresponding 
expressions for ordinary superconductors, [6] except that 
the hyperbolic functions are replaced by trigonometric 
functions. 

It can be verified with the aid of (26) that cp <0. 
Therefore at Z =0 the field H and the quantity /fi reach 
their maximum values. As already indicated, the rea­
son is that the super conducting current differs from 
zero near the film surface and vanishes at its center 
(at Z =0). 

It is seen from (28) that in weak fields /fio decreases 
with increasing Ho. In strong fields, when /fio is small, 
(28) takes the form 

(29) 

We see therefore that with increasing field /fio decreases 
monotonically and vanishes at a field value He equal to 
(in the standard variables) 

(30) 
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Consequently, the phase transition in the magnetic field 
from the normal phase to the super conducting phase will 
always be of second order. On the other hand, in the 
case of the ordinary superconductors the round paren­
theses of (29) will contain a minus sign, as a result of 
which the transition predicted for films with thickness 
d < 51/2A/2 is of second order and that for d> 51/ 2A/2 is 
of first order. [6] The expression for the critical field 
in the case of a second-order transition coincides with 
(30), where jj is taken to be the thermodynamic critical 
field. 

It is also possible to determine the magnetic moment 
of the film per unit surface, using the formula 

S• H(z)-Ho 
M= dz. 

4" 
(31) 

Substituting here H(z) from (25), we find that the mag­
netic moment turns out to be positive and equal to 

M= Hod (tg1jJod -1). 
2rt 'i:od 

Consequently, such films are paramagnetic. 

5. VORTICAl STATE IN A COULOMB 
SUPERCONDUCTOR 

(32) 

We have considered above cases when one-dimension­
al equations were applicable. This is valid for relative­
ly small values of the parameter lot. Let us estimate the 
value of x from the microscopiC parameters of the sys­
tem. Using relations (14) and (9), we obtain for Eg« l1e 

(33) 

where g =No(go +gl)/2 is the dimensionless coupling con­
stant. From this expression it is seen that the parame­
ter lot depends Significantly on the coupling constant g • 
At the usual values wp =10 eV, Eg =0.01-0.1 eV, and 
m = (O.l-l)mo, where mo is the mass of the free elec­
tron, we have lot -1 already at g - O. 2. In the most in­
teresting cases, however, when g- 0.5 and more, we 
have lot >30. It is then possible that the vortical state, 
which is not described by one-dimensional equations 
(15), will be produced already in sufficiently weak fields. 

In the general case, Eq. (13) in dimensionless vari­
ables (14) take the form 

(34) 

These equations differ from the ordinary Ginzburg­
Landau equations only in the sign of the left-hand side 
of the second equation. It is easy to verify that Eqs. 
(34) go over into the ordinary equations if the depth of 
penetration A is replaced by the imaginary quantity iA. 
The same replacement must then be made in all the 
variables expressed in terms of A (see (14», i. e., lot 

must be replaced by ilot, r by - ir, and H by iH. Bear­
ing this in mind, we can analyze the vortical states in a 
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Coulomb superconductor by using the results obtained by 
Abrikosov for ordinary type-II superconductors. [10) 

Let the external field Ho be directed along the z axis, 
and let the superconductor fill all of the space. Assum­
ing that the microscopic field H in the superconductor is 
parallel to the external field in fields close to He2, where 
He2 is the upper critical field, equal to (in standard vari­
ables) 

(35) 

we obtain 

1I=H,+I¢I'/2x, (36) 

where the function i/J depends only on the coordinates x 
and y. The equation for i/J remains the same as in the 
ordinary superconductors. The solution for i/J must be 
chosen with allowance for the normalization[10): 

(37) 

where {3 A = 1 i/J 14/1 i/J 12 is the geometric factor of the lattice 
and does not depend on Ho• 

lt is seen from (36) that the microscopic field H 

changes (in the xy plane) from a minimum value equal 
to Ho in the core of the vortex filament to its maximum 
value reached in the intervals between the filaments, 
and equal to 

(38) 

The magnetic moment is then positive and equal to 

(39) 

In (38) and (39) we used the ordinary variables. The 
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value of the geometric factor {3A is determined by the 
form of the lattice made up of the system of vortex fila­
ments. This problem must be solved under the condi­
tion that the corresponding thermodynamic potential be 
a minimum, a task beyond the scope of the present 
article. 

We note in conclusion that, as can be easily verified 
from (34), there is no field component normal to the 
surface in a Coulomb superconductor. Therefore when 
an external field perpendicular to the surface (and per­
pendicular to the conducting layers) is applied to such a 
superconductor with a small value of the parameter )t, 

an intermediate state should be observed, similar to the 
intermediate state in the case of London superconduc­
tors. 
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