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Nonlinear magnetoelectric effect in ferromagnetic 
semiconductors 
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Gor'kif Radiophysics Research Institute 
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Zh. Eksp. Teor. Fiz. 71, 2278-2290 (December 1976) 

A magnetization proportional to the square of the electric field is observed in ferromagnetic 
semiconductors in optical-band fields. It is shown that the effect is proportional to the energy of the s-d 
exchange interaction of the carriers with the magnetic atoms. The nonlinear magnetization at w> vFq is 
proportional to q 4 and n; at W = 0 it is proportional to q 2 and is independent of n (q and ware the wave 
vector and frequency of the nonlinear magnetization, while n is the carrier density). Action of two laser 
beams of equal frequency on a crystal produced a specified inhomogeneous static distribution of the 
magnetization M" the magnitude and wave vector of which was determined by the values of the angle 0; 
the value of q can vary in a wide range from 0 to 2qL when the angle 0 is varied from 0 to 7r, where qL 
is the wave vector of the light and 0 is the angle between the directions of the laser beams. The 
distribution of the magnetization can be determined from the diffraction of a sounding light beam; 
according to estimates, to produce a magnetization such that the intensity of the first diffraction 
maximum is of the order of the intensity of the sounding light, the required lasers are of quite low power. 
The nonlinear magnetization leads to a nonlinear interaction of the optical-band waves; generation at the 
difference frequency by means of a nonlinear ferromagnet is considered and, in contrast to the known 
results of nonlinear optics, the spatial-synchronism regime turns out to be less effective at difference 
frequencies lower than some definite value. 

PACS numbers: 78.20.Ls, 75.30.Cr, 75.30.Et 

1. Landau and Lifshitz have indicated in their mono­
graph[ll that, for certain definite magnetic symmetry 
classes, a magnetoelectric effect can exist wherein a 
magnetization (polarization) proportional to the electric 
(magnetic) field can be produced in a crystal. Dzyalo­
shinskij'[2l has shown subsequently that the antiferro­
magnetic Cr20 S has a magnetic symmetry that makes 
this effect possible, as was subsequently observed ex­
perimentally[Sl in Cr20 S. 

However, magnetization proportional to the square of 
the electric field can exist in all magnets. We have 
named this the nonlinear magnetoelectric effect. At 
sufficient field amplitudes, naturally, the nonlinear ef­
fect can be appreciable. We shall investigate below the 
nonlinear magnetoelectric effect in ferromagnetic semi­
conductors in optical-band electric fields. Many ferro­
electric semiconductors have forbidden bands on the 
order of 1 eV (see, e. g., the reviews[4-6l) and are by 
the same token transparent enough in the optical band 
for which high-power lasers are available. 

The physical meaning of the considered effect can be 
explained in the following manner; It is known that a 
transverse electric field E excites electron-density os­
cillations in second order in the field.1> In ferromag-
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netic semiconductors, the s-d exchange energy AS, 
where S is the spin of the magnetic atom, exceeds the 
Fermi energy EF of the carriers,2) up to the highest 
possible values of the concentration n, so that the car­
rier spins have all the same direction. The z compo­
nent s z of the electron spin density of these polarized 
carriers is determined by the electron denSity, so that 
the resultant Asz , which is proportional to~, alters in 
turn the effective magnetic field Heff that acts on the 
spin of the magnetic atoms as a result of the s -d ex­
change interaction and is proportional to A. This pro­
duces a nonlinear magnetization proportional to the s-d 
exchange energy and the square of the electric field. By 
the same token the experimental observation of this ef­
fect can be used to investigate exchange interaction (to 
measure its magnitude and its dependence on the param­
eters). 

2. We shall consider wide-band ferromagnetic semi­
conductors in which the widths of the conduction band W 
is large in comparison with AS. The Hamiltonian of the 
crystal is written in the form 

(1) 

here 
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(2) 
"k 

nlr.lr 
(3) 

''') A'n) {En(k+l)-En(k) En(k+l)-En(k-r)} 
C - +-

'), - 2N' A''')S+E,,(k+l)-E,,(k) A,n)S+En(k+l)-E,,(k-r) 
(4) 

where a~It, a nit' b;, bq are the electron and magnon crea­
tion and annihilation opera.tors (the spin indices have 
been omitted, since the spins of all carriers have the 
same direction when AS> E F); J'6'Coul is the Hamiltonian 
of the Coulomb interaction of the electrons. 

The Hamiltonian (1) is analogous to the one used by 
Grigin et ai. £7l and obtained from the s-d model Hamil­
tonian by using a canonical transformation of the Froh­
lich type, which eliminates the terms linear in the op­
erators of the deviations of the d spins. In addition, we 
have taken into account in (1) different electron bands, 
and also recognize that the s-d exchange integral A is 
generally speaking different in different bands. 3) We 
shall seek the nonlinear magnetization determined by 
the relation 

NL (00" 00,) . M. (r, t) =x." E,(w" q,)E,(wr, q,)exp{,[ (q,+q,)r- (00,+00,) tl), 
q" q, 

(5) 
where E(w, q) are the Fourier components of the electric 
field and summation over all repeated indices is implied. 
The expression for the tensor Xabe with allowance for 
symmetrization takes the form (see, e. g., [8]): 

( 00" 00,) = ~{ (00" 00,) + (00" oo,)} Xabe "'abe Xacb • 
q" q, 2 q" q, q" q. 

(6) 

USing the procedure of many-time Green's functions 
(as applied to nonlinear effects[S,10]), we find that Xabe 

is determined by the Fourier component of the retarded 
Green's function K in accordance with the formula 

where 

H::~~~,n. (-r" T,) =B (T,) e (T,) < [[ bk + (T,) bkH,+<, (T,), 

a,~,.(O)a"'.k'+<. (0)], an:.,(-T,)an •. k,+q, (-T2) p. 

(8) 

(9) 

In (9), the averaging is with the aid of the density ma­
trix p(-«», Vo is the normalization volume, MB is the 
Bohr magneton, and 

8(T)= {~ T;;'O 
T<O 

The interaction with the electromagnetic field is given 
by 

V"'=- _e_ L. a.:kHa .. kA(q, t)p .... (k) , 
me n,n21r. 

(10) 

where A(r, t) is the vector potential of the field, and ac-
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count is taken of interband transitions, since we are 
considering an interaction with an optical-band field. It 
should be noted that we have written here the tensor 
component that determines the nonlinear magnetization 
M : L directed along the constant magnetic field. The 
nonlinear magnetization components M: L are not con­
sidered at present; for them to appear, the electric 
field must cause electron spin flips, which is possible 
when the spin-orbit interaction takes part. 

It is necessary to write a chain of coupled equations 
of motion for the Fourier components H(w1' w2), using 
the Hamiltonian (1). Since AS» J, where J is the energy 
of the direct exchange between the spins of the magnetic 
atoms, it is necessary to sum terms that yield energy 
denominators containing only differences of magnon fre­
quencies. These terms correspond to the diagrams con­
taining resonant cross sections and considered by Grigin 
and Nagaev, [11,12] who obtained the polarization operator 
and the "magnetic" response4) to a longitudinal electric 
field in a ferromagnetic semiconductor. After rather 
cumbersome calculations (see the Appendix) we obtain 

( U),",' WI) _ ~ ~ mk+q.c;+q[ - mk 
%'b" - f...J - q" q, Vo pkn.", '0), + ('), - Wk+q,+q, + W. 

[Ii ( + ) I:!.E I-I Iii ( + ) :::'E 1-1 eZQ~.n, (p) Q~,n.(P) x t (!)~ rot - 0 l W..; WI - --'1 1i,1.W .;(!)l 

I:!.Eio(p) III " V ) • ) x, , {Cpo k.q.-q [(IVo (p) -; 0 (p - q,) ("00, - :::'E,o (p) 
[I:!.Eio(P)-(liw,) I 

+ (No(p) - No(p - q,)) (liw, + I:!.E,o(p))1 (Ii (00, + w,) -I:!.Eo) 

-' C~~Lq.-q (No (p) - No (p - q, - q<J) (n(O, -I:!.E,o (p)) (Ii (w, + (0,) - I:!.E,)} 
x (1:- ~ «0, + 00" q, + q,)t' (1 - ~ (w" q,)f'B-1 «ll, + 00" q, + q<J. 

(11) 

Here Ni(p) is the carrier distribution function in band i, 
and the populations in formula (11) are referred to a 
single band no in which carriers are present; Ink is the 
magnon distribution function; (; (w, q) is the longitudinal 
dielectric constant. We have introduced the notationS): 

I:!.E,~E,(p-q.-q,)-E,(p), 

I:!.ElO(P)~E,(p)-Eo(p), 

__ C,-,::_'k.~ •. -:-qc....::'-:-.~-'::+q'-_....:q.:...[ N.-,;o~('-'p )~-_N_o:-'(=-p-_q..::)....:l __ -cm_.:....-_m_'_-.:..-q L«O,q)= ~ 
.::.. nw+Eo (p) -E, (P-(I) oo+W.-Wk-q 

pk 

(12) 

At temperatures exceeding a certain value T 1 and a 
concentration n > no, both determined from the condition 
~(w,q) =0, a divergence is obtained; this agrees with 
the result of Grigin and Nagaev, [11,12] who found that at 
T > T1 and n >no the homogeneous state of a ferromag­
netic semiconductor becomes absolutely unstable. The 
instability condition[11,12] is determined here for exter­
nal-field frequencies w =0, and in our case the same 
condition takes place at Ws + WI =0; from ~(WI' ql) = 1 we 
obtain for field frequencies WI in the optical band a value 
T2 greatly exceeding T1• We assume henceforth that we 
are considering a region of temperatures T < Tl and of 
carrier densities such that the state is stable. Thus, 
for EuS, according to Grigin and Nagaev, [11] T 1 '" 10 OK 

at n _1020 cm-3 • 

The foregoing nonlinearity mechanism does not work 
for dielectrics, since the contribution from the electrons 
of the completely filled bands can be easily shown to be 
determined by summation of an expression of the type 
{No. (p) - No. (p)}f{p) in the entire band (J is a certain 
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function of the momentum and does not depend on the 
spin direction). The net result is zero. 

We integrate in (11) with respect to the electron 
quasimomenta, after expanding the population differ­
ence in a series and retaining the first term of the ex­
pansion. When integrating with respect to angle we 
choose the polar axis to be the vector q =qs +q, and em­
ploy the relation 

cos (q,:'p) =cos 0 COR( q':~I) +sin 0 sin(q,~[)cos( <p+'p,), (13) 

where e and 'P are the polar and azimuthal angles of the 
vector p, and 'Pi is the azimuthal angle of the vector qs' 
At qs-q, we have cos(cL,q)::::q/2qs. Since even in the 
case of strong doping we have EF <AS and the radius of 
the Fermi sphere of the carriers of band no is small 
(kF « kBr> where kBr is the reciprocal-lattice vector), 
we can write with good approximation CpbJ.:::: COb!.' As a 
result, the integration with respect to the electron 
quasimomenta can be carried out directly if the elec­
tron spectrum is given. 6) 

We proceed to integrate over the magnon quasimo­
menta. It should be noted that the electron-magnon in­
teraction leads to a renormalization (see, e. g. , [14.6]) of 
the magnon frequency. We assume first that the rela­
tive carrier density v= n/N is such that A (0) V <JS, and 
then the renormalization can be disregarded. Integra­
tion over the magnon quasimomentum is over the entire 
Brillouin zone and can be carried out in two limit­
ing cases-low and high frequencies i. e., n(ws + WI) 

«JSalqs+q,1 and n(ws+w,)>>JSalqs+q,l, respectively, 
where a is the constant of the lattice, assumed to be 
primitive cubic. In the case n(ws+w,)>>JSalqs+q,1 the 
difference between the magnon populations must be ex­
panded in a series accurate to second-order terms, for 
if only first-order terms are taken into account 

mk+q-mk"'mk (mk-H) 21Sa'kq/kBT (14) 

we obtain after integrating with respect to angle the 
function 

2- h(CiJ.+CiJ,) In Ih(CiJ,+CiJ,) +ISa'kq I 
JSa'kq I h (CiJ. +CiJ,) -JSa'kq 

(15) 

and in the case of high frequencies formula (15) gives 
the square of the small parameter JSa2kq/n(w s + w,), 
whereas no additional discriminating factor appears if 
second-order terms of the expansion of the population 
difference are taken into account. As a result we obtain 
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(17) 

bi and b2 are numerical coefficients of the order of unity, 
wi=ws+w" q= Iqs+q,l, £g=~E12(O), nt2=n~2(0), in the 
estimates n 12 - a, and m i is the mass of the carrier in 
the band numbered i. We assume that kBT» J.LMo and 
have left out terms containing the small parameters 

AJSIWkBT~1, nq'lmAS~1. 

The function!(wi, q) is determined by the quantity a I 

c;JSaq/nwi , which can be called the parameter of the ef­
fective spatial dispersion due to the magnons. 

In the optical band we encounter the case q« kF' which 
we shall analyze in detail later on. In the two limiting 
cases with respect to the parameter qVF/W, where vF is 
the Fermi velocity of the carriers, we then have 

where 

_ q'E"eo { nCiJ, (In' ') (P~(jJ11fj)=-_--.) A(iJ!+2-- A\IJ __ · __ A(OJ 
Unne- eg!no 

-.J (-"-)' [.1"" + ~liw, (A'''~ __ A(OJ)] __ (--"'-'-)' 
it.'!.' C • .ilflC~!nu . f1kJ<'q 

X[_I'Oo[(m o+m,)'+rn,'l+ 2izw, [m,(m,A«)-m,A'O,) 
eg 

+(m,+m,)'(A"'m,/flto-A'O)] ]} 

(18) 

(19) 

(20) 

at Wi» qVF, where wp1 is the carrier plasma frequency. 

In (19) we use the fact that in the optical band q is 
much smaller than the reCiprocal screening radius of 
the degenerate carriers >..=(67fne2/EF£0)1I2, where £0 is 
the static dielectric constant. 

Thus, in the high-frequency case qv F/ Wi « 1 the effect 
is proportional to n; in the low-frequency case qVF/wi 
»1 it is independent of the carrier denSity n, this being 
due to the relation £ (wll q) - >..2/q2 - n1l3 at l« >..2. It can 
be shown that in the case of nondegenerate carriers at 
qVT/Wi» 1 the effect does not depend on n at n >n(1), 

where n(1) is determined from the condition l« k~, (kD 

is the reciprocal Debye screening radius and V T is the 
thermal velocity of the carriers). 

We note that the case Wi =0 can be realized (for details 
see belOW); on the other hand, a nonzero frequency of 
the nonlinear magnetization is obtained when two lasers 
with different frequencies Ws and w, are used for the ir­
radiation, so that in the experiment the minimal value 
wimin = I Ws - w,l min is determined, obviously, by the con­
dition that Wi/ W at least exceed the relative width of the 
laser line. Therefore, when using solid-state lasers, 
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it is necessary to have wl /w>10-5_10-6, and then, even 
for the maximum possible wave vector of the nonlinear 
magnetization q =2wn(w)/c we have7) aI « 1, and by the 
same token it follows from (16)-(20) in the case of the 
experimentally realized nonzero frequencies of the non­
linear magnetization that the result is proportional to q\ 
for zero frequencies WI = 0 it is proportional to q2. Un­
der conditions of strong doping, when the contribution to 
the magnon frequency from the electron-magnon inter­
action predominates over the direct exchange interac­
tion of the magnetic atoms A (0) v > JS, we present an ap­
proximate8) formula for the case WI =0: 

We note that now x- n-3/2 ; it can be shown that X- n-1/2 

in the high-frequency case. Thus, in the high-frequency 
case qv F/ WI « 1 the optimal value of the concentration is 
n(2) - JSN/A (0), and in the low-frequency case it is the 
entire range n (I) < n < n(Z)' 

The obtained relation (19) for l in the low-frequency 
case WI «qVF is the result of the screening of the low­
frequency electron-density oscillations produced by the 
external electric fields. It should be noted that this sit­
uation takes place for an isotropic carrier spectrum; 
for the anisotropic spectrum, the screening can be much 
less (see the work on Raman scattering of light in semi­
conductors[151 and superconductors[161). 

3. We consider the case when two laser beams of 
frequency ware incident on a crystal, with an angle e 
between them. The result is, in particular, a static9) 

nonlinear magnetization, defined by relation (5) with 

and unevenly distributed over the crystal, with a wave­
vector q =2(w/c)n(w) sin(e/2), where n(w) is the refrac­
tive index of the light. There is also a nonlinear mag­
netization at frequency 2w, but much weaker, 10) as fol­
lows from (16)-(20). 

The value of the static M:L(q) is proportional to qZ 
- sinz(e/2). This inhomogeneous magnetization can be 
revealed, in particular, by its diffraction of a sounding 
light beam, and, as shown by the estimates presented 
below for the EuS crystal, lasers of rather modest pow­
er are needed to produce at e - 1T a value of M z such that 
the intensity of the diffracted light is of the order of the 
intensity of the probing radiation. Thus it becomes pos­
sible to produce a specified inhomogeneous static dis­
tribution of the magnetization M:L, the magnitude and 
wave vector of which are determined by the value of the 
given angle e between the laser beams. By the same 
token, q varies over a rather wide range 0 <q :52wn(w)/c 
at 0 < e :51T. This distinguishes the described effect in 
principle from the procedure used to excite spin waves 
under conditions of Suhl instability, where one excites 
spin waves with fixed wave vectors determined from the 
condition of their parametric excitation. 

We consider the case when the crystal is irradiated 
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by two lasers with different frequencies Ws and WI' In 
this case, in particular, a nonlinear magnetization is 
produced at the difference frequency WI = I Ws - wll and 
at q = I qs - ql I. Great interest attaches to the case of 
sufficiently high frequencies of the order of w(ksr). The 
frequency WI and the wave vector q of the nonlinear mag­
netization M:L are not connected in this casell ) by any 
relation whatever (including the dispersion relation of 
the spin waves), and by the same token WI can also be 
larger than w(ksr). Such a nonlinear magnetization can 
be revealed at high frequency by its diffraction of the 
probing light beam, and also by the effect of generation 
of an electromagnetic field at this frequency (see Sec. 4). 

We note that when the difference frequency WI is equal 
to the plasma frequency WP1 , it follows from (20) that 
the effect is resonantly increased by a factor wp1 / Aw 
times, where Aw is the width of the plasma line. In this 
case the electric fields cause electron density oscilla­
tions at the natural frequency wp1 . Experimental ob­
servation of the nonlinear magnetization in this frequen­
cy region as the frequency of one of the lasers is varied 
can serve as a spectroscopic tool, alongside Raman 
scattering, for the investigation of plasmas (Wpl' AW). 

Our analysis is limited to electric fields not stronger 
than the critical field Ecr - M ~/Z X-liZ, where the nonlin­
ear magnetization becomes comparable with the satura­
tion magnetization. In this field region E - Ecr the anal­
ysis becomes inaccurate; nonetheless, one can state 
that Ecr is of the order of magnitude of that field at which 
substantial changes take place in the magnetic subsys­
tem of the ferromagnet as a result of the action of a 
strong electric field. 

From the foregOing results it follows that Ecr is mini­
mal when the laser beams of equal frequency are anti­
parallel and the laser frequency is close to the width of 
the forbidden band. The condition lfw"" Ecr can be real­
ized in experiment by using dye lasers[19l operating in 
the entire band A = 3400-11 750 A and tunable over a wide 
range (- 400 A). Then we have by way of an estimate 

, Mo/Shv (IS) 'I, 
Eo. min"" J.I8A10'(aq)'eo ksT ' 

(22) 

where e.g -lfw -lfv and v is the relaxation frequency. 

The nonlinear magnetization leads to a number of 
physical effects, particularly to a nonlinear interaction 
of the waves and to diffraction of the light. We proceed 
to consider these effects. 

4. We consider the generation of combination-fre­
quency waves by a nonlinear ferromagnet. A difference 
frequency W = I Ws - wll is generated by two pump lasers 
with frequencies Ws and Wz- The nonlinear wave equa­
tion is of the form 

(23) 

If the pha:;e velocities of the pump fields are directed 
along the z aXiS, then there is no mixing effect, since 
the nonlinear source in the wave equation is equal to 
zero: curlMAqz) =0. We assume next that the pump 
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lasers have a linearly polarized electric field E z and 
their wave vectors lie in the xy plane (TE modes in a 
transversely magnetized medium); in this case we need 
the tensor component Xzzz of the nonlinear magnetiza­
tion. From the nonlinear wave equation (23), written 
out for fields at frequencies w., WI' I Ws - wll, it fol-
10wS[ZOl that there are two regimes: total spatial syn­
chronism (in this case the phase velocity of the nonlin­
ear magnetization is equal to the phase velocity of the 
field at the difference frequency), and the mismatch re­
gime. In the former case the field amplitude at the dif­
ference frequency increases linearly12) with the length 
of the crystal l, like 

(24) 

and in the latter case the maximum amplitude is 

(25) 

The wave vector qe of the nonlinear magnetization is 
chosen here to satisfy the spatial-synchronism condi­
tion. This condition can be satisfied if the wave vector 
of the field at the difference frequency is larger than the 
minimum value of the wave vector of the nonlinear mag­
netization: 

n(w.-w,) I w.-wd> In(w,)w.-n(w,)wd. (26) 

If I Ws - WI I «W., wI- w, then the condition (26) can usu­
ally be satisfied and the spatial synchronism is ensured 
by the small angle Oe between the pumping laser beams 

sin~"" Iw.-w,in(w.-w,) 
2 2wn(w) . 

(27) 

We consider sufficiently high difference frequenCies, 
which, however, are much lower than the pump laser 
frequencies (but the parameter ax is less than unity in 
this case). It follows then from (16), (17), (18), and 
(20) that at a fixed difference frequency WI, when the 
angle 0 between the laser beams is varied, the nonlin­
earity varies like q4_ sin4(0/2). We then obtain that only 
for the difference frequency satisfying the relation 

Iw.-w,I>[wn(w) ]'/' (!...-) 'I, 2 , 
I n(w.-w,) 

(28) 

does the spatial-synchronism regime give a larger ra­
diative power than the mismatch regime at the maximum 
wave vector of the nonlinear magnetization q =2wn(w)/c, 
where the nonlinearity is maximal. In the opposite 
case, more is radiated in the mismatch regime. This 
is due to the strong dependence of the nonlinearity on the 
value of the wave vector. In this sense, the situation 
differs radically from nonlinear-polarization radiation 
in nonlinear optics, where the spatial-synchronism re­
gime is always more effective. For field frequencies 
W _1015 sec-1 and sample dimensions l-l cm, for I Ws 

- wll < 1014 sec-l the mismatch regime provides a 
stronger radiation. The radiation power flux denSity S 
at the difference frequency is then 

S·,--,= (4n) 'x's·,soo,/c. (29) 
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5. The inhomogeneous static magnetization M:L(q), 
due to the action of two lasers of equal frequency can be 
registered by the diffraction of a probing light of inten­
sity Po. By varying the angle 0 between the laser beams 
from 0 to 71, it is possible to observe Raman-Nath dif­
fraction[21l at a < 1, and then Bragg diffraction at a> 1, 
when the parameter a[21l is given by 

(30) 

where qpr is the wave vector of the probing light of fre­
quency wpr> 1 are the linear dimensions of the region 
where the probing light interacts with the radiation. 
Since the frequency of the probing light is of the order 
of the frequency of the lasers that produce nonlinear 
magnetization, it follows that a-qprl sin2 (0/2) and that 
a<l at smallO. At 1-1 cm and 0.$3xlO-3, Raman­
Nath diffraction takes place; for angles 0> 10-2 we have 
Bragg diffraction. The Bragg diffraction condition de­
termines the wave vector q of the nonlinear magnetiza­
tion in terms of the diffraction angle cp: 

sin 'p=q/2qp,' (31) 

A connection exists between the a 'csles cp and 0: 

. g,. 0 
Slll<p =-Slll-

gu 2' 
(32) 

where qo is the wave vector of the laser light that pro­
duces MNL. 

The light is diffracted by crystal dielectric-constant 
inhomogeneities OS ij due to the inhomogeneous mag­
netization; in first-order approximation O£ij(q) is deter­
mined by M(q) with the aid of the linear magneto-optical 
parameter, which is expressed in terms of the angle q, 
of the Faraday rotation per unit length. It is easy to 
find that the relative intensity of the diffraction maxi­
mum of first order is 

(33) 

6. We proceed now to estimates for the EuS crystals, 
where, according to Methfessel and Mattis, [4l J'" O. 2 K, 

S=~, £g"'1.51 eVanda"'6 J..., AS-0.5 eV; according to 
Axe[22l £0 = 11.1, £~ =4. 7. Then for a neodymium laser 
with /iw = 1.17 eV at T'" 4 OK we obtain13) X(wl = 0, 0 = 71) 
'" 3 X 10-7 cgs esu, which corresponds to a critical field 
E~~) =M~/2X-l/2"'8x104 cgs esu atMo=2X103 Oe. 

We consider now generation of radiation in the sub­
millimeter band by mixing of two antiparallel laser 
beams with frequencies Ws and WI' such that Ws - w, 
-1013 sec-I; in this case X'" 5 x 10-11 cgs esu at a carrier 
density Il'" 3x 1018 cm-3• If we use picosecond neodym­
ium pump lasers, [231 when the radiation power flux den­
sity can be focused to an order of 1011 W Icm2, then we 
obtain for the radiation flux density of the crystal at 1013 

sec-l a value of the order of 10 W Icm2 • If Ws - w, '" wp!> 

the radiation power is increased by a factor (Wpl I .a.w)2 • 

If tunable dye lasers are used at /iw '" £g, we have 
Ecrmin-6x103 cgs esu at V-10l3 sec-I; these lasers also 
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operate in the picosecond-pulse regime, in which the 
field is E-104 cgs esu. We can thus obtain fields on the 
order of critical, in which radical changes take place 
in the magnetic subsystem of the ferromagnetic semi­
conductor. 

We consider now the diffraction of the probing light by 
the static nonlinear magnetization. 1f[6l <I> - lOS degl cm 
and the crystal dimension is l-l mm, the intensity of 
the first diffraction maximum P is of the order of the in­
tensity Po of the probing signal at E(l) - E~) . 10-4• A 
field E tl ) - 8 cgs esu corresponds to a nOnlinear-mag­
netization-producing pump-laser power S - 2 X 104 wi cmz• 
A neodymium laser can provide such modest powers with 
enough to spare even in the free-running mode.. When 
the probing light is diffracted by high-frequency nonlin­
ear magnetization of frequency W -1013 sec-l , at P- Po 
and l- 3 mm, we need a field E(Z) - 2 X lOz cgs esu (or S 
-107 W IcmZ), which is also obtained quite easily with 
lasers. 

In conclusion, I am grateful to V. M. Genkin for stim­
ulating discussions. 

APPENDIX 

We write down a chain of equations of motion for the 
Fourier components H(wl' wz) obtained by differentiating 
(9) with respect to Tl, without allowance for .:meoul : 

(A. 1) 
where 

F, ~,." (,(" .,) = c .;:~-".B (,(,) (J (,(,) < [[ b. + bk+<+,iln:k,an.,k,-' ('(,), 

an~.,a",k'+<. (0)], a!,k,an""+<1 (-.,)]>; (A.2) 

- (0) 

F, n,k" (T" ,(,) =-Ck"k+q"O (,,) e (,;,) 
(A. 3) 

For the sake of simpliCity, the times (Th 0, - Tz) pertain 
respectively to all operators situated on the left of the 
given time, up to the nearest comma or commutator 
sign; we have introduced also the notation q "'qs +ql> and 
for SimpliCity we introduce 

In the subsequent chain of equations of motion, we 
take into account[U,lZJ the resonant terms whose energy 
denominators contain differences of only magnon fre­
quencies and are therefore small in comparison with the 
denominators containing the electron energies. We have 

[ w, + f(e, (k,) -e,(k,-r» +Wk-O'.+<+,] F,~,."(w,, W,) 

=8, :,k •• (W2) -8,~,.,,(w,) + L. F2~"k"" (w" (2). 
I, 

(A. 4) 

We have written out here the chain of equations for the 
function F;(Th TZ); we can write an analogous chain for 
Fi(Tl> Tz). In (A.4), S i(wz), S 2'(wz), F2'(wl , wz) are the 
Fourier components of the following functions: 
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+ i (0) 

8 1 n,',. (T,) = 2n C."k-".6 non ,L1 (k,-r-k,) 

xe (T,) < [a'+k, a'k,+<, b. +bk+q+, (0), a;., a"k'+<1 (-'2) 1 >; (A. 5) 
+ i (0, . 

8,,,,k,,(T,)= 2n Ck "k_,.,6 .. "t1(k,+q,-k,) 

Xe( T,) ([at., a, .• ,_,b. +bk+<+,(O), a,\, a',k'+<1 (--T,) 1>; (A.6) 
+ (0) 

F, n"k,oI, (T" T,) =C k, .• _.,.O (T,) e (,,) 

x < [ [ {C k~~)r,lI,_raO :, ao kJ-C-k:~\r,1I.-raO:3-raO.k,-r} 

Xb k +b,+q+,bl,+bl,_,(T,) , at., a"k,+<, (0)], G,+., a;,k'+<1 (-T,) 1 >. (A. 7) 

Here 0 ik is the Kronecker symbol, and 

t1 k - ' { I k=O 
( )- 0, k"'O. 

We have furthermore 

(A. 8) 
where 

+ to) (0) (ns) 

F3 n~n;;kakl.h (1'11 't2) =CkJ,k-r,rCkJ-r,I~,-rCkl.,ll-r.r 

xu ('I) e (T,) ([ [b. +bkH+.a,\" a3, •• _,(b,,+lh,-b,~-,b,,_,) 

X(n~:, (If! kl.-aU,: ,-r(Jl1,k a-r) ('[1) l ([ 1\' a2 ,k,+'l_, (0) ], a: kl a ;,kl+q I (-'[2) ]). 

(A.9) 
From the system (A.1)-{A. 8) and from the continued 

chain of equations for the function Fs with allowance for 
the "resonant" terms we find that H(wl , wz) takes the 
form of a sum of an infinite number of terms, and as a 
result we obtain for it the expression 

(0) (0) 

_ ~ [,Y"(p)--N,(p-(/llCp--"k.-,cp ,.-.,, m,---mlH }--I 
~ [W t +l1-1 (E11(P) -F{Jp--q)] ulj+(J)I---(lll_r+Cl)k-(lh+'l+r 

(A. 10) 
In (A. 10), the functions S- differ from S+ in that the op­
erators b~bt"<l+r are replaced by b;_rbt+q and C~~~t_r,r 
are replaced by C~~!t"<l,r' The expression in the curly 
brackets in (A.10), and the analogous expressions [1 
- ~(w,q)l-l in (11) of the main text, are governed by the 
resonant terms. It is necessary next to write down an 
analogous chain of equations of motion for the Fourier 
components of the functions S(w) with allowance for the 
resonant terms, and it is found here that in the summa­
tion over r only the terms with r = - q differ from zero. 

So far we have disregarded the Coulomb interaction of 
the carriers. It can be taken into account both by the 
employed method of the equations of motion, and by the 
diagram method in the RPA approximation. However, 
it can be much more illustratively taken into account by 
starting from the physical meaning of the problem. It 
can be shown that, as already noted in the main text, the 
considered effect is due to the existence of a change in 
the concentration n(Z) - E Z, and next n(2) gives rise to 
M N L as a result of the s -d exchange interaction. In 
this case n(Z) has a frequency Ws + WI and a wave vector 
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qs +ql. It is then well known that the Coulomb interac­
tion can be taken into account by dividing the density 
change obtained without allowance for this interaction by 
the longitudinal dielectric constant at the corresponding 
frequency and with the corresponding wave vector. 

We thus obtain after cumbersome calculations the final 
result, formula (11) of the main text. 

1 )In first order if the electric field is longitudinal. 
2)The effect is determined by the carrier density, and we con­

sider therefore high densities of the carriers, which are fur­
thermore degenerate. 

3)Thus, in particular, in the CdCr2Se4 crystal the exchange in­
teraction of the holes with the spins of the magnetic atoms is 
much lower than that of the electrons. [5,61 

4)The "magnetic" response (magnetization) of a degenerate elec­
tron gas of ferromagnetic metals to an electrostatic field was 
investigated by Kim et al. [131 

5)The momentum of the electromagnetic field was neglected in 
comparison with the electron quasimomentum in the inter­
band transition energies. The momentum operator was re­
placed in (11) by the operator en of the interband dipole mo­
ment of the electron. 

6)Since there is at present no exact information on the spectra 
of the ferromagnetiC superconductors, we assume that the 
spectrum of the holes and electrons is isotropic and quadratic, 
and that they are coupled by a direct optical transition at 
k=O. 

7)For ferromagnetiC semiconductors such as EuO and EuS we 
have J ~ 1 OK and JSa/Ff ~ 103 cm/sec. 

8)We have left out here, in particular, terms proportional to 
the difference between the exchange integrals in different 
bands. 

9)In nonlinear optics and in the case of nonlinear polarization, 
the analogous effect is called rectification of the optical radia­
tion. 

10)The behavior of the magnetization at optical frequencies is 
being extensively investigated (see, e. g., the review of Krin­
chik and Chetkin[171). 

11)In this sense, the effect considered here differs from two­
magnon Raman scattering at w(kSr) in two-sublattice magnets; 
furthermore, two-magnon effects of exchange origin cannot 
occur in feromagnets at all. [181 

12)The pump field amplitudes in this case are such that the 
length L = (21TXq(E~sE~1)1/2)-1 of the nonlinear interaction is 
much larger than the sample dimensions. 

13)We assume in the estimates that A (0) ~A (1) and ml ~ mo. 
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