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A one-dimensional model of a Fermi gas in which the interaction is most fully taken into account is 
considered. It is shown that, besides the earlier-indicated instabilities, a metal-dielectric parametric 
transition can occur in the system. The behavior of the correlation functions at large distances is studied, 
and it is shown that the long-wave gapless collective excitations make a contribution to the exponent of 
the power law according to which these functions decrease. The collective-excitation spectrum is 
investigated. A phase diagram of the states is obtained. A comparison with the results of other approaches 
is carried out. Ways are indicated of generalizing the obtained results to the case in which the kinetic 
coupling between the filaments in a quasi-one-dimensional system is taken into account. 

PACS numbers: 71.40. +n, 71.85 . ..,.a 

INTRODUCTION 

Recently there has been a sharp increase in the volume 
of experimental investigations of quasi-one-dimensional 
objects, e.g., the TCNQ salts(1); compounds of theA-15 
type[2,31; quasi-one-dimensional magnetic substances 
(TMMC, CsNiF3, etc. )[4\ compounds with variable va
lency, with planisquare complexes of Ir or Pt as bases 
(for ekmple, KCp)[5l; certain "secondary crystals"[6) 
obtained by filling under pressure with molten metal 
regular channels of small (5-15 A) diameter that exist 
in certain natural dielectric matrices (chrysotile asbes
tos [7, 8l and zeolites [9,10 l). These investigations showed 
that the standard (based on the self-consistent field 
method (SCM)) band theory of highly anisotropic sub
stances, in which the description is carried on in terms 
of single-particle excitations, is unable to account for 
the increased role of collective and fluctuation phenom
ena that is observed in quite a number of quasi-one-di
mensional substances. It became clear that these ef
fects turn out to be automatically lost when the SCM is 
used. On the other hand, it followed from the investi
gation of certain exactly soluble one-dimensional models 
that the role of these effects in the purely one-dimen
sional situation should be exceptionally great. This 
stimulated anew the interest of theorists in purely one
dimensional systems. 

It should not, however, be forgotten that certain exact 
properties of one-dimensional models are peculiar only 
to one dimension, and surely ought not be fulfilled in 
really investigable quasi-one-dimensional objects, in 
which the one-dimensional filaments are coupled, albeit 
weakly. Let us recall some of such exact results. 

1. A phase transition cannot occur at Tc *0 in a one
dimensional system when the interaction range is finite; 
ODLRO and DLRO are destroyed. This is a consequence 
of the enhanced role of fluctuations in a one-dimensional 
system. 

2. Allowance for the correlations between the current 
carriers can completely eliminate the single-particle 
states from an entire energy interval near the Fermi 
surface, and all the corresponding degrees of freedom 
will become collective degrees of freedom-this en-
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hances the role of the collective effects in the observed 
phenomena. 

3. The single-particle states (if such states are al
lowed in a one-dimensional lattice) turn out to be lo
calized even in an arbitrarily weak random potential, 
i. e., the low-temperature conductivity in a one-dimen
sional lattice with defects cannot be metallic. 

When allowance is made for even a very weak trans
verse coupling between the filaments, these results 
lose their absolute validity. A phase transition (Tc * 0) 
becomes possible, although the critical temperature Tc 
in the weak-coupling case is very low. In the region T 

< Tc ODLRO or DLRO can exist, i. e., the correlation 
functions at large distances tend to a finite (albeit very 
small in the case of weak coupling) limiting value. The 
collective and fluctuation effects weaken. The conditions 
for localization in a random potential become more 
rigid. 

Thus, purely one-dimensional models cannot provide 
a fully adequate description for real quasi-one-dimen
sional systems. Nevertheless, the investigation of one
dimensional models is useful for the understanding of 
the physics of quasi-one-dimensional systems. Indeed, 
there exists above Tc some temperature range (fairly 
wide in the case of weak coupling) in which, for the de
scription of some properties of the quasi-one-dimen
sional system, the filaments can be considered to be 
uncoupled. Although the collective and fluctuation prop
erties here are not as important as in the one-dimen
sional case, they are many times stronger than in the 
ordinary three-dimensional situation. It would be ab
surd to try to find T e , remaining within the framework 
of a one-dimensional model, but the tendency towards 
the formation of a new phase can be followed. It is this 
circumstance that allows the construction of "phase 
diagrams" in the space of the coupling constants (see 
Fig. 2), as was first done in Dzyaloshinskii and Larkin's 
paper(11) in the case of three coupling constants. 

Furthermore, it should be borne in mind that the 
many-particle, one-dimensional models can serve as a 
suitable zeroth approximation in the construction of the 
theory of quasi-one-dimensional systems if, using some 
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form of perturbation theory, we are able to introduce a 
weak coupling between the filaments. Naturally we 
should in this case, treat such a zeroth approximation 
correctly. 

Unfortunately, the one-dimensional models that are 
of the greatest physical interest contain not one, but 
several coupling constants and are not exactly soluble. 
The noncritical use of approximate computational meth
ods that have proved to be quite satisfactory in three
dimensional situations have led in quite a number of 
cases to incorrect results (this pertains especially to 
investigations of the Peierls transition and one-dimen
sional superconductivity). Therefore, the improvement 
of the methods of investigation of the one-dimensional 
models that are not amenable to exact solution is of in
dependent interest. 

1. CHOICE OF THE MODEL 

At present two groups of exactly soluble one-dimen
sional models of interacting Fermi particles are known. 
These are the case of the Fermi gas with a o-function 
interaction (Gaudin and Yangr12]) and the so-called Hub
bard model (Lieb and WU[13]). The exact solutions al
lowed the computation of the ground-state energy, the 
energy of the Bose branches of the spectrum, as well as 
certain characteristics of the one-electron spectra. 
However, the exact wave functions are so complex that 
it is impossible to compute with their aid the correlation 
functions and settle the question of the nature of the 
ground state. 

The second group of exactly soluble one-dimensional 
models is made up of different variants of the model, 
first considered by Tomonaga, [14] of a Fermi gas with 
long-range interaction. In this model, because of the 
simplicity of the interaction, it is possible to compute 
the correlation functions in addition to the spectrum. 
Subsequently, the model was extended: the spin degrees 
of freedom were taken into account, [5] and an additional 
interaction describing the backward scattering was in
troduced[16] (the model with two coupling constants). 
However, an exact solution could be found only for a par
ticular value of one of the coupling constants. 

Since it is difficult to make any judgment about the 
magnitude and nature of the interaction in a one-dimen
sional system, it is of interest to investigate one-dimen
sional models in which the interaction is most fully 
taken into account, and which contain an even larger 
number of coupling constants (see below). To find for 
these models the exact solution is a virtually hopeless 
problem; therefore, the question of reliable methods of 
investigation of these models arises in all its acuteness. 

In a one-dimensional Fermi gas two tendencies are 
manifested clearly: the Cooper pairing of electrons with 
opposite momenta and the Peierls pairing of an electron 
and a hole with opposite momenta. This leads to a situ
ation in which it is necessary to simultaneously allow 
for two scattering channEils-the Peierls and Cooper 
channels-in the analysis of the question of the possible 
states of a one-dimensional system in the framework of 
perturbation theory. [17] Allowance for the simplest set 
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of important diagrams, which corresponds to the choice 
of the dominant logarithms, amounts to the summation 
of parquet diagrams. [17] In the parquet apprOXimation, 
a finite phase-transition temperature is obtained, which 
ought not be the case in a one-dimensional system. [18] 
It follows from this that this approximation is inadequate 
in the one-dimensional case. 

Next to the parquet apprOXimation, the most conve
nient approximation is obtained by the method of multi
plicative renormalizations. [19] In this case, as was to 
be expected, it turns out that the transition temperature 
is equal to zero. However, the methods of the theory of 
the renormalization group are also of limited accuracy, 
especially in the case when we get into the strong-cou
pling region, as obtains in the case under discussion. 
Therefore, even such a general method is not always re
liable for the solution of the problem of the possible 
states of a one-dimensional Fermi system. 

Apart from this, a specific property of the one-dimen
sional system consists in the distinct role of the collec
tive excitations.1) In a model with a linear spectrum, [141 

this manifests itself in the fact that all the degrees of 
freedom turn out to be collective. Since the spectrum 
in the vicinity of the Fermi surface can always be lin
earized, all the low-lying excitations for any other 
model are also collective excitations, and, apparently, 
what Menyhard and Solyom did in[19], in going outside 
the framework of the parquet approximation (as a result 
of which Tc - 0), was equivalent to making allowance for 
the contribution of the collective excitations. 

On account of the foregOing, the most suitable model 
for the investigation of the question of the possible 
states of a one-dimensional system is the model with a 
linear spectrum, where the collective excitations turn 
out to be the most distinct states, especially as the in
vestigation in the present case is not COnfined within the 
framework of perturbation theory (the Cooper and 
Peierls anomalies depend weakly on the shape of the 
initial spectrum, because of their logarithmic charac
ter). 

Thus, let us choose the zeroth-order Hamiltonian in 
the form 

HO=VF ~p(ap.+ap.-bp.+bp,), (1) 
P.> 

where a+(a) and b+(b) are respectively the operators of 
creation (annihilation) of an electron with p >0 and p <0. 
This Hamiltonian has been investigated in a number of 
papers. [14-16,20] It can also be written in terms of den
sity operators: 

~ 2:n:VF ~ (I) (1) (2) (2) 
Ilo~H, =-L-L.; [p, (p)p, (-p)+p. (-p)P. (p)], (2) 

where 

Jl,S 

are the operators for electrons with spin s and with p 
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FIG. 1. The elementary processes corresponding to the vari
ous contributions to the interaction Hamiltonian (4). 

>0 and p < 0, operators which satisfy the following com
mutation relations: 

(i) (i') pL 
[p, (-p),p" (p')1=6 j j'6 .. ·6"p'-, 

2n 
(3) 

where L is the volume of the one-dimensional system, 
i. e., the length of the filament. This is the mathemati
cal expression of the property that all the degrees of 
freedom in such a model can be referred to collective 
degrees of freedom. A system with such a zeroth-or
der Hamiltonian can be adequately described in terms of 
single-particle excitations (Ho) and in terms of density 
oscillations (lio). In the presence of interaction, the 
concept of a single-particle spectrum turns out, strictly 
speaking, to be useless, and the eigenstates will be only 
collective excitations. 

The interaction Hamiltonian under consideration has 
the form 

H,", = ~ L b (p,+p,-p,-p,) ap~,b,,;,.a,,",. b"" (g,"6,,· +g,-'-6,_,.) 
( !J,~l 

+6 (p,+Pz-P'-P.-4pF) bp ..... bp;,.ap".ap" 1 

+ :2 L 6(p,+p,-p,-p.) [a:,a";,.ap,,'ar,,+b,~,b,~A,,,·bp,,l_ 
[}l.d 

(4) 
Other methods of specifying the interaction exist, but in 
the final analysis they all amount to the redefinition of 
the coupling constants in Eqs. (6) and (7). The physical 
conditions imposed on the various contributions to the 
interaction will be formulated later. The elementary 
interaction processes responsible for the various con
tributions to (4) are shown in Fig. 1. 

The interaction with the constants g~,gt and g~,g~ de
scribes backward and forward scattering, respectively. 
The constant g4 corresponds to the interaction of the 
electrons within the subsystems with p >0 and p <0. The 
contribution to the interaction with the constant g3 allows 
us to take the presence of the crystal lattice into account 
and turns out to be important with 4PF=21T/a, where a is 
the lattice constant. Notice that in (4) the term with g3 
and g4 for s = s' vanishes on account of the Pauli prin
ciple. This fact will be used below. The case with g ~ 
=gi =g3 =0 and g ~ =g~ =g4 =g corresponds to the Tomo
naga-Luttinger (TL) model with allowance for the spin 
degrees of freedom. [15,16] The Hubbard model corre
sponds to the choice g~ =gt =g~ =g~ =g3 =g4 =g. Here 
we have in mind some analog of this model. Let us re-
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call that in the standard Hubbard model113 ] the bare 
spectrum has the form c(k) =}w coska, where w is the 
band width, whereas in the present model the spectrum 
is linear and unbounded, though below we shall introduce 
a cutoff parameter that will imitate the finiteness of the 
band width. 

2. EXACT SOLUTION OF THE MODEL FOR SOME 
PARTICULAR RELATION BETWEEN THE COUPLING 
CONSTANTS 

In a recent paper, Luther and Emery[16] proposed an 
original solution for the one-dimensional fermion model 
corresponding to the following substitution in (4): g3 
=g4=0, g~=g~=gandg~=-t27TvF' We shall use their 
method to investigate the more representative Hamilto
nian (4). In the model with a linear spectrum there 
exists for the fermion operators the following Bose rep
resentation [ZO, Z1]: 

1,20 __ 1,2 e±ip,.x [2:rr ~ e-al1JI/2-ipx 12; ] 

~). (x) -¢' (8)= (21ta)'l' exp ±T ~ P p,' (p), (5) 

where VF/a is the cutoff parameter; in the TL model it 
should be allowed at the end of the computations to tend 
to infinity. Following Luther and Emery, we shall as
sume that v F/ a is equal to the band width. 

Let us use (5) to rewrite Hint in terms of the density 
operators. As in[16], the total Hamiltonian can then be 
represented in the form of a sum of two Hamiltonians 
describing the spin excitations (H1 ) and the density os
cillations (Hz): 

1Io+11,",~}{,+II" 
2rrvi" Y"1 

11, = -----;;- 2..,; [u, (0, (k) 0, (-k) +02 (-k) 0, (k) ) +1,0, (k) oo( -k) 1 
, 
S dx {2n -L e-r.t.I Ii I12- d1x } 

+21',w -. -eh -V2 ---[o,(k)+o,(k)] , 
2na L , Ie 

2:rrv" '{'""1 
II, = - --J -2..,; [u,(p, (k)p, (-k) +p,( -k) p,(Ie)) -N), (k)p,( -Ie)] 

, , 
dx {2n __ . e-a"'/'-;h } 

-'21.,wS--eh -)'2" [p,(k)+p,(k)] , 
2na L ~ if 

" 

where 

(6) 

(7) 

are the density operators for the particles with p > 0 and 
P <0, operators which satisfy the following commutation 
relations: 

[p,{ -Ie), p, (k') 1 =[p,(k), p,(-k')] 
=6".kLl2n, [p, (Ie), p,(Ie') 1 =0; 

1 L " o",(Ie)=-=:- S0,' (k) 
V2 • . 

(8) 

are the spin-density operators, satisfying similar com
mutation relations, for the subsystems with P >0 and P 
<0. The operators Pl,z(k) and u1,z(k) commute with one 
another; therefore, [H1 , Hz] = O. In (6) and (7) we have 
introduced the dimensionless coupling constants 

g,"-g,"±g,-'- g, 
"[1,2=----, ,,(3=--, 

2nVF 2nVF 

(9) 
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TABLE I. Values of the exponents of the power-law singulari
ties of the correlation functions at T = 0, q = 0 or q = 2k F, and 
n ~ 0 (ImN(2kF , n) ~ n") and the values for the spin susceptibil
ity Xo and the compressibility, XT, of the system. 

N(2kF Q) 

X (2kFQ) 

P,(O, Q) 

-2+1',+ 1', 
-2+ 1','+1', 
-2+I',+fl2' 

P, (0, Q) -2 + fl,' + ~21 
x. 2 1 

-2 + fl, -2 -2+~, 

-2+ 1',' 
-2+ 1';-' 

_1 ___ 1_ _1_ (2:<t.1)'" exp[- ~]. 
rtv F Ul- Yl nV1 kT kT 

11 1 (2111\0"" [t.,] 11 1 1 
V, (2kF>, kI'") exp -k'f 2VF~"'_Y' 

When Ya = - t U a, the Hamiltonian Ha can be diagonal
ized exactly. For this purpose, it is necessary to per
form a canonical transformation with exp[iSj, where 

s= ,.,ln2 ~ p,(k)p,(k) 
L'::"" k . 

after which, having been rewritten in the Fermi repre
sentation, Ha assumes the form 

where Va=tvFUa' The spectrum of (10) is known: 

(11) 

where ~ = Y3W has the meaning of a gap in the density
oscillation spectrum. For 1'1 = - t U 1> the spectrum of 
the operator H1 can also be found exactly. It has the 
form of (11), with va replaced by V1 = tv F U 1 and ~ by 
.11 = Y4W, i. e., there is a gap in the spin-excitation spec
trum. This last result coincides with Luther and Em
ery's results(16] if we set in (4)g3=g4=0, g~=g~=g. 

3. STATE DIAGRAM 

The fact that the equivalent Hamiltonian in the Boson 
representation can be written in the form of the sum of 
H1 and Ha, which are such that[H1, Hal = 0, while the 
bare coupling constantsg~, gi, g~, g~, andg3 collect 
in definite combinations (see (6) and (7», is an expres
sion of a definite symmetry of the system. This can be 
verified with the aid of first-order perturbation theory 
in the four-fermion interaction described by the formu
la (4). 

As can be seen from (6) and (7), the constants Yt and 
'Ya can be referred to a long-range interaction, 1'1 de
scribing its antisymmetric-with respect to spin-part 
and Yz its symmetric part. Generally speaking, a long
range interaction presupposes the existence of a cutoff 
parameter x, such that X«PF' However, in the pres
ent model x enters only as a scale for the momentum 
p/x and energy c/vFx. For example, for the imaginary 
part of the susceptibility N(Q, w) (Q =q - 2PF), which- de
scribes the tendency of the system towards a Peierls 
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doubling (see (13» in the spin-zero variant of the TL 
model, a) Luther and Peschel[ao] have obtained the ex
pression: 

ImN(Q,ro)= 
iroi<cQ, 

{ 
0, 

1 [4] , 
,.,'up f'(v)sin'(,.,v) (ro/w)'-(Q/x)' ' irol>cQ, 

(12) 
w=cx, c=up [1-(2"()'I"', ,,(=g/2,.,vF , 

v=l-[ (i-2"()/(1+2"() p, 

rev) is a gamma function of v. A similar expression is 
obtained for ImP(q, w), which describes the tendency 
towards Cooper pairing, by making the substitution I' 
- - y. [ao] Thus, allowance for x has no effect on the 
form of the exponents v, and since we are interested 
only in these exponents (see Table I), we have not ex
plicitly included x in the Hamiltonian. 

A surprising Circumstance, peculiar to the model, is 
the fact that the interaction defined by the constant g 4-

an interaction which we also interpret as a long-range 
interaction-amounts to a trivial renormalization of the 
sound speed, vF-vFua, and the velOCity of the spin ex
Citations, which is a consequence of the model under 
consideration and certain assumptions concerning the 
form of the corresponding contribution in (4). 

Luther and Emery assumed that, for their model (g3 
=g4 =0, g~ =g~ =g), the value Yt = - t is, from the stand
point of the renormalization group, a fixed point for an 
entire range, - t :s; 1'1 <0, of bare Yt values. Using 
arguments based on the theory of multiplicative renor
malizations, they proposed a state diagram that was 
corrected in a subsequent paper by Lee. [16] Lee and 
Chui[az] succeeded to some extent in justifying Luther 
and Emery's assumptions, drawing attention to the con
nection between the system described by (6) and the 
problem of the two-dimensional Coulomb gas studied 
earlier by Kosterlitz. [a3] Their main result consists in 
the following: a gap exists in the spin-excitation spec
trum (i. e., in the spectrum of the operator H1 ) only 
when Yt < 1 1'4 j. This assertion can also be fully referred 
to the operators, H1 and Hz, being investigated in the 
present paper: .11 *0, if Yt < 1 1'41 and ~ *0 if 'Ya < 11'31. 

The remaining region of Yt values (1'1 ~ 11'41) for H1 
can be readily studied, since it corresponds to a "zero
charge" situation. The renormalized coupling constants 
for the spin excitations of characteristic frequency n 
and momentum q possess the following property: 1'1 (z) 
- Y1 =(y~ - y~)1/Z and Y4(Z)- Y4 =0, for z -0, where z 
=max[T,n,vF,uzql (T is the temperature). Thus, as a 
result of the renormalization, H1 goes over, as z - 0, 
into the TL Hamiltonian li1 with Y1 = (y~ - y~)1!Z, which 
has been well studied. [ZO] 

Carrying out similar investigations for Hz in the re
gion Yz ~ 1 1'31, we find that the effective Hamiltonian de
scribing the interaction of acoustic phonons of frequen
cies lower than n and momenta smaller than q has the 
form of the TL Hamiltonian lia with Ya = (y~ - y~)1/a in the 
limit as z - 0. 

The symmetry of the state can be established by in
vestigating the behavior of the various correlation func-
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tions at large times and distances. The correlator N(x, 
t), which is equal to 

N(x, t) =-iO(l) <[ U(x, t), 0+(0, 0) 1 >, (13) 

where 

U(x, t)= ~ [~) .. + (x, t)t,,(x, t)+1jl2.+(X, t) 1jl" (x, t)], ..... 

characterizes the tendency of the system towards the 
doubling of the period. Similarly, X(x,O, defined as an 
advanced Green function of the operator 1/J;,(X)1/J2, (x) 
+1/J;,(X)1/J1'(X), and the functions P s and P t , defined as 
advanced Green functions respectively of the operators 
I/J;, (x)I/J;, (x) and I/J;, (x)I/J;,(x), describe the tendency of the 
system towards antiferromagnetic ordering (x) and to
wards Singlet (Ps ) and triplet (Pt ) pairing. 

The correlators defined above can be computed in the 
(k, w)-representation. For z «.:l1, Az the dominant con
tribution to the correlators is made by the long-wave, 
gapless excitations, which, as has been indicated, are 
effectively described by a TL-type Hamiltonian. For 
z» .:l1' we neglect in H1 the term with Y4' as a result of 
which H1 in this region of variables turns out to be equiv
alent (with allowance for the correct cutoff) to the TL 
Hamiltonian. 

In the table we give the exponents of the power be
havior that is manifested by the spectral representations 
of the above-defined correlation functions for z - O. Also 
given in the table are the values for the spin suscepti
bility Xo and the compressibility ltT = an/a J.l (n is the 
density and J.l is the chemical potential). We have con
structed on the basis of the table a state diagram for 
T=O. 

In that region of values of the coupling constants where 
H1 and H2 assume the form of the TL Hamiltonian, i. e., 
for Yt ~ I Y41 and Yz ? I Y3 I, it is necessary to impose 
such additional limitations on the coupling constants that 
Xo>O and xT>O. This is a condition of stability of the 
system against spontaneous decay for H2 and a transi
tion into the ferromagnetic state for H1 • From the table 
we obtain, for Y1 ~ I Y41, Y1 > uland for Y2 ~ I Y3 I, )12> u 2' 
Hence we obtain the right and upper boundaries in the 
diagram. 

4. COMPARISON WITH RESULTS OBTAINED FOR 
OTHER ONE-DIMENSIONAL MODELS 

The existence of dynamic instabilities in a one-dimen
sional metal has been repeatedly discussed. Instability 
with respect to ionic displacement and phonon-mode 
softening was considered by Peierls and Frohlich[241; 
antiferromagnetic instability, by Overhauser. (25) Bych
kov, Gor'kov, and Dzyaloshinskii'[17) have shown that the 
Peierls instability is always accompanied by the Cooper 
instability and that by themselves the Frohlich and Over
hauser formulas are incorrect. They correspond to the 
ladder approximation, which is inapplicable in the one
dimensional case. Subsequently, Dzyaloshinskii and 
Larkin[ll) proved that the antiferromagnetic instability 
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can set in only in the case when in the one-dimensional 
case the transfer processes are important. 

However, even the parquet approximation[ll,17) is of 
very limited accuracy in the one-dimensional case. In 
their paper, [19) Menyhard and Solyom succeeded in going 
outside the framework of the parquet approximation. 
Subsequently, the question of the possible states in a 
one-dimensional system was discussed in a number of 
papers[26,27) with the aid of the method proposed by 
them. [19) We shall carry out a comparison with Kimu
ra's results obtained in[271, where the model with g4 =0, 
g~=gt=gl' g~=gi=g2' andg3;<0 is investigated in the 
framework of the renormalization-group method. 

For I Y41 "" Yt < (u~ + y~)1/2 and I Ys I "" Yz < (u~ + y~)1/2 we 
have a "zero-charge" Situation, i. e., h(Z), Y4(Z) - 0 for 
z - O. The behavior of the correlation functions in this 
limit is determined by both the spin and acoustic excita
tions. For T - 0 the system exhibits a tendency towards 
triplet pairing (the region lz in Fig. 2), which can be ac
companied by antiferromagnetic ordering (the region 11) 
or singlet pairing (the region 13), The choice of the cou
pling constants by Kimura[27) corresponds in our model 
to the line Yt = I Y41 in the region I. The lower boundary 
of the region I will correspond to the equation Y1 = Y4 =0. 
The curves OB and OC merge and become the straight 
line OE. Thus, in this limiting case it turns out, in ac
cordance with Kimuara's results, [27) that only simulta
neous triplet and Singlet pairing can occur in the region 
I. It can be seen from the diagram that in the general 
case, when Yt ;< Ys, the region I breaks up into three sub
regions with different symmetries. Furthermore, the 
presence of a strong potential attraction (Yz» I Ya I ) facil
itates singlet pairing (the region 13), while the presence 
of a strong spin interaction (Yt» I Y41) leads to antiferro
magnetic ordering (the region 11), 

The results obtained by Kimura[27) for the exponents 
of the power-law behavior of the correlation functions 
are, as can be seen from our solution, valid only for 
small values of the coupling constants, when the expan
sion 

r, 

JU,2+ r42 E 8 

--AF 

FIG. 2. The state phase diagram. PD deno es the presence 
in the system of a Peierls distortion with a doubling of the 
period; AF, antiferromagnetic ordering; SP, singlet Cooper 
pairing; TP, triplet pairing. The curves OB and OC are given 
respectively by the equations Ilt + 1121 = 2 and 1"11 + ~ = 2. 

V. N. Prigodin and Yu. A. Firsov 1191 



( 1 + y, ) 'I, _ 2 "I. 
11,= -_- ~1+y,=1+[(gt-2g2) -g,l . 

1-y, 
(14) 

is possible. 

The spin susceptibility Xo turns out to be different 
from zero in the region I. For)ll - u 1, Xo - 0() , and there 
is a buildup of spin-density oscillations in the system. 
The system can go over from the paramagnetic state 
(the region ~) or the antiferromagnetic state (the region 
11) into the ferromagnetic state, but this transition re
quires a more thorough investigation. A similar insta
bility of the system exists at )12 =U2' 

The region II; I Y31 "'" Y2 < (U~ + y~)1/2 and h < I Y41. A 
gap ~2 appears in the spectrum of the electron-density 
oscillations, and the entire low-lying excitation branch 
is exhausted by spin excitations, which make the domi
nant contribution to the exponent of the power-law singu
larity of the correlation functions for z - O. Such a sit
uation occurs in the Hubbard model with repulsion in the 
case of a half-filled band. The ground state turns out to 
be a dielectric state with antiferromagnetic ordering 
(the region Ill), which can be accompanied by a doubling 
of the period (the region 112), The magnitude of the gap 
in the exact solution of the Hubbard model [13] in the 
strong-coupling limit is equal to yw, which coincides 
with ~ in (11). Thus, we have both qualitative and 
quantitative coincidence with the known exact solu
tions[13] in the region II. In the weak-coupling limit (y 
« 1) we can propose for the determination of the gap in 
the spectrum of H2 a self-consistent procedure similar 
to the one worked out earlier by us, [28] in accordance 
with which we obtain for ~ the expression 

d,=wl'rI 'I. exp [-1/IYI], (15) 

which coincides up to a pre-exponential numerical fac
tor with the exact value of ~ obtained in the Hubbard 
model. [13] 

Kimura's calculations, [27] which pertain to the h = Y4 

case, predict in the region II the simultaneous appear
ance of antiferromagnetic ordering and a Peierls dou
bling of the period, which agrees with our result if we 
set h = Y4' However, the values for the exponents of the 
power-law behavior of the correlation functions turn out 
to be different. Kimura found N(2kn n) - n-3/2, while 
we found N(2k" n) - n-1• This is connected with the fact 
that in the second-order renormalization-group method, 
which was used by Kimura, [27] and which correctly in
dicates a strong coupling in the region II, it is not pos
sible to say anything about the existence and magnitude 
of the gap ~ in the excitation spectrum and to find out 
the anomalies in the behavior of the admittances that are 
connected with the presence of this gap. 

In the region III (h < I Y41 and Y2 < I Y31) there are no 
gapless excitations, and the system is a Peierls dielec
tric at T =0. This region has been studied only by 
Kimura, [27] but no results pertaining to the gaps ~1 and 
~ are contained in this paper. [27] As in the region II, 
in the region III the isothermal compressibility x T = ~ n/ 
~ /J. - 0 as T - 0, which indicates that the chemical po
tential, /J., as a function of n has a discontinuity at T =0, 
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as it should be in the Hubbard model. [lS] 

For I Ysl "'" h < (u ~ + y~)1/2 and Y1 < I Y41 (the region IV) 
the triplet excitations are separated by a gap (~1 *0). 
At T = 0 singlet Cooper pairing is possible (the region 
IV1), and may also be accompanied by a Peierls doubling 
of the period (the region IV2). For the region IV Kimura 
found that the Peierls doubling and the Cooper pairing 
always appear simultaneously, i. e., he missed the re
gion IV1. This difference is again due to the fact that 
the method used by him[27] does not allow the discovery 
of, and the allowance for, the presence of the gap ~1 in 
the spectrum of the operator H1 • 

In the model considered by Kimura [27) it was assumed 
that g4 =0. According to Solyom, [29] allowance for g4 in 
the case wheng~ =gt and g~ =g~ in the framework of the 
renormalization-group method significantly alters the 
results obtained by Kimura in[271, where g4 =0. Thus, 
Solyom [29] asserts that if gs = 0, then the situation turns 
out to be a "zero-charge" situation in the entire region 
of values of gl (gl (z ) - 0), while g2 and g4 for z - 0 do 
not have a universal value. In the present paper we 
have obtained the result that the influence of g4 is insig
nificant. This quantity enters only in the definition of 
the bare velocity of sound, VFU2, and the velocity of the 
spin excitations, VFUb and U1 = 1 -g4/2rrvF and u2 = 1 
+g4/2rrv F partiCipate in the subsequent calculations a~ 
dimensionless scaling factors attached to the {y}. It is 
clear that in this case the direct expansion in a perturba
tion-theory series in g4 is not correct. Nevertheless, 
it seems to us that the second order in the renormaliza
tion-group method is sufficient for the correct allow
ance for the role of the collective excitations in the g4 
* 0 case as well, but the calculation should be self-con
Sistent, and for this purpose, for g4 * 0, it is necessary 
to additionally take into account the presence of a third 
channel, of exchange type relative to the Peierls chan
nel. This third channel is directly connected with the 
collective modes. 

All the above-presented assertions pertaining to the 
behavior of the correlation functions and the results 
presented in the table were obtained for T = O. It is not 
difficult to generalize them to the T» ~1 or T» ~2 case. 
Contributions to the formation of the Singularities of the 
correlation functions for n - 0 and q = 0 or q = 2k Fare 
made in this case by both the spin and the acoustic ex
Citations, which, as has already been indicated above, 
can again be described by the TL Hamiltonian. As a re
sult, the expressions for the critical indices assume 
the same form as in the TL model generalized to the 
case in which allowance is made for spin. [1S] 

5. ROLE OF THE TRANSVERSE COUPLING 
BETWEEN THE FILAMENTS 

Let us make a few comments about the generalization 
of the obtained results to the case of a quasi-one-di
mensional system in which there is coupling between the 
filaments. In a quasi-one-dimensional system, besides 
the kinetic transverse coupling, there can exist in the 
transverse direction an additional interaction in which a 
potential part and an interaction connected with electron 
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transitions from filament to filament can be distin
guished. It is clear that a potential interaction between 
the filaments will not change the main results. The 
critical indices in the table should be understood as cer
tain quantities averaged over the transverse momenta. 
Thus, in the case of the Coulomb interaction we have for 
the correlator N(2kF' Q,) in the Q, - 0 and T =0 limit the 
relation 

(16) 

where w~ = 47fe2n/m is the plasma frequency and £F is 
the Fermi energy. 

The effect of the interaction associated with the elec
tron transitions from one filament to another has been 
investigated by Gor'kov and Dzyaloshinskii[301 in the 
framework of the parquet approximation, the degree of 
reliability of which has as yet not been completely eluci
dated in such problems (in the purely one-dimensional 
case it is inadequate). In the subsequent discussion we 
shall drop such type of interaction, assuming that the 
entire interaction is concentrated on the filaments, and 
study the effect of only the kinetic coupling, assuming it 
to be weak and characterizing it by the quantity Wi (Wi 
is the width of the electronic band in the transverse di
rection; Wi « WII ). Here we can clearly expect a phase
transition temperature different from zero. 

According to the standard approach (allowance for Wi 
by the mean-field method), the connection between Wi 
and the critical temperature, T e , of the phase transition 
into a state with a given critical mode is given by the 
equation 

(~)2 .(~) '(Tel ~ (W-,- )', 
WII W WI! 

(17) 

where v(T) is the exponent of the power-law singularity 
(v<O and can be taken from the table) for the correlator 
characterizing the corresponding mode and W is the en
ergy scale on which the interaction is defined (W"" WII ). 

In the presence of two interacting critical modes the 
state with the mode corresponding to the higher Te is 
realized (see, for example, (311). However, for a more 
thorough consideration of the question of the Te and the 
possible states, let us carry out a microscopic analysis. 
We shall proceed here from the fact that the present de
scription and, in particular, the renormalization-group 
equations are valid for T» Wi' In the region T - Wi> the 
system acquires three-dimensional features. With al
lowance for the fact that, besides the Cooper instability, 
there occurs in the system instability with respect to 
the doubling of the period not only along, but also in the 
directions perpendicular to, the filaments (following 
Efetovand Larkin, [321 we shall call this instability the 
anti-Peierls instability), the behavior of the system at 
T «Wi will be determined by the parquet equations, 
which are valid in this case. 

According to this scheme, the following picture will 
obtain in the region I in the phase diagram. When Wi 
« T« W, the description in terms of collective excita
tions is valid; as the temperature approaches Wi' the 
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fluctuations in the system will intenSify, and beginning 
from T - Wi the single-particle states will be re-estab
lished. Subsequently, the growth of the fluctuations 
ceases, and the system remains a normal metal right 
up to T=O. 

When allowance is made for a weak transverse kinetic 
coupling in the region II, we should distinguish two 
cases: Wi « ~ and Wi»~' If Wi»~' the phase tran
sitionoccurs at a finite temperature. Qualitatively, the 
picture of the transition is as follows. When T ap
proaches a value of the order of Wi from above, the 
fluctuations in the system intensify, this buildup oc
curring in accordance with the laws of one-dimensional 
systems. In the T - Wi region, the fluctuations, which 
at T» Wi had a purely longitudinal character, begin to 
spread in the transverse direction, acquiring three-di
mensional features. Their subsequent development can 
be described by parquet equations with allowance for the 
anti-Peierls feature. Following the above-presented 
arguments, we have for the invariant charge g(t)t191 in 
the case when - Y2 = , Y3' = y« 1 the following equations: 

for t < 1J(T» Wi) 

dg ~ -2g' (g+ 1) 
dt 

and for t > 1J(T« Wi) 

dg , 
dt~ -2g, 

where 

l~ln (W/T), YJ~ln (W/W1 ), g(O)~-1, 

(18) 

(19) 

from which we can obtain the following estimates for Te: 

for To« Wi « W 

(20) 

Tc~RT,,( W-,-/T,,) -.nn 111, (21) 

where A, B are numbers (A -1 and B < 1), To = We-1/2r is 
the critical temperature computed by the mean-field 
method for an isolated filament, while Te corresponds 
to simultaneous anti-Peierls and antiferromagnetic in
stabilities. 

However, in order to more rigorously solve the prob
lem of just which state is realized below Te , a more 
careful matching in the region T - Wi is required. For 
Wi «~2 intense longitudinal fluctuations have time to 
develop in the system (yl/2To coincides with the value of 
~), and it is extremely difficult to investigate this re
gion of Wi values (Eqs. (18) and (19) lose their meaning 
in this case, since g(1J) -1). We shall, for definiteness, 
assume that, for Wi «~, the results obtained for one 
filament are valid, i. e., the system is a Mott dielec
tric. 

Similarly, for the region IV in the phase diagram, if 
we take into account the anti-Peierls instability, then 
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when the kinetic coupling W.l is of small magnitude, i. e., 
for W.l «A1, the quasi-one-dimensional system will not 
undergo any transition right up to T = 0. For W.l» A1 a 
transition into the superconducting state, accompanied 
by the anti-Peierls doubling of the period, takes place. 
The estimates for Tc are the same as in (20). 

In the region III (Fig. 2), on going from a one-dimen
sional to a quasi-one-dimensional system, either a state 
of the purely anti-Pejerls type, or a state of the mixed 
type, in which the dielectric (anti-Peierls) phase co
exists with antiferromagnetic ordering or with Cooper 
pairing, can be realized, depending on the relation be
tween Wi> A1, and~. 

A more thorough analysis is carried out in the pres
ent authors' paper. (34] 

6. CONCLUSION 

In a one-dimensional Fermi system four different 
types of interaction should be distinguished. Let us 
split the potential interaction between the subsystems 
with p > ° and p < ° into its symmetric and antisymmet
ric-with respect to spin-parts. The first of them (the 
corresponding coupling constant is denoted by Y2) deter
mines, as in the usual Landau theory of the Fermi liq
uid' the spectrum of the density oscillations, while the 
antisymmetric-with respect to spin-part of the inter
action (the constant h) enters into the determination of 
the spectrum of the spin waves. 

In the interaction that is accompanied by electron 
transitions between the subsystems, we can distinguish 
a part that can be called an exchange interaction. In 
the process of such an interaction (constant Y4) the sub
systems with p >0 and p < ° exchange only spin, the num
ber of electrons in the subsystems remaining unchanged 
in the process. The fourth type of interaction is repre
sented by U-processes. In this case only the number of 
electrons in the subsystems changes, the total spin 
(more exactly, the z component of the total spin) of the 
subsystems remaining unchanged (the corresponding 
coupling constant is designated as Y3)' 

In the absence of interactions giving rise to electron 
transitions between the subsystems (Y3 = Y4 = 0), the 
model under consideration is a generalization of the TL 
model to the case in which allowance is made for spin. 
The eigenstates of such a system are only collective ex
Citations; strictly speaking, the concept of single-par
ticle excitations itself turns out to be inapplicable. The 
correlation functions at large distances and times de
crease in a power-law fashion. The contribution to the 
corresponding exponent of the power-law behavior is 
made by the long-wave parts of the collective-excitation 
spectra. The phase-transition temperature for the sys
tem is equal to zero. 

There is a difference between the results obtained in 
the present paper and the results of other papers. (Z6,Z7] 
The coupling constants for the acoustic excitations (Yz) 
and the spin excitations (h) in the present model have 
been uncoupled, which in turn is due to a more general 
choice of the initial interaction Hamiltonian and leads to 
a situation in which there appear in the region I in the 
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phase diagram (Fig. 2), besides the subregion Is, the 
subregions 11 and Iz' 

The exact computation of the critical indices carried 
out in the present paper (see also(14]) indicates that 
some functional dependence is lost in the corresponding 
computations by the renormalization-group method. 
The expressions obtained for the critical indices by 
Solyom(Z6] and Kimura(Z7] are only the first terms of the 
expansions of the exact expressions (see (14». This 
fact should evidently be linked with the fact that, in us
ing the renormalization-group method, it is necessary 
to directly take account of the presence of a third chan
nel, (of exchange type relative to the Peierls channel), 
which directly determines the collective-excitation spec
trum, although it has no logarithmic Singularities in 
first-order perturbation theory. 

The presence in the system of interaction connected 
with electron transitions between the subsystems with p 
>0 and p <0 can significantly change the properties of 
the system. Thus, in the case when Ys * ° (the band is 
half filled), as Yz is varied, there occurs at the point 
Y2 = I Ysl a first-order parametriC transition, since there 
is a jump in the compressibility at the transition point. 
This transition appears to correspond to the distinctive 
Mott metal-dielectric transition in a one-dimensional 
system. Notice that it has a purely correlative charac
ter, and is not connected with a change in the symmetry 
of the system as a result of the presence of some order. 
This in part explains the unsuccessful attempts to dis
cover this transition in the framework of perturbation 
theory. 

The appearance of the dielectric gap (the region II, 
ra < I ral )S) inhibits the transition into some supercon
ducting state at T = 0, and facilitates the transition into 
a state with an antiferromagnetic order (the region Ill), 
or into a mixed state (the region lIz), in which a Peierls 
doubling of the period occurs along with the antiferro
magnetic ordering. For Yz ~ I ral, the interaction de
fined by the constant Ys turns out to be effectively 
screened, and the system can be described as before by 
the TL Hamiltonian, though with modified coupling con
stants. 

The presence of exchange interaction between the sub
systems (Y4 *0) can lead to a situation in which the 
ground state turns out to be a singlet state and the trip
let excitations are separated from this state by a gap 
(the region IV). Such a state corresponds to a singlet 
magnetic substance. The spin susceptibility behaves in 
an activating manner. The correlation functions that 
are not directly connected with the triplet excitations 
decrease at T« A1 and at large distances according to a 
power law, the contribution to the exponent of the power
law behavior being made by the long-wave acoustic ex
citations. The assertion that only the long-wave gapless 
part of the collective-excitation spectrum makes a con
tribution to the exponent of the power-law decrease of 
the correlation functions was put forward as a hypotheSiS 
in Efetov and Larkin's paper(SZ]; their analysis pertains 
in the present model to the region IV and the coupling
constant values: ra =0, Uz +Yz =1, and Y4 - _00. In the 
region IV we can also expect a deViation, due to an in-
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crease in the density of states near the gap, from the 
normal temperature dependence of the observable char
acteristics. 

An interesting state is realized in the region III; here 
there are no gapless excitations, and for T« min[.6.1, Azl 
the disruptive influence of the long-wave collective ex
citations will be considerably weakened. At T =0 there 
exists in the system long-range order corresponding to 
the state of a Peierls dielectric. 

The transverse kinetic coupling can significantly alter 
the results obtained for a one-dimensional system. If 
we take the anti-Peierls instability into account, then 
for Wl » .6.1 , Az the state diagram obtained in Dzyalo
shinskit and Larkin's paper[11l in the framework of the 
parquet approximation is qualitatively re-established. 
In this case Tc can be a complicated function of Wl (see 
(20) and (21)). Apparently, there also exists a region of 
sufficiently small values of Wl (Wl « .6.1 and Wl « Az) 
where the results obtained for a one-dimensional sys
tem do not qualitatively change. This is in regard to 
the states of the Mott (the region II) and Peierls (the re
gion III) dielectrics and the state of the singlet magnetic 
substance (the region IV). 

Although the entire analysis pertained to, and is valid 
for, a model with a linear spectrum with allowance for 
the ctltoff suggested by Luther and Emery, C17l we hope 
that the obtained results (the table and the phase dia
gram in Fig. 2) and the assertions concerning the spec
trum and the role of the collective excitations in a one
dimensional system are of suffiCiently general charac
ter, since of real importance in the present problem (in 
the problem of the behavior of the correlation functions 
at large distances) is the shape of the spectrum near the 
Fermi surface, the linear character of which is always 
assumed, and the proposed interaction Hamiltonian is 
representative enough for it to describe all the known 
physical situations. 

Recently, Emery, Luther, and Peschel(33l made al
lowance for U processes, using a scheme similar to 
ours (see Sec. 2); the correlation functions were, how
ever, not investigated by these authors and, consequent
ly, the question of the possible states of a one-dimen
sional system was not considered. 

The authors thank G. Yu. Yashin for a useful discus
sion of certain questions touched upon in the present 
paper. 

1)This can already be seen from the fact that the velocity of 
sound in a one-dimensional Fermi system coincides with vF, 
whereas in two- and three-dimensional ideal Fermi gases it 
turns out to be less than VF, being equal respectively to 
vFI.f2 and vFIf3, which leads to sound attenuation in these 
systems. 

2'ln the spin-zero variant of the TL model, the two diagrams 
with g'~ and ~ (Fig. 1) do not differ from each other, and only 
one of them needs to be retained; therefore, the factor of two 
connected with spin drops out in the computation involving 
the intermediate states, and this alters the results drastically. 
The square-root singularit/15J in the single-particle Green 
function is replaced by a pole singularityl20J: 
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(pix)" (pix)" 
G(p,Ol)~ ~G(p,Ol)~--. 

[(Ol-v,p) (w-cp) ]'" Ol-VFP 

The expressions for the correlation functions also change. 
3'The interaction constants {y} are defined in this way: the 

positive values of 1'2 correspond to attraction of electrons 
with opposite momenta, the negative values, to repulsion; 
the positive values of 1'1 correspond to ferromagnetic coupling 
between the electrons, the negative values, to antiferromag
netic coupling; the interaction defined by the constants 1'3 
and 1'4 is, on account of the indicated off-diagonal nature of 
these constants, determined by the absolute values 11'3 I and 
11'4 I . 
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The Shubnikov-de Haas etTect has been investigated in single-crystal bismuth samples doped with Sn and 
Pb in fields of up to 60 kOe at liquid-helium temperatures. An increase in the cyclotron masses 
mcT(Err) of holes at T with increase in the volume of the Fermi surface was found. In the framework of 
the Kane two-band model, a gap of EgT = (200 ± 40) meV was found at T. The energy dependence of the 
low cyclotron masses of carriers meL (EFd at L on lowering the Fermi level (H parallel to the binary axis) 
was found to be linear. The parameters of the Abrikosov dispersion law for carriers at the point L were 
determined as vx=0.99X108 cm/s and Vy =0.74X108 cm/s. It was shown that the gap EgL at L lies in 
the interval o <IEgJ< 15 meV. It was also shown that the band overlap in the acceptor-doped bismuth 
samples investigated did not depend on the· impurity concentration. It was found that the parameter 
Eo, + EgL/2 = (46±2) meV. 

PACS numbers: 72.15.Gd, 71.30.Hr 

1. INTRODUCTION 

The energy spectrum of bismuth has been investigated 
in a large number of experimental and theoretical pa
pers. (1-4) However, right up to the present time models 
describing the spectrum of carriers at the pOints L and 
T in the reduced Brillouin zone, as well as certain im
portant parameters of the spectrum have not been given 
unique values, owing to the complexity of the band struc
ture of bismuth and the strong anisotropy of its proper
ties. There are considerable discrepancies in the esti
mates of the degree of deviation of the hole spectrum 
from parabolic. [5-8) At the same time the values of the 
gap parameter of the electron spectrum at L found in 
various papers do not agree not only in magnitude, but 
even in sign. [4,7-16] 

The introduction of acceptor-type impurities (Pb, Sn) 
into the bismuth lattice allows the Fermi level to be dis
placed within wide limits. This opens up the possibility 
in principle of deriving the energy dependence of the 
basic parameters of the carrier spectrum at the over
lapping extrema of the conduction band Ls and the va
lence band T 45 , [3] which is essential for checking the 
theoretical models describing the laws of carrier dis
persion at the L- and T-extrema. [1-4,17] No less in
teresting is the problem of finding new extrema in the 
valence band of Bi on suitably lowering the Fermi level. 

At acceptor impurity concentrations below O. 1 at. % 
the lattice parameters of Bi do not vary markedly, [3) 

and the effect of the acceptors is apparently only to make 
the electron and hole concentrations unequal and to 
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change the electron and hole mobilities. 

Theoretical estimates indicate that localization of car
riers at impurity centers in Bi has an extremely low 
probability, owing to the strong screening of the im
purity potential by free carriers. [19] It should be noted 
that even when an impurity level is formed, it inevitably 
falls within the spectrum of allowed states, owing to the 
overlap of the valence band with the conduction band, 
which must lead to delocalization. At the present time 
there is no direct evidence of the existence of local or 
quasi-local impurity levels in the spectrum of impurity
doped bismuth. 

The investigation of the Fermi surface in impurity
doped bismuth by quantum-oscillation effects is made 
very difficult because the relaxation times T of the elec
trons and holes, which reach - 10-9 s in pure single 
crystals of bismuth at liquid-helium temperatures,l20,22] 
drop rapidly with increase in the impurity concentra
tion. At the same time the dominant scattering mecha
nism at liquid-helium temperatures becomes scattering 
by ionized impurities, [5,23-26] which leads to a marked 
dependence of T on energy. 

Decrease in relaxation time with increase in impurity 
concentration by several orders does not impose severe 
restrictions on the investigation of galvanomagnetic and 
thermomagnetic effects in Bi, but this involves its own 
inherent difficulties. These are primarily associated 
with the ambiguity in the interpretation of the experi
mental data, as a result of the obvious arbitrariness in 
the choice of a model for the band structure. Additional 
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