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It is shown that in quasi-one-climensional conductors impurities suppress not only the dielectric transition 
but also the superconducting transition. Impurities with a slowly-varying potential do not affect the size of 
the region in which short-range order exists in the one-dimensional case, but decrease the amplitude for 
coherent hopping of a pair of electrons from filament to filament. As a result, the temperature of the 
superconducting transition is decreased but remains finite for any concentration of quasi-classical 
impurities. Impurities that can backscatter an electron decrease the region of the existence of short-range 
order in the one-dimensional case. Because of this, in the quasi-one-dimensional case the superconducting 
transition temperature should vanish at a certain concentration of impurities. 

PACS numbers: 71.55.-i, 71.4O.+n, 74.10.+v 

In the majority of quasi-one-dimensional compounds 
there is no superconducting transition, since a phase 
transition to the dielectric state occurs at a higher tem­
perature. The opinion has been expressed that suppres­
sion of the dielectric transition by impurities could fa­
cilitate the appearance of superconductivity. The basis 
for this was that nonmagnetic impurities have no effect 
on the superconducting transition in three-dimensional 
conductors. Below it is shown that in quasi-one-dimen­
sional conductors impurities suppress not only the di­
electric transition but also the super conducting transi­
tion. This is connected with the inapplicability of quasi­
one-dimensional conductors of the BCS formula for the 
superconducting transition temperature. In the three­
dimensional case the transition temperature is deter­
mined by the denSity of electron states, which depends 
weakly on the impurity concentration. In the quasi-one­
dimensional case it is determined by the amplitude for 
hopping of a pair of electrons from filament to filament 
and by the form of the one-dimensional correlation func­
tion. 

In the one-dimensional case we shall distinguish two 
types of impurity. If the potential of the impurities is 
slowly varying, the scattering by them occurs quasi­
classically. In this case actual scattering of an elec­
tron does not occur and the effect of the impurities re­
duces to the appearance of a random phase of the elec­
tron wavefunction. As was shown by Zawadowski, Ul 

such impurities do not affect the thermodynamics of a 
one-dimensional system, in which, however, phase 
transitions are in any case absent. A finite transition 
temperature is obtained as a consequence of three-di­
mensional effects, which establish a coherent state over 
the whole volume. The impurities induce an independent 
phase shift on each filament, as a result of which the 
coherence decays and the transition temperature de­
creases. If the potential of the impurities is sufficiently 
steep we cannot neglect scattering with change of the 
electron momentum. As shown below, such impurities 
have a significantly stronger effect on the super conduct­
ing transition temperature, which vanishes at a certain 
impurity concentration. 
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In the self-consistent field approximation with respect 
to the interaction of electrons on different filaments, for 
the temperature of the dielectric transition we have the 
equation(Zl 

v S IT (x) e"PF% dx = 1, (1) 

where V is the interaction of electrons on neighboring 
filaments, and n(x) is the correlator of the densities for 
electrons situated on the same filament. 

The Fourier components of the density operators with 
momentum 2PF appear in the expression (1). Taking 
quasi-classical impurities into account reduces to mul­
tiplying n(x) by 

exp ( - ~: f u(x')dx'] ' 
o 

where u(x) is the random potential created by the im­
purities. After averaging over the impurities this fac­
tor acquires the form e-rll, where l is the mean free 
path. 

For weak electron-electron interaction g« 1 there is 
a region of small x« ae1 /g (a is the lattice constant) in 
which the interaction is unimportant. In this region, 

IT( ,_ 2Tcos2pFX 
x)-

v/sh(2nTlxl/vF ) 

(2) 

At low temperatures the right-hand side of Eq. (1) is 
equal to V(1TvF)-lln(l!a), and therefore, if l <a exp(rrvF! 
V), Eq. {1) has no solution at any temperature and the 
phase transition is absent. The result obtained applies 
to the case when the interaction of electrons on different 
filaments is of the same order of magnitude as the in­
teraction in the same filament. Under these conditions 
the result coincides with that obtained in the review by 
Bulaevskii'. [3] 

In another limiting case, when the interaction V of 
electrons on different filaments is weaker than their in­
teraction gv F in the same filament, we must substitute 

Copyright © 1977 American Institute of Physics 1159 



into Eq. (1) the correlator II (x) calculated with allow­
ance for this interaction[Z]: 

(3) 

where the parameter a depends on the interaction g, 
and 1 - a 'Z g 12 for g « 1. Then the condition on the mean 
free path l under which the phase transition is certainly 
absent takes the form 

( 
VF (1 - Ct) ) ./(2'-1) 

Z<ae'/' V . (4) 

This inequality was derived under the assumption that 
the impurities are quasi-classical and backward scat­
tering does not occur. It is physically obvious that the 
action of impurities of a general kind is not weaker. 
Thus, for a sufficiently small mean free path the dielec­
tric transition disappears. 

A super conducting transition in the quasi-one-dimen­
sional case can occur only when there are electron hops 
from filament to filament. We find the transition tem­
perature in this case using the formula (38) of the pa­
perez] by Efetov and one of the authors: 

W SG(x,T)dxdT=1, (5) 

where W is the amplitude for hopping of a pair of elec­
trons from filament to filament and G(x, 1") is the cor­
relator of super conducting pairs in one filament. 

The correlator G(x, 1") is not changed by quasi-classi­
cal scattering. Therefore, as in the "clean" case, [Z] 
we obtain the following relation between the transition 
temperature and the parameter W: 

(6) 

where A is the magnitude of the gap, determined by the 
BCS formula. 

The amplitude W decreases with increase of impurity 
concentration. This follows from the expression 

w,;=J'S dwdx<F,.(x)F;w+(x'», (7) 

where J is the amplitude for an electron to hop from 
filament to filament, i and j are the labels of neighbor­
ing filaments, F;w(x) is the Gor'kov function, and the 
angular brackets denote averaging over the positions of 
the impurities. 

When quasi-classical impurities are taken into ac­
count the function F;w(x) is multiplied by 

exp (v: SU;(X')dX'), 
o 

where Uj(x) is the potential of the impurities in the j-th 
filament. Averaging independently over the positions of 
the impurities in each filament, we obtain 

1160 Sov. Phys. JETP, Vol. 44, No.6, December 1976 

J2 J dw {12 J [ 21xl (w' + (12) 'I, 
W "" -2 --, --, exp - ---'----'--

VF 2" w + (1 VF 

Ixl ] J'j., 
- dx""--

I v,. 

(8) 

It follows from formulas (6) and (8) that with increase 
of the concentration of quasi-classical impurities ,the 
super conducting transition temperature decreases but 
remains finite for any concentration of impurities. Im­
purities that can scatter an electron backward have a 
significantly stronger effect on the superconducting tran­
sition temperature, since they change not only W, in ac­
cordance with formula (8), but also the law of decrease 
of the function G(x, 1") with distance. 

As in the clean case, [2] we shall assume that the be­
havior of G(x, 1") at large distances is determined by 
slow fluctuations of the phase: 

(9) 

where the functional F[rp 1 is calculated under the as­
sumption that a local superconducting state eXists, and 
is equal to 

K [( o<p ) 2 ( oq> ) 2] F[<pl=TJ h +V.' a:; dxdT, (10) 

where K is the density of states at the Fermi level and 
Kv~ is the superfluid density. It follows from formulas 
(9) and (10) that, at large distances, 

C(x, ,)",,(v/{1)"(x'+v/,')-"/', 

Ct~2 (l1Kv,) -'. 

(11) 
(12) 

For a < 2, large distances R - v siT are important in the 
integral (5), and for the transition temperature we ob­
tain the formula (6). 

It seems natural that G(x, 1") will fall off faster in the 
dirty limit than in the clean limit. There are two con­
ceivable possibilities for the law of decrease of G(x, 1"). 
The first is that the impurities lead to the disappearance 
of the long-wavelength sound excitations. In this case 
the correlator G(x, 1") falls off exponentially at large 
distances and the integral in the expression (5) con­
verges even at zero temperature, so that for small W 
and a not very small concentration of impurities the su­
perconducting transition is absent. The second possi­
bility is that the long-wavelength sound excitations con­
tinue to exist even in the presence of impurities, which, 
in this case, change the parameter a in formula (11). 
In fact, the coefficient of (arp lax)2 in the free energy (10) 
is proportional to the superfluid denSity, i. e., to the 
correlator of the electron velocities. Even in the three­
dimensional case this correlator decreases with in­
crease of impurity concentration. We shall show that in 
the one-dimensional case it decreases still faster. 

To calculate the correlator of the velocities we shall 
make use of a technique proposed by Berezinskil[4] for 
the calculation of the conductivity in a one-dimensional 
system. We expand the velOCity correlator in a series 
in the interaction with the impurities and write each 
term of the series in the coordinate representation. The 
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Green function in the self-consistent field approximation 
has the form 

[ ( e'+il' )'''] g"(x,e)=u,-'[AeiPr'%'+ne-iPFi"]exp -Ixl --;;;;- , 

(A) 1 ( -i[e± (e'+Ll') 'h] -Ll ) 
B = 2(£'+~')'!. Ll' i[e+(e'+Ll')"']' 

e=(2n+1)nT. 

(13) 

(14) 

It follows from the latter formula that.1B=BA =0. 
Therefore, as in Berez inskii' s paper, [4] the correlator 
is represented by loops consisting of two lines. One of 
these contains only matrices A, and the other contains 
only matrices B. Since (ut)"=iA and (-iB)"=-iB, the 
product of matrices in the correlator gives the factor 

(15) 

The factors exp[ - X(£2 + ~2)t/2 /VF 1 can be assigned to the 
impurity vertices, and then each diagram differs from 
the corresponding diagram of Berezinski'i's paper[4] by 
the replacement of w/2 by i(£2 +~2)t/2. Having made 
this replacement in the expression for the conductivity[4] 
in the regime 7"£ «1, we obtaint ) 

, 1 
Kv.' = S dT S dx<v("[,x)v(0,0»""32~(3)1c'Vp(LlT)'ln~. (16) 

This formula is applicable in the limit ~7"« 1. 

Impurities have little effect on K-the density of states 
at the Fermi surface. Substituting (16) into (12) we ob­
tain 

cto 
ct = -----'----:-:7." 

Ll'd32~(3)ln(1/"'"t) ]''' 
(17) 

where 0'0 is the value of 0' in the absence of impurities 
and s is the Riemann function. For weak interaction, 
0'0 is close to 1. 

Thus, in the dirty limit ~7"« 1 the parameter 0' is 
large, and, consequently, for 7"<7"crit-~-t, the value of 
0' exceeds 2. In this case the integral in formula (5) 
converges even at zero temperature, and, therefore, 
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Eq. (5) for small W has no solution and the supercon­
ducting transition is absent. 

The existence of a dielectric transition in quasi-one­
dimensional conductors implies that the interaction of 
electrons on different filaments (V in Eq. (1)) is larger 
than the pair-hopping amplitude (W in formula (5)). By 
introducing a sufficiently large quantity of impurities it 
is possible to suppress the dielectric tranSition, but 
then, almost inevitably, the superconducting transition 
will also be suppressed. Only exotic impurities that 
either increase the probability of an electron hopping 
from filament to filament or do not scatter electrons 
backward could save the situation. 

An obstacle to quantitative comparison with experi­
ment is the difficulty of determining experimentally the 
mean free paths appearing in the expressions that we 
have obtained. Scattering by quasi-classical impurities 
does not affect the conductivity at all, while scattering 
with a change of momentum leads to localization of the 
electron and absence of conduction at low temperatures. 

In certain quasi-one-dimensional conductors (KCP 
and salts of TCNQ with quinOline and acridine) internal 
disorder exists. It is evident that this disorder does 
not lead to a small mean free path, since a dielectric 
transition exists in all the compounds indicated. [3.6] 

1)The numerical coefficient in this formula is written taking 
into account the results of Gogolin, Mel'nikoy and Rashba. [51 
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