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The role of various nonlinear processes in the suppression of parametric instability of acoustic phonons 
generated by a laser beam is investigated. It is shown that the problem has a range of parameters in 
which the principal role in the suppression of the instability is played by the corrections to the vertex of 
the interaction of the light with the phonons. The form of the occupation numbers and the spectrum of the 
generated phonons are obtained for this range of parameters. 

PACS numbers: 63.20.Dj, 79.20.Ds 

1. INTRODUCTION 

It was shown in Ref. 1 that parametric instability (PI) 
occurs in a crystal upon generation of acoustic phonons 
of the lower, non-decay, branch with a momentum of 
the order of the Debye momentum qD' by light having a 
spectral width 110» ~II« T -1 (where 110 is the central fre­
quency of the light beam and is not equal to the frequen­
cies of the optical branches, T is the lifetime of the 
equilibrium phonons with momentum qo determined from 
the condition 110 = 2w.o, and w. is the dispersion law of 
the generated phonons). Here we mean by PI that the 
occupation numbers N. of the phonons become infinite at 
some finite value of the light intensity jo. It has also 
been shown that here, in contrast with the case of gen­
eration by monochromatic light, [2] the damping of the 
generated phonon (GPh) at the PI threshold does not nec­
essarily vanish. 

The nonlinear damping due to the sticking together of 
two GPh into phonons of higher decay branches was re­
garded in Ref. 1 as the limiting mechanism. It was 
shown in this case that there exists a region of values 
J>Jo in which other nonlinear mechanisms can be ne­
glected. For these values of J, the value of N. was found 
in a form turned out to be dependent on the spectral 
shape of the light cP (II) "" 1 and its intensity. For the 
Lorentz shape of the light with width ~II and center 110, 
the quantity N also has a Lorentz shape with center Wo 

= 110/2 and width ~~1I(1 - €)1/2, where ~ is a dimension­
less quantity which depends on the intensity, and tends 
to unity as J_oo. 

However, a situation is possible in which the GPh 
either cannot stick into phonons of higher branches, be­
cause of nonsatisfaction of the law of conservation of en­
ergy-momentum, or this mechanism has added small­
ness in comparison with the others. For example, in 
the generation of different phonons, the effectiveness of 
generation is determined by the density of the two-pho­
non states with total momentum'" 0, and the effective­
ness of the sticking is determined by the single-particle 
densities of states of the GPh and of those phonons into 
which the GPh can stick, but these densities can differ 
considerably. Moreover, it is necessary to investigate 
a region of intensities that exceed the limits of applica­
bility of Ref. 1. Therefore, the consideration of the 
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role of other nonlinear mechanisms is of interest. In 
the present work, for the same statement of the prob­
lem as in Ref. 1, we describe a general approach to con­
sideration of nonlinearities, and show that the correc­
tions of next order (following the nonlinear damping) are 
those to the vertex of the interaction of light with pho­
nons. The form of the function N., which is obtained 
when these corrections are taken into account, is also 
determined. 

2. GENERAL INVESTIGATION OF ABOVE­
THRESHOLD BEHAVIOR 

Assuming the nonlinearity to be weak, we limit our­
selves to the following model Hamiltonian of the inter­
action: 

Fl.n' = SdX{~E<P2 + ~1jl<p2 + !:..-<p') +IlT • 
2 2 4! 

(1) 

Here E is the classical random field of the pump, cp is 
the GPh field, 1/! is the field of the decay phonon, into 
which the cp phonons can stick, HT is the interaction 
Hamiltonian with the thermostat. The term of the form 
f cp3dx, which is unimportant in what follows, because 
of the assumed non-decay chllracter of the cp phonon 
(here, it reduces to an interaction of the type f cp4dx), 
is not written out, for brevity. The Hamiltonian (1) is 
chosen in a local form because the dependence of the 
form factors on the momenta will not be important in 
those equations which will be solved. For definiteness, 
we have chosen the case of generation of two identical 
phonons and for simplicity we assume the problem to be 
spherically symmetric, the light E to be scalar and the 
temperature T =0. 

For the general approach to consideration of the non­
linearity, we make use of the Keldysh diagram tech­
nique[3] (its formulation is given in the Appendix). The 
stationary nonequilibrium state of the phonons is de­
scribed by the Dyson equations for the retarded (Dr) and 
the statistical (D.) Green's functions of the phonons. In 
this case, the spectral characteristics of the phonons­
the renormalization of the spectrum ~w. and the width 
y.-should be found simultaneously with their distribu­
tion function N.. The Dyson equations in general form 
are not closed relative to Dr and Ds (Green's functions of 
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higher orders enter here), but, by using the weakness of 
the interaction and the expected "narrowness" of N., we 
can isolate the principal terms in these equations. This 
isolation is conveniently carried out by applying the 
"skeleton" perturbation theory, [.] i. e., a diagram rep­
resentation for the Green's functions with exact single­
particle Green's functions and with "bare" vertices. 
When the corrections to the vertices are not small, they 
must be taken into account. 

We represent Dr and D. in the following form e5 ]: 

(J}q2 Cl)q% 

D,(q) ".. ----'----
w'-<o.'-w,'l1, (q) (<o+il (q) 12) '-iii' (q) 

(2) 

D,(q) =II.(q) ID,(q) I' 
=-iotl"q(2N( g) +1) [Ll (w-iii (g» +Ll (w+iii(g» I, (3) 

where II r• s are the corresponding polarization operators, 

1 (g) =-wqsgn w Im II, (g), iii (q) =<o.+Llw( g), 
Llw (g) ='/2W. Re II,( g), 

N(q) are the generalized occupation numbers connected 
with the ordinary ones by the formula 

N:= S dw Ll(w-iii(g»N(q), 

1 1(g)/2 
Ll (w±iii (g» = ;-(~±iii (q» '+1' (g)/4' g={<o, q}. 

A similar representation holds also for the I/J phonon. 

We can obtain the following "balance" equation from 
(3) by using (2) and assuming w"'''!,: 

l(g) =-N(q) l(g) +B(g) =0, 
B(g) ='/2wq[Im 11,(g)+lf,iIT.(q) I. 

(4) 

where I(q) is the generalized "collision integral, " B(q) 
describes the "arrival" and N(q)y(q) the "departure. " 
In the case in which y(q) - AW(q)« ow are the widths of 
N(q) relative to w, and change over intervals - ow, we 
can let W tend to the "mass" surface, defined from the 
equation W = w(q) and equal in first approximation to w. 

=W.+AW., where AW. = AW(W.,q), whole A(W±W(q» can 
be replaced by o(w ± w.); here N(q) transforms into N. 
and I(q) into I.-the generalized kinetic collision inte­
gral, which takes into account all the possible processes 
described by the Hamiltonian (1). In our problem, y(q) 
- T -1« ow, [1] therefore, the kinetic approximation is 
valid. 

We shall seek the stationary distribution N. by solv­
ing the equation 

Iq=-Nqlq+Bq=O, (5) 

where y. = y(w., q), B. =B(w., q). The diagrams for II 
(and they are topologically identical for IIr and II.) can 
be separated into those containing light lines and those 
not containing them. Among those containing light lines, 
it is sufficient to consider only diagrams with a single 
light line, since the contribution of diagrams containing 
several light lines contains an additional factor - T -1/ Wo 
«1. Account of diagrams with a single light line gives 
the generation term y! in y. and a term of the form 
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y~ (N -0 + 1) in B. (here, we bave used the assumption that 
AW» wov/c, where AW is the width of N., v is the group 
velocity of the cp phonon at q = qo, c is the velocity of 
light). [1] Representing y. in the form 

(6) 

where contributions of all diagrams not containing light 
lines are deSignated by y=, and assuming N. =N -0' we 
"solve" (5) r$tive to N.: 

l.'+B,' = _'/,_£.,_+_K_" 

't- ' +21.'+1,n 
(7) 

Here ~. = - 2TY~, u. = TY~, K.. = TB~, B~ are the contribu­
tions of diagrams without light lines to B.. The formula 
(7) is very convenient for further analysis. It is seen 
immediately from it that N. becomes infinite not at y. = 0, 
but when y. + y~ = O. Another conclusion from (7) is that 
the quantity N. is determined by the denominator of (7), 
and, since y~ < 0 (generation!), it follows that with in­
crease in I y! I a decrease occurs in the denominator; 
consequently, the N. increase, which in turn leads to a 
growth in the nonlinear quantities, counteracting either 
the growth of I y~ I or the decrease in the denominator. 
As a result, some sort of self-consistent distribution 
should be established. It also follows from (7) that the 
condition of instability of the higher nonlinearities is its 
smallness in comparison with the denominator (i. e. , 
with N r/, where No is the maximum of N.), and not with 
the accounted-for nonlinearity, since a cancellation of 
the principal contributions of the nonlinearities already 
taken into account can occur in the denominator, due to 
the negativeness of y!. 

We now estimate the simplest diagrams for II (Fig. 1, 
the solid line corresponds to cp, the dashed one to I/J and 
the wavy one to light). Figure 1 does not show all the 
diagrams of the given order, but only their types. Dia­
gram 1a does not make a contribution to I., but makes a 
contribution only to AW., and depends weakly on q, its 
order being - roNoAW/Wo, where ro is the width of the 
I/J phonon, determined by the anharmonism of the third 
order. The contribution of such a form and order is 
given by the real part of the diagram 1c for II r • The 
diagram 1b gives the generation contribution y!O 
=yKcp(2w.), yK_j/4v.[1] Near threshold, y!O_T-1, the 
real part of the corresponding IIr makes a contribution 
to AW. of the order T -1, 

The diagram 1c corresponds to the collision integral 
I~3) : 

00 o e-
a b c d 

u/Lh00 
f 

e 

FIG. I. 
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FIG. 2. 

(3) S dq, - - -i, =2:rt (2:rt) 3 Bq,q,A. (Wq+W,,-Qq,q,) {/q,q, [Nq+N,,+ 1 j-N,N,,} , (8) 

B q ,q,=b2wq(i)q,Qq+q,/2 3, 

where ~(Wq + wq1 - nQ,Q1) is the c. function of the 1/1 phonon 
~ee (3», f Q,Q1 are the generalized occupation numbers, 
nq ,Q1 is the spectrum of the 1/1 phonon, taken at a fre­
quency equal to Wq + Wq1 • [5] The second component in the 
curly brackets (8) contributes a term of the form y ~3) Nq 

to (5), where y!3) - roNo(c.w/wo) (this term was con­
sidered in Ref. 1). For an estimate of the first term, 
we can use the "balance" equation for fQ,Q1; 

(9) 

It follows from (9) thatfo-NoN[max{l,N}]-\ and the 
width of fQ,Q1 - c.w, where fo is the maximum of f q ,Q1' N 
= No(c.w/wo)' For what follows we note that the charac­
teristic combination No(c.w/wo), equal in order of mag­
nitude to the number of phonons in the cell, [l] arises in 
all the integrated expressions containing No (with the ex­
ception of the case of contributions to the vertex g). We 
shall assume the parameter N« 1, since in the opposite 
case we must take into account also the occupation num­
bers of the ungenerated modes and the problem is con­
siderably more complicated. We can then use the equi­
librium rq for the 1/1 phonon and the spectrum, and for fo 
we getfo-NoN. Using these estimates, we find that the 
contribution of the first term of 1.3) contains three te!ms 
with the following properties; the f~rst term - r oNq N 2 

with width - c.::" the second - r oNoN 2 with width - c.w, 
the third - r oN 2 with width - wD• They are all much less 
than y!3)No• 

The diagram ld corresponds to the collision integral 
I!4) : 

X:8 (q+ '13- '1,- 'I,) fNqNq,N g, + Nq,Nq,Nq, - !VqNq,N q, 

- !Vq!Vq,Nq, + iVq,N g, - No/I'q,]. (10) 

Because of the non-decay nature of the cp phonon only 
that part is written down which describes the scattering 
of the cp phonons by one another. The first four terms 
in the square brackets in (10) have the same order: 
- Noro(ro/wo)N2, their width - c.w; the fifth term 
- ro(ro/wo)N 2, its width - wD ; the sixth term - Noro(ro/ 
wo)N, its width - c.w. The diagram le contains correc­
tions to diagram lc and terms similar to (10) (here we 
assume that the second order cubic interaction in (1) is 
of the same order as the fourth interaction, i. e., b2 

-a). And finally, the diagrams 1f give corrections to 
y~o and are of the order of r-1Noro/wo and r-1(Noro/wo? 
and width - c.w. More complicated diagrams contain ad-
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ditional powers of the small parameters r 0/ Wo and 
Noc.w/wo and therefore will not be needed by us in what 
follows (except diagrams of the type of Fig. 2). 

We now discuss the role of the diagrams enumerated 
above and their corresponding contributions. The re­
normalization of the spectrum c.wq , which depends 
smoothly on q, is equivalent to a shift in the pump cen­
ter wo- Wo - c.wq • Since we are interested in the be­
havior of quantit~es over intervals - c.w, it follows that 
at c.wq «c.w, renormalization of the spectrum cannot be 
taken into account. For this reason, we have not con­
sidered the contribution of the diagram lb to c.wq • In 
what follows, we shall write simply Wq everywhere in 
place of wq • At the end of the section, we shall discuss 
when it is necessary to take c.wq into account. A second 
remark relates to the contributions to y;. It is easy to 
see that all the contributions to y~ depend weakly on q 
and reduce to powers of the concentration of the cp and 
1/1 phonons for narrow Nq • In this case we can assume 
y~ to be a constant, Yq' in Eq. (7) at q "" qo; this constant 
is to be determined along with the concentrations after 
finding Nq • The form of Nq is determined by Y~ and B~. 
The contributions to B~ are of two types: weakly and 
strongly dependent on q. To the first belong those in 
which the number of significant integrations is not less 
than the number of "sharp" functions under the integral 
sign, for example, the third term in the square brackets 
in (8) and the fifth term in square brackets in (10). 
There is an additional smallness - Nr/ in such contribu­
tions at q "" qo, in comparison with the remaining terms 
of~, and they lead to the appearance of a "background" 
in the distribution function 

(11) 

where B~Ph is the part of B~ that is weakly dependent on 
q. To the second belong such terms in which the num­
ber of essential integrations is less than the number of 
"sharp" functions under the integral, for example, the 
second term in the square brackets in (8) and the fourth 
in (10). It is clear from physical considerations (this 
also follows from the estimates given for these contri­
butions) that their width is at least no less than c.w. The 
problem of the effect of these contributions on the shape 
of Nq must be considered separately. 

3. SOLUTION WITHOUT ACCOUNT OF THE 
"ARRIVAL" TERMS 

In this section, we shall solve Eq. (7) for the case in 
which we do not have to take ~ into account. The limits 
of applicability of this solution will be discussed at the 
end. It must then be expected that Nq will be a "sharp" 
function; therefore Y~ will be assumed to be constant 
and Eq. (7) takes the form 

U=Tl'1, 
- s, s,,=--· 

1+u 
(12) 

We shall seek a solution with No - wo/r 0, c.w - c.v. In 
this case, we must take into account all terms in the 
denominator of (12) with accuracy to ro/wo. We shall 
elucidate which diagrams must be taken into account for 
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FIG. 3. 

Y!. It is seen from the preceding section that the cor­
rections to g (Fig. If) are expanded in powers of (Nor 0/ 
wo), therefore we must take into account all diagrams 
of the type of Fig. 2. The fact that the expansion pa­
rameter here is Noro/wo [and not (ro/wo)NoAw/wol is 
connected with the smallness of the momentum of the 
light. It is easy to understand that summation of dia­
grams of the type of Fig. 2 reduces to summation of 
"chains." This can be proven rigorously by using the 
diagram technique of the Appendix; here it turns out 
that in the loops it suffices to taken into account only 
sections of the rs and as types (i. e., sections with the 
corresponding lines) and that the "right" chain is the 
complex conjugate of the "left." Since the momentum 
entering the chain is assumed to be zero, then only the 
harmonics with l =0 would be left in the 4-phonon ver­
tices entering this "chain; "therefore, we can immedi­
ately assume these vertices to be constants. Then sum­
mation of the chains reduces to the sum of the geometric 
progression of the loops. Since we need terms in the 
denominator with accuracy to ro/wo, it is easier (and 
more compact) to do this by writing the complete rs and 
as loops in the sum and not only their part - roNo/wo, 
and this is done in what follows in order to keep the 
needed accuracy. Diagrams of the type of Fig. 3, which 
have the order (Noro/wo)n&(ro/wo) will not be taken into 
account, since we assume that & «1. As a result, we 
obtain the following equation: 

N _ 1 ~qO/I!ql' =_~ 
q - 2 1_~qO/I/ql' 2 I/ql'-s:' 

(13) 

where 

Ol' V q' (Ol) 
tIl =-----

• ")0' V(Ol) qo" 
~ = o' UJ o2q!.. "" ~, 

2~JW (t)~ 

7i is the zero harmonic of the 4-phonon vertex at a total 
energy'" 2wo, and at a transferred energy'" 0; q(w) is 
the momentum, v(w) the group velocity as a function of 
the energy; ~~ = ~CPq, and we assume CPq to be Lorentz­
ian: 

(,',v/2) , 

<pq = (Olq-Olo)'+(,',vl2)' . 

Since we expect that Yq « Aw and are interested in the 
behavior offq over intervals - Aw, we shall assume Yq 
in fq to be an infintesimally small constant [., which 
shows that Wq is located on the physical sheet. It further 
turns out to be more convenient to solve the equation for 
f q , which is obtained by substitution of (13) in the defini­
tion offq : 
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!.= 1-~ r tIl.·dOl' 1/.·1' 
2n 0 Ol-Ol'+iE 1/.·1'-£'1'.' 

(14) 

Here and in what fOllows, we shall write w instead of 
wq • 

It follows from the definition offw that when the inte­
gral converges, i. e., when N w is finite, fw can be re­
garded as an analytic function of the complex w, given 
by this integral representation. It follows from (14) 
thatfw has a cut (0, wD ); moreover, this function can 
have zeros on the real axis outside the cut, about the 
end wD, where fw changes strongly (these zeros are in­
significant). Using these properties, we solve Eq. (14). 
We consider the function 

g.=/.+[rjl.l/ •. (15) 

It has the same analytical properties as the functionfw 
and has poles at the pOints where fw has zeros and where 
the poles of CPw are located (w=wo±iAv/2). The jump of 
gw at the cut is equal to Agw =2iImgw+, where 

But, according to (14), 

A 1/ .. 1' 1m!. =_tIlw_-'--'-w-,-_ 
2 l/wI2-~<pw 

and consequently, Imgw+ = tM'w. If we now write down 
the Cauchy formula for gw -1 and extend the contour to 
infinity, then the integral over the infinite arc will be 
equal to zero and there remains only the integral over 
the cut and the poles. As a result, by neglecting the 
residues at the zeros offw (they are small, - (Av/wO)2), 
we obtain: 

- ,',vl2 (1 ) g.=1HC.+s-- -:---;--------,-:--:-- c c 
2i !0(0l-0l0-i,',v/2) ", 

(16) 

wherefo is the value offw at W=Wo+iAV/2, 

Knowinggw, it is easy to findfw by inverting (15): 

(17) 

where we must take the positive branch (this follows 
from consideration of the asymptotic behavior as w - 00). 
From (17), we get for Nw , 

N = 1m! •• _~= _~+~ [ (X.'+Y.')"·-X. ]'{' (18) 
• A<D. 2 4 2A 2 ' 

where 

X.=Re (g.'-4~<p.), 
Y.=lm (g.'-4~<pw). 

(18a) 

(18b) 

We set <Pw =1 in (18) because of its smoothness, since 
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we are interested in w'" WOo It follows from (18b) that 
Y w is always - A, but Xw can change, depending on wand 
~, from values -1 to values - -1. We can then show 
immediately from (18) that 

N _~~_'O A,.,_A V at X 1 
• A X.'" '" u~ u .- , 

N.-A"', dw-dvA'" at X.~A, 

N.-IX.I"'!A, dw-dv at X.--1. 

(19) 

It remains to determine fo. Letting W in (17) approach 
Wo +iAv/2, we obtain the identity fo =fo in first-order ap­
proximation (here we should have Imfr/ <0, which also 
follows from the definition offw, at A>O), while the val­
ue of the first derivative f~ becomes "linked" in second­
order approximation and so on. Therefore, we use 
other methods. By definition, fw has on the physical 
sheet no branch points other than zero and wD • But it 
follows from (17) that at such w, wheng~=4~<pw, addi­
tional branch points appear for fw. To avoid this, it is 
necessary either that there be no zeros for the function 
g~ -4l<Pw on the physical sheet or, if there are any, 
they should be paired. We determine fo from these con­
ditions. 

We introduce the new variable x = 2(w - «.'0)/ Av. Then 
the equationg~ -4~<pw =0 reduces to the following equa­
tion for x (with accuracy to terms - A): 

(x'+1-~) '+2AC.(X'+1) [~(R+lx) +x'+1 +[] 
+1 (R+Jx) [~(R+Jx)+2(X2+Hf) ]=0, (20) 

where R = Re/r/ -1 and J=Imfi/. We can reduce this 
equation to two fourth degree algebraic equations. The 
function Cx has the cut 

We consider its analytic continuation from the upper 
edge of the cut. On this sheet, Cx is a smooth function 
and it can be assumed to be constant, 

C~C(O+ie) =C,+iC" 

in the solution of Eq. (19), since the roots of this equa­
tion - (1 - ~)1/2, and Cx changes to x - wD/ Av» (1 _ ~)1/2. 
As a result, we obtain a fourth degree algebraic equa­
tion. A second equation is obtained upon analytic con­
tinuation from the upper edge of the cut (it is distin­
guished from the first by the sign of C2 = ImC). 

We shall solve the equation obtained by analytic con­
tinuation from the upper edge of the cut (the roots of the 
second equation are the complex conjugates of the roots 
of the first). This equation is the same as (20), except 
that C is present instead of Cx. It has four roots; there­
fore, it is necessary that the roots with a positive imag­
inary part be double. To estimate the double roots, we 
must set its derivative equal to zero. As a result, de­
noting the left side of (20) with Cx = C by P4(X), we ob­
tain a set of two equations: 

1151 

P,(x) =0, 
P.'(x) =0 
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(21a) 
(21b) 

(the prime indicates the derivative with respect to x). 
The solution of this set (generally a system with com­
plex coefficients) should give the location of the zeros 
and constants Rand J as functions of ~ and A. Such a 
solution is difficult in the general case; therefore, we 
shall solve this set for several ranges of the param­
eter ~. 

1) A1/2« 1 - ~ -1. In this case, ~ is located far from 
the threshold value ~0=1; therefore, No:51,R,J-A, and 
the value of the roots Xi -1. Equation (21a) can be 
written in the form 

(x'+1-f)'+2[AC(x'+1) +1 (R+Jx)] (x'+H1) =0. (22) 

We shall solve it by expansion in powers of X: 

x,=<"+x;"+x(,"+ ... , where i=1, 2, 3, 4. (23) 

Substitution of (23) in (22) gives 

(24a) 

x(1)'= _ --.L('AC+R+lx(O'). 
l (n)2 ' 

x3 
(24b) 

In order that splitting of the roots Xl and X2 not occur, 
it is necessary that the right side of (24b) vanish for i 
= 1 and 2. We then obtain 

R=-AC" 1=-AC,/(1-¥)'/'. (25) 

We write out the first nonvanishing corrections to the 
roots; 

x("=--€-[2ACX (O,+t.J' 
1,2. 2xFJ)2 1 '::I J 

- -
= _G ___ { -AC'[~+(l-~)'''] +i2AC,(1-~)"'}' 

2(1-;) (1-;)'" . 

(1) [€ (0, ]'1' (~AC')'I' X.l" =± --[AC+n+Jx, ] =± 1-1 (Hi). 

Equation (25) can be verified by direct substitution of 
Nw =t~<pJl - ~<Pwl-1 infw' 

2) 11 - ~I - A1/2. In this case, minXw - A; it then fol­
lows from (19) that No-AlI2 , Aw- AVA1/4, and from the 
definition offw, thatR-A, J-A3/! and the value of the 
root must be - A1/4. In this region of l, the set (21) can 
be written in the form 

(x2+1"':-~)'+4(Jx+RHC) =0, 

(x'+l-'ji)x+J=O. 

(26a) 

(26b) 

We can obtain an equation for the double root from Eq. 
(26b): 

A+B -A-B 
x",=- ~2- +iY3 ~2 -, (27) 

where 
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Two other roots remain in the lower halfplane, since Eq. 
(26a) does not have real roots and therefore its roots 
cannot cross the real axis. The equation for Rand J, 
which contains no radicals, can be obtained by making 
up, from the system (26), an equation with smaller pow­
ers. In short, we obtain the following equation: 

1 15x+IL' x ( IL' ) R'+u'R'+-("'-2x)R'+u'---R+- 4x+- =0 
r 3 r r 3' 36 3 ' 

1'- (~ r 1L(21L'+9R)/'- !',[IL'(R'-X)+4R(R'-3X) 1=0, 

where 

R=RHC" 1L=1-~, X=(AC,)'. 

(28a) 

(28b) 

The general solution of this system is cumbersome. 
A simple solution exists for 11 - [I «AlI2. In this 
case, (28a) takes the form 

(R'-x/3)'=0 or R=HC,/1'3. (29) 

One must take the minus sign. We then get for J from 
(28b) 

1= - [ ( :3)' AC, ] 'I •• (30) 

The following expressions are obtained for the roots: 

X",=_lj, III '''(1-d3) , 

X",=lj, III '1,[ 1±Y6-i(f3=F1'2) I. 
(31) 

As follows from (29)-(31), in this region [(11- [I 
«A1I2 ), none of the quantities depend on [ and have the 
orders of magnitude expected from the estimates. 

3) Al/2« [-1 «1. In this region, the equations have 
the same form as in (26), except that AC can be omitted 
in (26a). The system becomes real and in this region 
emergence of the roots on the real axis becomes pos­
sible (with accuracy to powers of A). At the same time, 
two equations are now insufficient to determine the roots 
and the two parameters Rand J. We therefore expect 
additional degeneracy of the roots upon their emergence 
on the real axis. Two cases are possible: the approach 
of the roots Xl,2 to X4 or of X3 to X4' The roots and Rand 
J are determined in identical fashion in both cases and 
can be found by several methods. We use Eq. (28), ne­
glecting x in it and assuming R =R. We have from (28a) 

R (R+IL'/3) '=0, R=O, -IL'/3. (32) 

The solution R = 0 is not suitable at [- 1 > O. For J and 
the roots, we get 

1=-2[ ~-1)/3]\ 

x",=x,=-[ (s-1)/3]"', x,=-3x,=[3<1:-1) l"'. 
(33) 

We note that X4 =xl,2 is automatically satisfied. 

4) ~ - 1- 1. At such [, the minimum of Xw can be­
come - -1. This follows from the fact that Xw = P4(X)(X 2 
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+ 1)-2 and we expect that the structure of P4(x) = (x - Xl)3(X 
- X3), Xl <x3, Xl> X3 -1 is preserved. 

Therefore P4(x) can take on values - -1 at Xl <X<X3' 
Then, from (19) and the definition of iw, we have No - A-t, 
~w - ~v, R - J -1. The set of equations in this case 
takes the form 

P,(x)=x'+A,x'+B,x2+C,x+D,=0, 

P,'(x) =0; 

A,=2~/, B,=2(t-t)+(;I)'+21R, 
C, =2[1"IU~ (1 +t) J], D, = (1-~)'+ (~R) '+21R (HI). 

(34a) 

(34b) 

We can obtain two second degree equations from this 
system. Their structure should be of the form (x - Xl)2 
=0. Therefore, equating the coefficients in these equa­
tions, we obtain equations for Rand J: 

R'+3(2+[jR2+3(2+f)'R+(f+8) (t-f)'=o, 

2(1- ~)'+ fl(3+3~ + R) 1'=4 _ _ , 
s'(2 + s + R) 

(35a) 

(35b) 

where Ii = [R. There is one real solution for Eq. (35a): 

(36) 

We then get for J and the roots: 

[~'" _1]'1, 
J= -2 _ , 

s 

It is easy to establish the fact that the asymptotic forms 
of (36) and (37) at ~ -1 «1 are identical with the solu­
tions (32) and (33). At [» 1, we get from (36) and (37): 

(38) 

In the obtained solutions, all the quantities are functions 
of [= ~/(1 +u), where u can be represented in the form 
CirN, 

"D 

]V = S d",N", 
o 

Ci is a dimensionless coefficient, the value of which de­
pends on the contribution to yn to which it corresponds; 
for y(3), we have Ci- ro/wo, (1) for y(4), Ci- (ro/wo)2. 
For the final solution of the problem, we must express 
[ in terms of~. For this purpose, we must find the de­
pendence of N on [ and substitute in the definition of ~. 
It is simplest to do this by considering the asymptotic 
form ofiw as w-oo. It follows from the definition ofiw 
that 

A- SOOD 
foo->-1--N+'/" where N+'/,= d",(Noo+'/,)<Doo. 

n", 
(39) 

Equating (39) with the asymptotic form of (17), we ob­
tain 

_ ~lL'w/2 
N=-n--A-· (40) 
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The equation for ~ takes the form 

(41) 

It is not simple to invert the relation (41) in the general 
case, but (41) allows us to find the values of ~ at which 
~ is found in the regions 1-~» :\1I2, 11 - ~I «A1I2, and 
~ - 1 » Al/2. Using the formulas for J(n, we obtain 

(42a) 

(42b) 

(42c) 

Equation (42a) corresponds to the region of applicability 
of the theory advanced in Ref. 1. It follows from (42) 
that the excess of ~ over ~ depends on the relation be­
tween f3 and the different powers of A. 

Some additional data on the form of Nq in the spectrum 
can be obtained at Al/2« ~ -1« 1 and at ~ -1-1. In the 
first case, near the minimum Xw::: P4(X); therefore, the 
maximum N w corresponding to the minimum Xw is found 
at the pOint w = Wo + xa 11/2 , where x = 2[(i _1)/3]1/2; here, 
aWq - (ro/wo)Noaw« aw; therefore, the renormaliza-

o -
tion can be disregarded. In the second case, W = Wo 
- aWqo +xav/2; therefore, renormalization must be 
taken into account. The location of the maximum N w is 
identical with that of minimum Xw =P4(X)/(X 2 + 1)2 and is 
found at the point w = Wo - aWqo + xa 11/2 , where 

X= 2(x,x,,-1) +[4(X,X,-1)' + x,+3x, 1'" 
3x, +x, (3x, +x,)' 3x, +x, ' 

and Xl and X3 are given by Eqs. (37). We note that in 
the region ~ -1» Al/2 the shape of Nw no longer depends 
on A. Thus, Nw at Al/2« 1- ~-1 has an asymmetric 
shape with No -1/ (1 - D and aw - all(l - D1I2, becoming 
narrower with increasing~. At 1 - ~ - Al/2 strong rear­
rangement of N w takes place, it loses its symmetry, 
and the narrowing ceases; at ~ -1» A1I2, some asym­
metric distribution takes place with aw - - all, No - - A -1, 
the shape of which does not depend on A. 

We now discuss the form of the function Yq: 

Its characteristic width is - aw; in this case it remains 
everywhere greater than zero and - 7 -1 (1 +u). 

We discuss the self-consistency of the solution sepa­
rately for the case in which sticking into if! phonons is 
possible and for the case in which it is impossible. In 
the first case, the conditions for a self-consistent solu­
tion have the form 

(43) 

At No- (wo/ro)1/2, aWo-A1/2all, these conditions reduce 
to the following: 
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If we use the values (see Ref. 1): 7 -1_109 sec-1, Wo 
_1014 sec-1, all-ro-l011 sec-1, v-lOS cm/sec, and c 

_1010 cm/sec, then it is easy to establish the fact that 
all the inequalities are satisfied (although some only in 
order of magnitude), and No-103/2, aw-lOll sec-1, u-l, 
~::: 1 + O({3), f3- 0.1. 

In the second case, only the first condition changes: 

(44) 

At No- wo/ro and aw- all, these conditions reduce to 

These conditions are not satisfied for the values given 
above. But, as has been noted in Ref. 1, the param­
eters entering into the condition can change consider­
ably. Therefore, if we take Wo _1013 sec-1, r 0 -1011 
sec-1, v/c-10-S, 7-1_108 sec-1, and all-l09 sec-1, then 
all the conditions are satisfied (almost at the limit). In 
this case, No -102, aw -109 sec-1, u- 0.1, ~::: ~ + O(f3/A), 
f3/A-O.1. It can be shown that at these values, the con­
ditions of the first case are also satisfied. 

In the solutions given above, we have assumed A> 0, 
but if we take it into account that the second-order con­
tribution of the cubic interaction to the 4-phonon inter­
action at the considered negative values of momenta and 
energy, then the case A < 0 is possible. In this case, J 
>0, R > 0, and Nw has the form that is the mirror image 
relative to woo Still one more remark pertains to the 
fact that the form of N w at I ~ - 11 «1 does not depend on 
the shape of CPw (if CPw is not Lorentzian). This follows 
from the fact that in this region ~av» aw and since the 
larger Nw are concentrated in the region aw, then cp;l in 
(13) can be expanded about Wo and only a term - Zq(all) 
remains, where 

( (i), - (i)') 2 
z,(~'V)= ~ , 

but this is equivalent to a transition to a Lorentzian CPq 
with aii = aliA -112, where A = (cp-1)' is the derivative of 
cp;l at Wq =wo: 

N, 

where 

'/,~ '/2~ 
--"-"---""---~~--
it,I'<p,-'-[ IfqI2[1+Azq(~'V)1-~ 

t/,~ipq 

Ifql'-~ipq , 

We have assumed that CPq =cp(Zq(all». This always takes 
place for CPq that is symmetric in WOo 

4. DISCUSSION 

We discuss first the bounding mechanism-the correc­
tions to the vertex of the interaction of the light with 
phonons. This mechanism is connected, on the one 
hand, with the mechanism of "effective pumping, " which 
is operative in theories with monochromatic pumping. [2J 
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It is easy to see that if we average over the pumping, 
then, of the diagrams that describe the "effective pump­
ing, " the greatest contribution is made by diagrams,of 
the type of Fig. 2. On the other hand, the action of the 
corrections to the vertex g recalls the action of the "in­
termediate particle, " i. e., the "particle" which has a 
structure with a gap ~o '" 110 and which interacts with the 
light (for example, the optical phonon in Ref. 5 or the 
uniform precession of the magnetization in ferromag­
nets C2J). In this case, the pumping of phonons takes 
place according to the scheme: light- "intermediate 
particle" - phonon. The latter is not accidental. If N. 
were fixed, then at No->..-l, it would be necessary, when 
finding the 4-phonon vertex at a small total momentum 
and a total energy '" 2wo, to sum the "chain" from Fig. 
2. In the resultant equation, N. would play the role of 
the effective density of states and the pole of the 4-pho­
non vertex (or zero of f.) on the unphysical sheet (if there 
were one) would correspond to an "intermediate parti­
cle" (see also Ref. 6). When generation takes place, 
however, it is necessary to determine N. also. This 
can lead to a change in the analytic properties of f. (or 
the Green's function of the "intermediate particle"). In 
our case, there are no zeros on the unphysical sheet, 
but branch points do appear (they correspond to the roots 
X3 and X4 of Eq. (20)). There is also an analogy between 
fw and the dielectric permittivity f: (w, 0). 

We note that our solution turned out to be possible be­
cause of the satisfaction of the condition <lw» Y., which 
would allow us to transform to the kinetic equation (5) 
and neglect y. inf.. The stability of the obtained solu­
tion will be studied in another paper. 

We now discuss several generalizations of the con­
sidered theory. It can be generalized with insignificant 
changes to the case of generation of different particles. 
There is significant difficulty in taking account of the 
anisotropy. Although the mechanism of corrections to 
the vertex will be operative in this case, the equation 
for f. will contain an integral over the angles and, be­
cause of the strong nonlinearity of the equation, all the 
harmonics will turn out to be coupled. It can only be 
expected that in the case of weak anisotropy the qualita­
tive picture remains the same. We note that the 
achievement of large No strongly increases the nonlin­
ear absorption coefficient Kn - Kl No, where K/ is the lin­
ear coefficient. Therefore, thin crystals are needed for 
the case of generation through direct absorptionLl J (thick­
ness d < 1IKn), in order not to have to take into account 
the change in the intensity along the sample. This con­
dition is not required in the generation via beats of two 
laser beams with optical frequencies. 

APPENDIX 

We now set forth the formulation of the Keldysh tech­
nique(3J and obtain one important property of the Green's 
function in a representation in which a retarded (r), an 
advanced (a) and a statistical s Green's function are em­
ployed (the r-representation). We apply the entire anal­
ysis to the example of a scalar field with an interaction 
Hamiltonian 
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Hint =~-S <jJ'(x)dx. 

According to Ref. 3, to calculate quantities of the type 

F(x., ... , Xn) =Tr {pT (cdx.) ... 'f (x,,»}, 

where cp(x i ) are Heisenberg operators and x = {t, x}, we 
can transform to the interaction representation; here 

where Tc is the time ordering operator along the con­
tour c, which runs from t = - 00 to t = +00 and then re­
turns to t = _00, 

S is a matrix calculated along this contour, and the 
fields cP (Xl) are already taken in the interaction repre­
sentation. 

We introduce the index i = 1, 2 for the field cP (x) in the 
Heisenberg representation and determine the ordering 
operator T K which acts, in addition to the time, also on 
these indices, so that the fields with i = 2 are always lo­
cated in time after the fields with i = 1, whereby the 
fields with i = 1 are chronological, and the fields with i 
= 2 are anti-chronological. 

After changing to the interaction representation, it is 
easy to see that 

F"'n (x., ... , xn) == Tr{pT K (<jJ" (x.) .. . <jJ'n (x,,»} 

= <TK(<jJ"(x.) ... <jJ,,, (Xn)SK»', 

where 

{ 
1 for i=k=l=m=l, 

"iklm - 1 for i = Ie = I = m = 2, 
o for all other i, k, I, m, 

and the operator T K in the interaction representation 
also acts on the field cP i(X) in the same way as is defined 
for the Heisenberg representation. Expanding the SK 
matrix in powers of >.. and using the Wick theorem, we 
obtain the diagram expansion for the quantities 
F i l ... in (Xl' ••• , X n). It is identical, on the one hand, with 
the Keldysh expansion, and on the other, with the or­
dinary diagram technique for a multi component field with 
nondiagonal (in the index i) single-particle Green's func­
tions, and only connected diagrams are left then. 

We introduce the single-particle Green's functions: 

They are identical with those introduced by Keldysh(3]: 

{ D' D+} 
D,,(x,x')= D- fl' . 
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Formally, qJj(x) and Yiklm can be regarded respectively 
as a vector and a tensor in some linear space (two-di­
mensional, since i = 1,2). Then the transformation to 
the r representation is equivalent to some orthogonal 
transformation in this space of the fields qJ i (x) and the 
tensor Yiklm: 

(A. 1) 

and all y with an odd number of indices i = 1 are equal to 
one another and to t, and all the remainder are equal to 
zero, 

i. e., SK is invariant. 

It follows from these formulas that we can construct 
a diagram expansion immediately in the r representa­
tion (or in any other representation obtained from the 
original orthogonal transformation). In the case in 
which the interaction is nonlocal, the tensor vertex is 
obtained by multiplication of a form factor by the struc­
ture tensor Yiklm. All this holds also for the case in 
which the interaction has the form J qJndx; here the cor­
responding structure tensor Yikl ••• of n-th rank appears. 
In particular, in the r representation, the components 
of this tensor with odd number of indices i = 1 are equal 
to 21-nI2, and the remainder are equal to zero. 

With the help of this formulation, it is easy to obtain 
the following important property of the Green's function 
in the r representation. 

We consider the n-particle Green's function 

According to (A. 1), it is equal to 

F\ . . , (x" ... , x n) ~2-n/2Tr{pT K[<P,(XI) -<P2(X,)] ... [<p,(xn) -rp,(xn )]}. 

(A. 2) 
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Using the definition of the operator T K in (A.2), we can 
show that 

F, ... ,(x" ... , xn ) ~o. (A.3) 

In particular, this leads to the equality Du(x, Xl) =0 ob­
tained by Keldysh. (3J If we now define the vertices by 
the formula 

n 

F " .I n (x" ... , x n )= SII dx/D"k, (x" x()i\, ...• n (x,', ... , x:), 
i_I 

it then follows from (A.3) that f\ ... 2(Xb ••• , xn) = 0, i. e., 
the vertices for which all the indices are equal to 2, are 
equal to zero in the r representation. This property can 
be proved by perturbation theory. It is very important 
in the solution of problems with large occupation num­
bers and in the study of the transition to the classical 
case. We note that the complete vertices, which have 
an even number of indices equal to unity in the r repre­
sentation, are no longer equal to zero in contrast to the 
"bare" vertices. All the vertices are symmetric rela­
tive to the one-dimensional permutation of indices and 
arguments. 

The author thanks I. B. Levinson for fruitful discus­
sions. 
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