
mechanism responsible for the effect of superconduc­
tivity stimulation by microwave radiation is the mecha­
nism proposed by Eliashberg. [5,6] Let us briefly enu­
merate the main results supporting such a conclusion. 
1) The existence of the effect of critical-current growth 
not only in short, but also in long, bridges. 2) The ex­
istence of a lower frequency limit consistent with the 
Eliashberg theory. 3) The existence of the growth effect 
in a temperature region fairly far below Te , where the 
influence of the fluctuations is insignificant. 4) The fact 
that the theoretical value of the Ginzburg-Landau pair­
breaking critical current is exceeded by the values of 
the critical current under the influence of radiation. 5) 
The agreement between the experimental power depen­
dences of Ie and the theoretical dependences obtained 
from the Eliashberg equation with allowance for the ther­
mal effects. 

The Eliashberg mechanism is also attested by the dis­
covery of the growth of Ie in bridges and point contacts 
under the influence of phonons, and not photons. [17] In 
fact, the stimulation of superconductivity can occur as 
a result of the heating of the quasiparticles relative to 
the state of thermodynamic equilibrium either by micro­
wave radiation, or by phonons. The factor limiting this 
effect may be the heating of the film lattice by the pho­
nons emitted during the energy relaxation. 

The authors are very grateful to G. M. Eliashberg, 
I. K. Yanson, B. I. Ivlev, A. F. Volkov, and S. N. 
Artemenko for useful advic€ and comments. 

IlAs can be shown on the basis of[SI, the mean excess energy 
given away by the quasiparticles during relaxation is of the 
order A. For Tc - T '" 0.1 K, i. e., in the temperature region 
where we compared experiment with theory, A - kT, and the 
proc '!3ses of relaxation of the excess energy are close to 

being equilibrium processes. In this case we can use the 
heat-transfer coefficients measured under equilibrium con­
ditions. [151 

2)The authors are grateful to A. D. Malov for carrying out the 
computer calculations. 
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Van der Waals forces in liquid crystals with a large 
dielectric anisotropy 
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Methods are proposed for the calculation of Van der Waals forces in liquid crystals whose dielectric 
anisotropy is not small. An expansion in terms of the deviation of the director from the equilibrium 
orientation or of its derivative is employed. Examples are considered. It is shown that the Van der Waals 
forces can induce instability of the plane disclination. Biaxial effects, which are appreciable near the point 
of a phase transition to an isotropic phase, are taken into account in the intensity of the light scattering. 

PACS numbers: 61.3Q,+w 

1. In recent years, the general theory of Van der 
Waals forces in condensed systems[ll has been applied 
to various problems of the phySiCS of liquid crystals. [2-4] 

This interest is due mainly to the fact that the magnitude 

of the short-range forces, which assure the stability of 
the liquid crystal, is not large. Therefore, the long­
range forces, which are usually not very significant, 
can lead to appreciable effects. In the work of Dzya-
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loshinskii, Dmitriev and one of the present authors, [2] 
the method of expansion in powers of the anisotropy of 
the dielectric permittivity tensor Ea was used for the 
calculation of the Van der Waals forces. Smallness of 
Ea in comparison with the isotropic part of Eo is re­
quired for the validity of such an expansion: Ea« Eo. 
Here (in lowest order) the magnitude of the Van der 
Waals energy turns out to be roughly - (Ea/Eo)2. There­
fore, the long-range forces are more important in sys­
tems with Ea - Eo. However, under such conditions, the 
method ofC2 ] is inapplicable. The problem of the calcu­
lation of the Van der Waals energy at Ea - Eo is not mere­
ly methodological, since such liquid crystals do exist. 
For example, in di-n-heptyl-azoxybenzene we have £a/ 
Eo'" O. 7 near the temperature of transition from the ne­
matic to the smectic A phase. [5] 

In this connection, we calculate the Van der Waals 
energy by a method that does not make use of the small­
ness of Ea/EO' The essence of the method is briefly as 
follows. As is well known, [1,2] the problem of the cal­
culation Of the energy of longwave fluctuations reduces 
to the determination of the Green's function of radiation 
in the medium. In a liquid crystal far from the transi­
tion temperature we have a dielectric permittivity ten­
sor that depends, generally speaking, on the coordi­
nates: 

(n is the director). Therefore, the equation for the 
Green's function 

(1) 

(2) 

cannot be solved in general form. Since we wish to de­
termine the liquid-crystal part of the Van der Waals en­
ergy, which is connected with the fluctuations of the 
orientation, we must separate out the part in (1) corre­
sponding to the equilibrium orientation of the direction 
nO (r); 

(3) 

If Eq. (2) can be solved in general form in the case of 
the dielectric permittivity (3), then its solution is found 
in the form of an expansion' in the deviations of the di­
rector from the equilibrium value: 

n(r)=ll'(r)+v(r), nO(r)v(r)=O. (4) 

The expression for the free energy thus obtained con­
tains diverging elements (see, for example, Ref. 3). 
The part of the divergences that is connected with the 
surface energy can be removed by integration by parts. 
It is possible, however, to obtain immediately an ex­
pansion in the derivatives of v(r). For this purpose, we 
must introduce a set of curvilinear coordinates, one of 
the axes of which is tangent to the field nO(r). Under 
certain conditions on nO(r) (see below), this system can 
be chosen to be orthogonal, and then we immediately 
have the expansion in the derivatives of v(r). 
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In Sec. 2, both methods for the calculation of the Van 
der Waals part of the free energy are described in de­
tail. A nematic liquid crystal with weakly inhomoge­
neous distribution n(r) is considered as an example. In 
contrast with the results of Ref. 2, the frequency de­
pendence is no longer factored out here. Therefore, 
for example, the polarization characteristics of the in­
tegrated intensity of the scattered light depend signifi­
cantly on the frequency dispersion. 

In the third section, the Van der Waals energy is ob­
tained for a cholesteric liquid crystal. Here we do not 
take into account the small effects connected with the 
molecular optical activity (spatial dispersion of the di­
electric permittivity). In the calculation we use the first 
method, since the system of coordinates with one of the 
axes along nO(r) is not orthogonal in this case. Equation 
(2) for the Green's function is a Mathieu equation in this 
case. The explicit formulas are obtained for a suffi­
ciently large period of the structure. It is found that 
the Van der Waals contributions to the free energy can 
be more Significant close to the transition to the nema­
tic phase (in a magnetic field). In light scattering, this 
effect appears as the analog of critical opalescence. 

The fourth section is devoted to the calculation of the 
Van der Waals energy near a plane disclination in a ne­
matic liquid crystal. It is shown that the Van der Waals 
forces make the plane disclination unstable at a certain 
ratio of the parameters. The central region corre­
sponds here to a homogeneous nematic phase with orien­
tation along the axis of the disclination. The transition 
region cannot be calculated in the general case. 

In the fifth section, the light scattering at tempera­
tures close to the pOint of phase transition to the iso­
tropic phase (Te) is considered. (In contrast to Ref. 2, 
where the region T« Te is considered.) The character 
of the scattering and the width of this region depend sig­
nificantly on the value of £a and on certain other phe­
nomenological parameters. It is recognized that if T 
- T e , then the order parameter is generally not uni­
axial. [6] Some estimates are derived in this section. 
The possibility is discussed of experimental verification 
of the obtained effects, and also certain experimental 
data that relate to the type of problem considered are 
analyzed. 

2. As has already been mentioned, the energy of the 
longwave electromagnetic fluctuations is determined by 
the radiation Green's function: 

1 ~ 

()F = -J dwJ dr D;,(r, r; oo){)e,,(r, ;(0), 
8,,2 , 

where OEik takes into account the effect of the liquid­
crystal fluctuations on the dielectric permittivity. 

(5) 

If Eq. (2) for the Green's function can be solved in 
general form D~k(r, r/, w) for the equilibrium orienta­
tion nO(r), then, in first order in oEik(r, iw), 

D '( ') 1 'JD '( H )D' (H , )' d H ill. r,r,w =--{O il l,r ,W mk r ,r , w vElm r. 
4" 

(6) 

With account of (3), 
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68 .. (r) =e.(ni'(r)v.(r) +n.'(r) Vi(r)). 

Finally, we have from (5) and (7): 

(jF= __ l-S~ e.'w'dwS d'rd'r'Di.'(r,r') 
16,,' • 

X Dm,' (r', r) ni' (r) n.' (r') VI (r) Vm (r') 

(7) 

(S) 

(in writing down Eq. (S), we have taken into account the 
symmetry relations for the Green's function and also 
the condition n- -n). 

The expression obtained solves in principle the ques­
tion of calculation of the Van der Waals energy in liquid 
crystals with a value of c. that is not small. The diffi­
culty lies only in the determination of D~k' Moreover, 
all the diverging terms that have no relation to the en­
ergy of the considered longwave fluctuations should be 
removed from (S). In particular, the formally infinite 
surface energy should be removed. For this purpose, 
the expression (S) should be integrated by parts a suf­
ficient number of times. After this, the free energy of 
the fluctuations will be expressed in terms of the de­
rivatives of the deviations v(r). In some cases, such an 
expansion in the derivatives can be conveniently written 
down immediately. 

For simpliCity, we shall consider the two-dimensional 
case (generalization to three dimensions is trivial). It 
is convenient to introduce a curvilinear system of co­
ordinates with axis along the field D (coscp, sincp): 

x,t)=y't) cos Ijl+Y'" sin Ijl, x"'=-y'l) sin cp+y") cos cp. (9) 

Here X(l) and x(Z) are the new curvilinear coordinates, 
y(l) and y(2) are the old cartesian coordinates. The 
metric tensor 

Oy(i, ay,i) 
gmn = ax{m) ()x(n) 

is determined by the derivatives of the field cp. 

As is known, in order that the curvilinear system X(l), 

x(Z) be orthogonal, it is required that glZ = O. In first 
order in the derivative, this condition of orthogonality 
gives 

x'" ~-x'" ~= o. 
ax'" ax'" 

(10) 

Equation (10) is always satisfied if, for example, cp 
= const or cp is an arbitrary function of the product of 
the coordinates X(l) and x(Z). In this case we cannot dis­
tinguish between co- and contravariant components of 
the tensors, and the equation for the Green's function 
(2) can easily be solved by expansion in the derivatives 
of cp. In the expanded form, these equations in the co­
ordinates x(1) ,X(2) have the form 
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3D _'j, [. a ( '" 11 aD" ) + a ("'" aD" )] 
el1 w ,,-g ax'" g g ax'" ax'" g g ax") 

a [a a ] + __ g-'" -- (g'I'D tl )+-- (g'hD21 ) =4rtw'6 tl6(r-r'). 
iJx'l) ax'" ax") 

822W 'D21 -g-'" [ 0:'" (g'log ll :~:.I») + 0:") (g'lo g22 ::.:: )] 

(11) 

+_O_g_'l. [_() _ (g'I'D tl )+-{),- (g'I'D,,)] =4rtw'621 6 (r-r'). 
ax(2) axel) ax 2) 

g=gltg22, cU=eO+Cll' C22=Eoo 

The formulas take the simplest form in the case of a 
nematic single crystal with small curvature of the field 
n(r). Here we can expand the metric tensor in the de­
rivatives acp/ax(i) and limit outselves to the first ap­
proximation. We then have 

g"=6,,+llg" 

(Or. s is the Kronecker symbol; og rs is the deviation de­
parture of the metric tensor from unity), 

I\g" = ( -2x("acplax'" 0 ) 
o 2x"'{)cp/IJx"" 

Since the field n(r) is not rectilinear, corrections also 
arise in the tensor of the dielectric permittivity: 

( 
iJrp. iJrp ) -(28,+8 )x"'-- -8 X'''--

a aX(n a {)X(2) 

(2) Oljl X'I) iJrp ex") O<p • 
-caX ax(2) 28 0 {)X{2) - a ~ 

Substituting these expansions in (11), we obtain for the 
free energy an expression that is similar to (S): 

of= __ l-S~ w'dw Sdrdr"DihO(r, r')Dm,'(r'. r)6e,,(r) 
8rt' , 

X 1l8.m (r') + _l_·S w'dw S dr'dr' Di.' (r, r') _0_. _0_ 
16,,' ox,» Ox") , 

X Dmi' (r, r') Ilg" (r') 6e.m (r). (Sa) 

At small distances, when the retardation is inconse­
quential, the fundamental role is played by the second 
component. We can write down the free energy in the 
three-dimensional case in an entirely analogous way. 
The orthogonality of the system of coordinates is im­
portant for the determination of the null Green's func­
tions D~k(r, r'). It can be taken further into account that 
the derivatives of the various components of the metric 
tensor entering into (11) and (Sa) have a simple physical 
meaning. To be preCise, 

g_'l._i)_ (g22)'I.=X 
ax(1) 21 

g-'I •. _O_ (g")'I,=_X 
ax(?) II 

(12) 

where Xl and X z are the curvatures of the lines x(1) 

= const and x(Z) = const. In our approximation, this is 
simply 

Therefore, the expansion of Eqs. (11) in terms of the 
derivatives corresponds to expansion in small curva­
tures. We shall not carry through the rather cumber-
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some computations, but immediately give the answer for 
the more important region of small distances I r - r' I 
< Ao (Ao is the characteristic wavelength in the spectrum 
of the body; for a detailed discussion of the quantity Ao, 
see Refs. 1-3): 

1 ~ , d 'd " 6F=--_r __ e_o_droJ r r 
128n'J (e,+eo)' (1+eol£,) -'h(X(t)_X(I)')'+ (x("-x(2l')' , 

x [cos(<p-<p') {(XI (r) +x, (r» x, (r')}+ sin (<p-<p') XI (r) x,(r') ]. (13) 

We note here that the integration over the frequency 
is factored out only at Ca «co. A similar expression 
can be obtained in the three-dimensional case. How­
ever, not only do curvatures appear in this case, but 
also torsions of the coordinate lines. Therefore, it is 
more convenient to write the Van der Waals free energy 
directly in terms of the derivatives of vCr). Moreover, 
in the three-dimensional case, the condition of orthog­
onality of the system of coordinates does not reduce, of 
course, to the equation (10). It can be shown that in 
place of (10) we need to satisfy the relation 

11 rot 11=0. (14) 

3. We apply the general results obtained in the pre­
vious section to cholesteric liquid crystals. It can eas­
ily be proved that it is not convenient to expand immedi­
ately in the derivative of the displacement in this case. 
The corresponding natural curvilinear system of coor­
dinates will not be orthogonal: 

x(t)=y(l) cos ay(3)+y{Z) sin ay(3), 

X(2)=_y(t) sin ai 3 )+y(2) cos ay(3), x(3)=y{3) (15) 

(a is the reCiprocal inverse period of the cholesteric 
spiral). It follows from (15) that, for example, g13 

= - ax(2) "* 0, i. e., even though the unit vectors of the 
system (15) are mutually perpendicular at each point, 
the system is not orthogonal (condition (14) is not satis­
fied). Therefore, the corresponding contributions to the 
transformation tensor of the dielectric permittivity are 

(
eo + ea 0 

~ik = 0 eo 
- a (eo + ea ) X(2) aoOX(I) 

It is, of course, not possible to solve the Maxwell equa­
tions (2) exactly with such a dielectric tensor. There­
fore, the second method is inappropriate in the given 
case. We note here that the dependence of £ik on the 
coordinates in the natural system (15) should also be 
taken into account in the solution of the optical problem 
in cholesteric liquid crystals. 

If the first method is used (see Sec. 2), the equations 
for the null Green's functions are Mathieu equations. 
The corresponding formulas will be given only for suf­
ficiently long-period structures, when a I r - r' I < 1. 
This condition in cholesteric liquid crystals agrees with 
I r - r'l < Ao. In this case, it suffices to determine only 
the transverse Green's function D""a (a, f3 are the com­
ponents in the plane perpendicular to the axis of the 
spiral) and the remainder are expressed in terms of 
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D",a with the help of simple differentiations. If we 
transform to the Fourier components of q in transverse 
coordinates, then, in the region of interest to us, q 
»a-C5/2w, we have 

D.,=2nUl'q-1 exp (-qlz-z' I) [Il.,_q-I (q.n,'+q,n.') ] 

x [1-2~~sh2alz-z'I]; 
q e, 

nxo=cos az, n/=sin az. 

(16) 

Calculation of the free energy with the functions (16) 
is very cumbersome, but is similar to what was done 
earlier. [2,3] As we have already seen at Ca - co, integra­
tion over the frequency does not lead to a separated fac­
tor, and therefore more convenient expressions are, in 
the coordinate representation, 

00 

IlF = -l-J,-_e-·'-dUlJ drdr' cos a(z-z) 
810n" (£0+£.)' [(l+B.I£o)-'''(z-z')'+(p-p')'] 

{ iJ'<p 0''1'' 08 Je'} 1 00 e.' 
X ----+2a--- ---as dw 

oxr' rlx" aXr ax,' 224n. eo (B.+eo)' 

X J dr dr' sin a (z-z) {i)'<p iJ'<p' + 2a ~ ~} 
[(1+e./eo) '/'(z-z)'+(p-p')'l'" ax,' ox," oxrox,'· 

(17) 
In Eq. (17), the deviations of the director from the 
equilibrium orientation are written in terms of the an­
gles <p and 8: 

n,=cos(az+,p), n,=sin(az+<p), n,=8. (18) 

We cannot write out the integrated intensity of the 
scattered light from the expression (17), since the fre­
quency dependence is not factored out. However, in or­
der of magnitude, recognizing that numerically £a:5 co, 
and the frequency dispersion is not very large, we have 

J",,-TI (K"q'+Mq'+Naq') , 
(19) 

Here K i ; are the Frank elastic moduli and the corre­
sponding terms, which are proportional to the square of 
the transmitted pulse, take into account the short-range 
forces; the definition of the coefficients M and N is ob­
vious from the formula (17), T is the temperature. 

We note that the growth of the intensity with decrease 
in ,a follows from (19). Since the Short-range compo­
nents are proportional to the higher powers of a, it is 
possible in this manner to separate the Van der Waals 
contribution to the light scattering in cholesteric liquid 
crystals. One more difference arises, due to the fact 
that the Van der Waals forces shift the maximum of the 
scattering intenSity toward the shortwave end. When 
only short-range forces are taken into account, the max­
imum in the scattering would take place at q = 2 a in one 
mode and at q = a in the other. 

4. We now consider the problem of the stability of a 
plane Frank disclination. As is known, m in the case of 
equal elastic moduli K11 =K22 =K33 the plane disclination 
is stable (if only short-range forces are considered). 
To be specific, we shall consider a disclination with 
Frank index m = 2. [7] Then the corresponding lines of 
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the field n are a system of circles. We study the effect 
of the long-range Van der Waals forces on the disclina­
tion. In this case, we can immediately apply the second 
method of calculation, since the system of curvilinear 
coordinates along the field n will be orthogonal. Be­
Sides, we can also use the first method, since the equa­
tions for the null Green's functions are solved exactly 
(they are expressed in terms of the Bessel function of 
imaginary argument). Of course, we should note that 
we do not take into account the interaction of the dis­
clinations with the boundary and similar effects. This 
is admissible in the consideration of a sufficiently large 
region R» Ao, in which we have a circular field n. The 
calculations, which are similar to those set forth above, 
give in this case 

of= _1_S __ E_·'_dW Sdrdr' cos($-$') 
810", (eo+e.), [(1+e,ieo)-'''(z-z')'+(p-p'),] 

x [ G'rp Ii'cp' + xox.' li8 ~] (20) 
8XT2 aXe'2 rr'2 8z 8z' . 

Here cf> =arctan(x/y), and (j! and 8 are the deviations 
from the equilibrium orientation of the director. 

It follows from (20) that the minimum of the Van der 
Waals energy compatible with the boundary conditions 
occurs in the case of uniform orientation in the central 
part along the axis of the cylinder. Therefore, in the 
case of Van der Waals forces that are not small, the 
plane Frank disclinations are always unstable (irrespec­
tive of the dependence on the ratio of the elastic moduli; 
for comparison, see Ref. 7). It follows from Eq. (20) 
that upon approach to the core of the disclination, the 
Van der Waals energy increases, roughly speaking, ac­
cording to the law 

(21) 

So far as the energy associated with the short-range 
forces is concerned, it is only logarithmiC: 

Fo-K In(Rlr). (22) 

Therefore, there exists a critical distance re: 

[ M ]'" 
r, - Kln(Rlr,) , (23) 

such that at r < r e , the prinCipal role is placed by the 
Van der Waals forces. The orientation at r <re will be 
uniform for this very reason. Of course, there is a 
transition region r - re , in which the orientation should 
be determined by the minimum of the total functional 
[(20) and of Oseen-Frankj. The corresponding Euler­
Lagrange integral equation can be solved only numeri­
cally. 

Naturally, all the above is valid only if M is not too 
small, so that re is also not too small, and therefore 
the macroscopic description of the Van der Waals forces 
(re »a, where a is the intermolecular distance) is ap­
plicable. 

5. Direct estimates of the obtained effects are rather 
difficult, since it is necessary to know the entire fre-
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quency dependences of the functions Co and ca' In any 
case of this type, the estimates can be carried out only 
with the help of a high-speed computer; however, the 
trends can be determined also qualitatively. Thus, it 
follows from the formulas obtained above that the Van 
der Waals contribution to the intenSity of the scattered 
light in cholesteric liquid crystals is more significant 
in the region of critical opalescence, 1. e., as a - O. 
Such is the case, for example, in the transition to the 
nematic phase in a magnetic field. Similar moderating 
effects should appear also near the phase transition to 
the smectic phase. The experimental data on light scat­
tering, (8] as is well known, confirm this tendency; the 
stronger non-analytic deviations from the Orstein­
Zernike law (- q-2) take place near such transition. 

Still less can be said about the effect of the Van der 
Waals forces on the structure of the disclinations. 
Rough estimates of re (M-10 eV, K-1O-7 erg/cm2, R 
_10-2 cm) give re -1 /J., which agrees with the experi­
mental value of the discli.nation core. Moreover, at 
such re , the macroscopiC consideration of the Van der 
Waals forces is still applicable. Qualitatively, the sys­
tematic violation of the law of the rate of annihilation 
speaks in favor of the Van der Waals forces. If there 
were only short-range forces, then the annihilation time 
of the disclinations in a large sample (so that one can 
neglect the interaction with the surface) would be - r 2 

(this follows, for example, from the electrostatic anal­
ogy). However, the experimental data indicate a more 
rapid interaction. (9] 

We note the following circumstance in conclusion. 
Everywhere above (as well as earlier C2,3]) we have con­
sidered only the uniaxial order parameter, i. e., C jk 

=COOik +canjnk • This is valid at the temperature of the 
phase transition to the isotropic phase. In the isotropic 
phase, and also close to the tranSition point to the ne­
matic phase (see below), the system is not uniaxial. 
The only preferred direction is that of the wave vector 
q. Moreover, from general symmetry considerations, 
the order parameter should be a symmetric tensor of 
second rank with a trace equal to zero. There exist five 
irreducible tensors of this type, (6] composed of the unit 
vector q/q =T and two unit vectors m and m' in the plane 
perpendicular to T. In place of m and m', it is conve­
nient to introduce the circular components I =m +im' 
and 1* = m - im'. Then the irreducible tensors have the 
following form: 

aar.t=la.l~, olJ/=la*lj>", 0"c£~3=2-11'i(lo:."(i>+If3't'ct), 
0.,'=2-'lo i (1.',,+1"0), 00 ,'=6-'1, (3,.,,-1\.,). (24) 

In place of the uniaxial expansion of the dielectric per­
mittivity tensor, we have now (in the immediate vicinity 
of the phase transition point) 

, 
c:'ilj.=f.o6i1~ + .E BnOikn • (25) 

Of course, if T > Te , then the mean value of the dielec­
tric permittivity tensor is 
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The second component in (25) makes a contribution only 
to quadratic effects, for example, in the intensity of the 
scattered light. However, the Van der Waals compo­
nents that are linear in E. do not make a contribution to 
the volume energy of interest to us (for more detail, see 
Ref. 2). Therefore, the Van der Waals energy is the 
same in this region on both sides of the transition tem­
perature. 

With account of everything said above, we shall have 
for the Van der Waals energy, in place of Eq. (8), 

. ~ 
6F=- 32~'LJ e.'oo'doo J drdr'D"'(r-r')Dm,'(r'-r)a;mn(r)a,,n(r'). 

"=-10 

(26) 

Equation (8) is obtained from (26) if only the uniaxial 
term corresponding to aik remains. [5] The coefficient 
of the dielectric permittivity tensor E5 has the simple 
physical meaning of the anisotropic part of the dielec­
tric permittivity. The remaining coefficients En (at n 
f. 5) do not have a graphic physical interpretation. The 
width of the region in which departures from uniaxiality 
are possible is determined roughly by the ratio of the 
coefficients of the sixth and fourth degrees of the order 
parameter in the expansion of the free energy in the 
Landau theory. This ratio is small, experimentally, in 
liquid crystals, i. e., the region is extremely narrow. 
Moreover, because of the presence of cubic components 
in the order parameter, the transition to the isotropic 
phase is a first order phase transition. In most known 
liquid crystals, the ratio of the coefficients is such that 
a first order transition occurs directly to the uniaxial 
phase. We shall therefore not investigate the expansion 
(26) here in further detail, but simply write out the for­
mulas for the scattering intensity. 

In order not to create additional complications, we 
shall assume that En« EO. We can then write down (26) 
immediately in Fourier components (see Ref. 2): 

6F=.t (~n), Jd'q[ 2q'ai'(q)a,,"(-q)-4qqjq.a,,"(q)a.,"(-(j) 
!I=l 

(27) 

(28) 

Short-range forces also make a contribution to the scat­
tering intensity here. The corresponding correlation 
functions {a7k(q)a7m(-q» were calculated by de Jeu et 
al. [5] For concreteness, we shall consider the isotropic 
phase (T > Tc) (as was noted above, the Van der Waals 
contributions are symmetric in Te , but the short-range 
forces are not). The results depend Significantly on the 
polarization and other geometric characteristics of the 
scattering. 

For example, if k and k' are the waves vectors of the 
incident and scattered light, then, at uniform polariza­
tions of the incident and scattered light along kxk' we 
have the following expression for the coefficient of ex­
tinction (q =k -k' is chosen along the z axis): 

1146 Sov. Phys. JETP, Vol. 44, No.6, December 1976 

dh«(iJ) 00' [2'r.Te,2 2'/'Te,' 
----;m-=16:rt' . (T-T,)+K"q'+M,q' + (T-T,)+K"q2+M,'1' 

+ 6'/'Tes' ] 
(T-T,)+K"q'+M,q' . (29) 

However, the more significant differences from the 
region T« Te arise in the polarization characteristics 
of the scattering, which are the same for the short­
range and the Van der Waals forces. They both depend 
on three indepe:tttl.ent combinations of the five coefficients 
En (as also in Eq. (29), for example). These three coef­
ficients correspond to the scalar and symmetric scat­
tering processes. In the usual notation, UO] we have the 
following relations: 

a='/"es'+'/" (e,'+e}) _'I" (e,'+e,.'), 
c=-'/6e,'-'/,,( e,'+e,.'), b='/"e5'+'/" (e,'+e,'). (30) 

In the case of the uniaxial order parameter, we have 
from (30): 

a=bI3=--cI5. (31) 

The relations (31) are characteristic for purely sym­
metry scattering. In scattering of such a type (for po­
larized light), the angular intensity distribution is 

I,-~+2.8in'e 
10 20 . 

(32) 

Biaxiality does not appear in additional scattering at 
large angles: 

I 3. 2 e '-28m . 
(33) 

In conclusion, the authors express their deep grati­
tude to I. E. Dzyaloshinskii for numerous discussions 
of the work and useful criticism. 
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