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We investigate the statistical properties and obtain the spectrum of the elementary excitations of the 
system of Frenkel excitons in three-dimensional molecular crystals with allowance for the kinematic and 
dynamic interactions. The calculation is carried out with exact commutation relations for the exciton 
operators, so that the kinematic interaction can be taken into account automatically. The explicit form of 
the distribution function of the elementary excitations is obtained as a function of the concentration of the 
excitons; the distribution has a quasi-Bose character in the considered approximations. Expressions are 
obtained for the dispersion law of the elementary excitations in the Hartree-Fock approximation and in 
the random-phase approximation. Coherent states are introduced for a system of Frenkel excitons. The 
conditions for Bose condensation of excitons are investigated and the stability of the coherent state with 
respect to turning on the kinematic and dynamic interactions is demonstrated. The spectrum of the 
elementary excitations satisfies the Landau superfluidity criterion under condensation conditions, but 
differs from the spectrum of a weakly nonideal Bose gas, since it contains terms that depend on the 
exciton concentration. With increasing exciton concentration in the condensate, the energy of the 
elementary excitation goes through a maximum. The experimental manifestations of the co\1ective 
properties are discussed. 

PACS numbers: 71.80. +j, 31.70.Ks 

I. EXCITATION 

Modern methods of laser excitation of crystals make 
it possible to obtain large molecular-excitation den­
sities. ThUS, when an anthracene crystal is excited, 

site are Pauli operators, i. e., the operators pertain­
ing to a single site satisfy the fermion commutation 
relations pertaining to different (boson) sites: 

a free-exciton density - 2x 1018 cm-3 is reaChed, (1,2] 
corresponding to excitation of - 5 x 10-4 of all the mole­
cules in a unit volume. At such densities, collective 
effects should appear. The collective properties of a 
system of molecular Frenkel excitons were investi­
gated to a much lesser degree than those of a system 
of Wannier-Mott excitons in semiconductors. (3-7] The 
reason is that in the case of Wannier-Mott excitons the 
collective properties manifest themselves at a much 
lower concentration than in the case of Frenkel excitons. 
At the same time, the possibility of the appearance of 
a "metallic" phase[8-9] greatly limits the experimentally 
attainable concentration of the excitons in the semicon­
ductors, whereas in molecular crystals a higher exciton 
concentration can be reached. The upper band of the 
molecular-exciton density is determined by the strength 
of the crystal and appears to be of the order of ,,; 10-19 
cm-3. 

In the second-quantization representation, the Hamil­
tonian of the electronic excitation of a crystal with one 
molecule per unit cell, if we confine ourselves to only 
one excited molecular state, takes in the Heitler-Lon­
don approximation the following simple form(10]: 

H=d L: b,+b, + L:' M,_"b,+b", (1) 

where ~ is the excitation energy of the molecule in the 
crystal, v numbers the lattice sites, M v _v' is a reso­
nance integral characterizing the efficiency of excita­
tion transfer from the site v to the site v', and the prime 
at the summation sign means that II '* v'. The operators 
for the creation and annihilation of an excitation at a 
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[b" b, + 1 +=1, b,'= (b,") '=0, (2) 
[b" b,,+l_=[b,+, b"+l-=[b,, b,'l_=O, v*v'. 

For a periodic lattice with one molecule per unit cell, 
the unitary transformation that diagonalizes the Hamil­
tonian is determined completely by the translational 
symmetry of the lattice 

(3) 

where m is the number of sites. The Hamiltonian (1) 
goes over into 

and its k-th state energy is 

(4) 

The operators at and a~ describe molecular excitons or 
waves of electronic excitation in the crystal. 

The exciton operators are connected with the Pauli 
operators by a unitary transformation. Since, however, 
the Pauli operators do not satisfy either the boson or 
fermion commutation relations, the unitary transforma­
tion is not canonical, i. e., it does not conserve the 
commutation relation. In fact, 

(5) 

2 ' 
[ak,ak,+l+ = 6kk , + 91 ~ exp{i(kr,-k'r")}b,+b,,. (6) 

y,y' 
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The operators at obtained with the aid of the unitary 
transformation (3) are neither Pauli nor Bose nor Fermi 
operators. 

At low exciton concentrations, when (b;bv ) '" (Pi") « 1, 
relations (5) go over into the usual boson relations. At 
large exciton concentrations, however, the corrections 
for the deviation from the Bose behavior become ap­
preciable. The interaction that results from the non­
Bose character of the excitons is customarily called, 
just as in magnetism theory, [11l kinematic to distinguish 
it from the interaction that has in its Hamiltonian terms 
that describe the so-called dynamic interaction of the 
excitons with one another. 

The collective properties of the Frenkel excitons in 
three-dimensional molecular crystals at absolute zero 
temperature were investigated by Agranovich and 
Tosic[12] (see also[10], Chap. X), where the possibility 
of Bose-Einstein condensation was demonstrated for a 
gas of excitons in the absence of dynamic interaction 
between them, and where they obtained under condensa­
tion conditions an approximate elementary-excitation 
spectrum that coincides with the spectrum of a weakly 
non ideal Bose gas; the influence of the dynamic inter­
action on the results was also discussed. To take into 
account the kinematic interaction, an exact representa­
tion of the Pauli operators was obtained in the form of 
an infinite series in Bose operators. This approach 
was subsequently developed in a number of papers. [13-15] 
Yaks, Larkin, and Pikin[16] (see also[l7]) have developed 
a diagram technique for spin systems, which makes it 
possible to take into account directly the kinematic and 
dynamic interactions without changing over to Bose 
operators. This technique was not applied to a system 
of excitons, although at temperatures above the Bose­
condensation temperature it is applicable in prinCiple 
also to excitons, see Sec. 3. 

As shown by one of us, [18] the exciton operators sat­
isfy trilinear commutation relations from which it fol­
lows that Frenkel excitons obey a modified parafermion 
statistics that admits of an IJC fold occupation of the 
single-particle states. An exciton gas satisfying the 
parastatistics is always nonideal, since the corrections 
for the deviation of the operators from Bose properties 
introduces into the Hamiltonian corrections of the same 
order for the deviation from ideality. It follows there­
fore that at exciton concentrations at which their devia­
tion from Bose character becomes appreciable we can 
no longer start with an ideal exciton gas even in the ap­
proximation of zero order in the dynamic interaction. 
The c;liagonalization of a Hamiltonian of a system with a 
fixed number of excitons yields new "dressed" excitons, 
the statistics of which depends on their concentration. 

In the present study we have investigated in detail the 
statistical properties of a system of excitons in three­
dimensional molecular crystals, taking into account both 
the kinematic and dynamic interactions. Since we used 
in all the calculations exact commutation relations for 
the exciton operators, the kinematic interaction was 
taken into account in this approach automatically. An 
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explicit form was obtained for the distribution function 
as a function of the exciton concentration. In the Har­
tree-Fock approximation, the distribution function of 
the dressed excitons has a quasi-Bose character. With 
increasing concentration, the exciton spectrum becomes 
restructured and the dispersion law changes. The con­
centration shift of the energy spectrum of crystals with 
broad exciton bands can reach, at present-day pumping 
levels, values of several cm-1. These effects should 
manifest themselves experimentally in displacements 
of the absorption bands and luminescence bands, and 
also in a decrease of the lifetime of the excited phase. 

As is well known, a feature of a Bose system is the 
presence of a macroscopiC number of condensate par­
ticles in the ground state. The proof of the stability of 
the condensate for a nonideal Bose gas was obtained by 
Belyaev, rao] who has shown in fact that the ground state 
of the Bose-condensed system is coherent, since the 
properties of the ground state obtained by Belyaev coin­
cided with the properties of coherent states introduced 
later by Glauber. [211 In explicit form, the concept of 
coherent states was used by Keldysh to prove the stabil­
ity of a condensate of Wannier-Mott excitons. In this 
paper we introduce coherent states for Frenkel excitons 
and show that the coherent condensed state of Frenkel 
excitons is, under certain conditions, stable with re­
spect to turning-on the dynamic or kinematic interac­
tion. 

The presented analysis of the properties of excitons 
under conditions of Bose condensation will show that 
the spectrum of elementary excitations satisfies the 
Landau superfluidity criterion, but differs from the 
spectrum of a weakly non ideal Bose gas, since it con­
tains concentration terms. With increasing exciton con­
centration in the condensate, the energy of the elemen­
tary excitations goes through a maximum. We investi­
gate the conditions of the stability of a Bose-condensed 
state. Since the superfluidity condition is satisfied, the 
presence of an exciton condensate should manifest itself 
in an anomalously large exciton diffusion. Another 
manifestation of a condensate can be enhancement of 
light and sound[5,10,22] or else resonant absorption of 
hypersound. [23] 

2. EXACT COMMUTATION RELATIONS FOR EXCITON 
OPERATORS, AND DISCUSSION OF THE STATISTICS 

Relations (5) assume a simple closed form if we take 
a commutator from a commutation bracket. Using the 
commutation properties (2) of the operators bv and b;, 
we can show that 

(7) 

(8) 

(9) 

The value of the vector It in the right-hand sides of (7) 
and (8) is determined by the quasimomentum conserva­
tion law. 
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It is easily seen that the commutation relations (7) 
and (8) are close in their structure to the parafermion 
commutation relations. The latter were proposed by 
Green(24] and independently by Volkov, (25] who have 
shown that the second-quantization operators, which 
satisfy the causality principle, CPT invariance, and 
positiveness of the energy can satisfy commutation re­
lations that are more general than the boson and fermion 
relations. Relations (7) at k = kif and relations (8) at 
k' =k" coincide with the parafermion relations for the 
normalized operators (see[26]). At different values of 
k, however, the commutation relations for the excitons 
differ significantly from the parafermion relations in 
that the value of the vector 'it in the right-hand sides of 
(7) and (8) is determined not by the Kronecker symbol 
but by the quasi-momentum conservation law. 

To find the action of the operator a k on the state of the 
physical vacuum 10), it suffices to determine the action 
exerted on this state by the Pauli operators 

b,IO)=O, (10) 

From the definition (3) it follows directly that 

(11) 

USing the commutation relations for b", it is easy to 
showU8l that up to 91 excitons can exist in one state, 
i. e. , 

(12) 

Thus, the excitons described by the operators (3) satisfy 
a certain modification of parafermion statistics of rank 
91, characterized by the commutation relations (7)-(9~ 

The vector of a state containing N excitons with quasi­
momentum k is defined by the usual equation 

(13) 

with a normalization factor that differs from that of a 
Bose system: 

ex = IN! ( 1 __ ~) ( 1 - ~ ) ... ( 1 _ N;l)] -'I'. (14) 

The result of the action of the exciton creation and an­
nihilation operators on the state vector (13) isU8 ] 

(15) 

a.1 N.)=[N.(l- (N.-i)/'Jl) ]'hIN.-1>. (16) 

In accordance with (12), the action of a; on a state with 
a maximum occupation number Nk = 91 is equal to zero. 
As 91- c<), relations (15) and (16) go over into the known 
relations for bosons. 

It follows from (15) and (16) that 

(17) 
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i. e., the operator a;al< is not a particle-number oper­
ator, as is the case for bosons or fermions. 

The function INk) describes N non-interacting excitons 
with energy £k. Not more than 91 excitons can exist in 
a single state. The distribution function of an ideal gas 
with a maximum occupation number 91 can be easily ob­
tained by taking the derivative of the thermodynamic po­
tential nk with respect to the chemical potential f.1. under 
the condition that up to 91 quasiparticles can exist in one 
quantum state 

_ oQ. [ [8k-[1 ] ]" 
II. = -~ = exp -1-' - - 1 

(18) 

Since the distribution function of an ideal gas with an 
arbitrary finite occupation number was first obtained 
by Gentile, (27] we shall call expression (18) the Gentile 
distribution function. The Gentile function goes over 
into the Bose-Einstein distribution function as 91- C<) 

and into the Fermi-Dirac distribution function at 91 = 1. 

The Hamiltonian of a system of noninteracting excitons 
should be linear in the operators of the number of ex­
citons in the state k: 

(19) 

However, as shown in[18], the absence of Kronecker 
symbols from the commutation relations (7) and (8) 
makes it impossible to introduce the particle-number 
operator Nk for excitons. This means that in principle 
it is impossible to regard the exciton gas as ideal with­
out resorting to the Bose approximation. Therefore the 
Gentile function does not describe a system of excitons 
regardless of the concentration. To find the distribu­
tion function of the excitons at concentrations at which 
deviation from the Bose distribution are substantial, it 
is necessary to take correct account of the exciton inter­
action. As will be shown in the next section, the ob­
tained distribution function includes explicitly terms 
that depend on the concentration. 

To estimate the kinematic interaction, it suffices to 
calculate the mean value of the Hamiltonian taken with­
out the dynamic interaction on the functions of the non­
interacting excitons INk): 

.. .' (20) 

In the case of bosons we would have IfNk =NEk. Al­
lowance for the exact commutation relations lead to the 
appearance of an interaction. Using the operator equa­
tion (22) from (18l, we get 

(21) 

where '8 denotes the average energy of the exciton band 
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It follows from (21) that the corrections for the kinemat­
ic interaction are - N/IR, i. e., they are of the same 
order as the corrections for deviations from the Bose 
distribution in the commutation relations. Their ab­
solute magnitude is larger the farther the level from 
the center of the exciton band. 

A more accurate calculation, that takes into account 
both the kinematic and dynamic interaction will be pre­
sented in the next section. 

3. ENERGY SPECTRUM AND DISTRIBUTION 
FUNCTION OF EXCITON SYSTEM 

The total Hamiltonian for a crystal with one molecule 
per unit cell in the absence of interaction of the elec­
tronic states with one another and with the lattice vibra­
tions, is given byC1o.28]: 

'Y,v' 

(22) 
V,v' 'II,'v' 

The first two terms correspond to the Heitler-London 
approximation, the fourth characterizes the dynamic in­
teraction between the excitons, and the third character­
izes processes that lead to nonconservation of the ex­
citon number. The Hamiltonian (22) can be regarded as 
semi-empirical. C29] In this case the quantities Qv-v' 

and Fv-v' incorporate the contributions from all the pro­
cesses connected with exciton collisions, including the 
interaction due to virtual exchange of phonons, or else 
exciton decay via collision with formation of an exciton 
of higher energy. C30] 

We change over in accordance with (3) to the free-ex­
citon operators in k-space. The Hamiltonian (22) be­
comes 

H = 1:, e.a. +a. + 1:, Q.(a.a_.+a!.a.+) + ~ 1:, F.'{.'{_., (23) 

•• • 
where ~k is given in (4), Qt, F ... are the Fourier compo­
nents of Qv, Fv (v*O), and the operator Yt has the mean­
ing of double the Fourier components of the dimension­
less exciton density and is given by 

(24) 

The transition to k-space provides a more convenient 
method than calculation in the node representation. 
Not only is the number of intermediate steps smaller, 
but in calculations with the operators at there is no need 
to look out for satisfaction of the Pauli principle (to get 
rid of unphysical states), since the number of excitons 
in one state cannot exceed the rank of the parastatistics 
describing the excitons; all that is necessary is to use 
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the exact commutation relations .(7) and (8). 

We shall investigate the system of equations char­
acterized by the Hamiltonian (23) by the method of equal­
time retarded Green's functions, defined in accordance 
with[31] 

where 

{ 1 x>O 
f:)(x)= 0 x<O 

(25) 

Changing over to the energy representation with Ii = 1 

«A (t) lE(t')) = L j «AIB»E riE(t-"l dE, 

we obtain, using the exact commutation relations (7) and 
(8), the following chain of equations: 

-+ 1:, Fr_. «'Yr-k'Y.-ra.la, +»E; 

"f 

+ 1:, (e.-F._.) «a.:".'Y.-kl a• +»E + ~ 1:, F._ r «a~q'Y.-r'Yr-.la. +»E. 

(26) 

• "r (27) 

We shall close the chain of equations (26) and (27) in 
two approximations, expressing the higher Green's func­
tions in terms of single-particle ones. 

A. The Hartree-Fock approximation 

In this approximation we use approximate functions 
of the type 

(28) 

where 'iit '" (a; at) is the "true" mean value of the oper­
ator a; at (for a system with Hamiltonian (23», and 
in q '" (aq a_q) is the "anomalous" me,an value. In addition 
to the obvious equality L;rnr =N, the exact commutation 
relations lead to l;qmq = O. It is easy to show that 

Gqfk=G'Qk, 1:, Gqfk=O, 
<,r 

(29) 

and these relations are satisfied also by the apprmQmate 
expression (28).1) 

We consider the case of a fixed number of excitons. 
Formally this corresponds to Q ... = 0 in (26) and (27). 
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After obtaining the explicit form of the single-particle 
Green's function, we get the energy and the distribution 
function, [31,32] of the elementary excitations of the sys­
tem of excitons: 

- :' [L/q-ri'iri'iq+N L/q-ki'iq], (30) 
q,r 

(31) 

and jJ. is the chemical potential of the excitons, deter­
mined from the condition 

(32) 

In the considered case of a fixed number of excitons, 
the number of elementary excitations is equal to the 
number of the initial excitons, and the ground state for 
the elementary excitations is the same as for the initial 
excitons, i. e., the mean value of the Hamiltonian (23) 
is equal to 

(33) 

By the same token, the obtained elementary excitations 
can be regarded as "dressed" (on account of the kine­
matic and dynamic interaction) excitons with energy Ek 

(30). The distribution function of an ideal gas of dressed 
excitons coincides in the case of a fixed number of ex­
citons with a distribution function of interacting "bare" 
excitons and has according to (31) a quasi-Bose charac­
ter. 

If we confine ourselves to corrections that the qua­
dratic in the concentration for the unperturbed spectrum 
E~ = Ek = A + M t , then we must substitute in (30) the Bose 
distribution function 

i'ik'=[exp {~(Ek'-f.l,)}-1]-' (34) 

with the chemical potential jJ.o of an ideal exciton gas in 
the Bose approximation. [28]2) The expression for the 
chemical potential in approximation quadratic in the con­
centration is obtained from (31) and (32) and is quite 
cumbersome. We present the expressions for the cor­
rections to Eg and jJ.o in the approximation linear in the 
concentration: 

(35) 

(36) 

In (36), we have used D and the mean values if and F to 
denote 
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F = (N'D)-' L/q-ki'iq'i'ik'(l+i'i.'). (37) 
k,q 

We note that n~(1+n~)=(~)2 is the mean squaredfluctua­
tion of the number of single-particle states in an ideal 
Bose gas. 

The shifts 1iEt and 1ijJ. are directly proportional to the 
relative concentration of the excitons N /IJI and depend 
substantially on the signs and absolute values of Mk and 
Ft. At Mk < 0 (positive exciton effective mass) and Ft > 0 
(repulsion between excitons), the energy and the chem­
ical potential of the excitons shift to the short-wave re­
gion of the spectrum with increasing concentration. 
Shifts to the long-wave region are possible in other 
cases. 

The energy shift due only to the kinematic interaction 
is, according to (35), 

(38) 

For M t <0, the corrections to the spectrum are positive 
and the kinematic interaction is equivalent to the effec­
ti ve repulsion between the excitons. Since the factor 
2N /IJI enters in the expression for the shift of any level 
E t of the exciton band, the kinematic interaction leads 
to a narrowing of the band. If we denote the width of the 
elementary-excitation band (dressed electrons) by V, 
and the width of the band of the initial excitations (bare 
excitons) by Vo, then as a result of the kinematic inter­
action we have 

V=V,(1-2N/!Jl). (39) 

For crystals with exciton-band width - 103 cm-1 and ex­
citon concentration N /IJI- 10-3, the kinematic interaction 
leads to a narrowing of the excitation band by several 
cm- t • 

B. Random-phase approximation 

It is of interest to consider the spectrum of the exci­
tons in the random-phase approximation, [33,11] which is 
valid at sufficiently high exciton concentrations. We use 
the customary approximations of this approach 

«1,-ka, I ak +»E""< 1q ok> «a. I a. +»" 
=2S!Jl-18k,«ak I ak +»E' (40) 

Leaving out the intermediate steps, we present the 
final results for a system of excitons described by a to­
tal Hamiltonian (23). The number of excitons is not 
fixed. The energy of the elementary excitations of the 
exciton system is given by 

ak=~+Mk(1-2NI"")+2NF,/!Jl, 

8k=2Qdl-2NI!Jl). 

(41) 

(42) 

(43) 

The distribution function of the elementary excitation is 
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1-2N/9! 

exp {~E.} -1 ' 
(44) 

where N is the average number of the excitons, N=Lknk' 
and the mean occupation number is nk (or the distribu­
tion function of the interacting excitons) are determined 
from the equation 

_ < +) (1 N ) ( a. ~E ) n.= a. a. = --- -cth--l 
2 91 E. 2 . 

(45) 

The average number of elementary excitations N=Ltnt 
is always less than the average number of excitons N. 
The ground state, from which the energy of the elemen­
tary excitations Et is reckoned, does not coincide in this 
case with the state from which the exciton energy is 
reckoned. In place of (33) we now have 

H=IJ.E,+ ~E.il., IJ.E,<O. (46) 

Therefore, in contrast to the case considered above 
with a fixed number of excitons, in the present case the 
elementary excitations cannot be regarded as dressed 
excitons, and the functions nk and nk are not equal. 

By analogy with ferromagnetism theory, [31,17] we can 
introduce the order parameters[34]: 

1 N 1 1 
a=2-~=2-m.E n., (47) 

k 

which characterizes the degree of excitation of the sys­
tem at a given level of optical pumping and temperature 
j3-1. Small values of (J correspond to large degrees of 
excitation of the system and to a possibility of a transi­
tion into the so-called super radiant state. [34,35] It can 
be shown that (J satisfies a relation 

_1_=~~ ~cth ~E. 
2a 91 £.... Ek 2' 

(48) . 
that generalizes the corresponding relation from ferro­
magnetism theory. [31] 

If I Qk/.:ll« 1, we obtain for Et 

E.=IJ.+F,+2a [M.-F, 
4aQ.' 

IJ.+F,+2a(M.-F,J· 
(49) 

To obtain the energy spectrum of excitons in the random­
phase approximations, Marinkovic[15] used the procedure 
Of[14] to exclude from the Hamiltonian the terms that do 
not conserve the number of electrons, followed by ex­
pansion of the exciton operators in Bose operators. Our 
expression (49) agrees with expression (21) obtained 
in[15] under the same conditions only at Qt = O. The dis­
crepancy is apparently caused by the inaccuracy, due 
to the cumbersome procedure used by Marinkovic, of ex­
pression (21) ofm ]. 

4. BOSE CONDENSATION 

As shown above, when the interaction between excitons 
is taken into account, they are subject to the quasi-
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Bose statistics (31). This means that there are no sta­
tistical hindrances to Bose condensation of excitons. 
The condensation temperature Tcr of an ideal gas of 
quasiparticles with a distribution function (31) is esti­
mated at 

T = Tero 
cr (1-2N/~!)jj' 

(50) 

where T2r is the condensation temperature of an ideal 
Bose gas. Tcr is always higher than T~r' although this 
excess is inSignificant because N/IJI is small. 

The expressions obtained in the preceding section for 
the energy spectrum of a system of excitons are valid 
at T> Tcr ' In the present section we investigate the 
ground state and obtain the spectrum of elementary ex­
citations under conditions of Bose condensation at 
T < Tcr' The initial Hamiltonian can be written in the 
form 

( 51) 

where Yf-t is given by (24). The terms with Q have been 
left out of the Hamiltonian (23), since the number of ex­
citons is assumed to be fixed. 

As already mentioned in the Introduction, it followed 
from Belyaev's work[20] on the stability of a Bose con­
densate that the ground state is coherent in this case. 
Coherent states were subsequently resorted to in a num­
ber of studies for the investigation of the phenomena of 
superfluidityand superconductivity, see[36]. The con­
cept of coherent states was used by Keldysh[4] to prove 
the stability of a Bose condensate of Wannier-Mott ex­
citons. We shall use a similar approach here to demon­
strate the stability of a Bose condensate of Frankel ex­
citons. 

The Bose-condensed state of the Frenkel exciton is a 
coherent (with definite phase) wave of electronic excita­
tion of a finite amplitude but not of the order of 1/91. 
As a result of the allowance for the deviations of the ex­
citon statistics from Bose statistics, the coherent 
states of one mode are determined for operators at that 
differ from the operators at and depend on the exciton­
wave amplitude (lit: 

(52) 

where 

(53) 

The commutation relations for the new operators at at 
k = k' differ from the commutation relations for the op­
erators at only by a c-number: 

The coherent state is defined by 

I CG.)=exp {( 1-1 ii. I '/91) _1 (akil. +e-i"I' 
-a.a.e','I')} 10) 
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where j.L is the chemical potential of the system. 

The probability that Nk quasiparticles are in a state 
1 at) is equal to 

(56) 

At N k > 91 we have P at(Nk ) =0 0 in accordance with the char­
acter of the modified parastatistics for the excitons 
(see (12». The average occupation number is 

11l 

51.= LnP .... (n) (57) 

As W-oO we obtain from (56) and (57) the known relations 
for bosons: P ak(Nt ) goes over into the Poisson distribu­
tion, (21) and Nt -I akl2. 

If a Bose condensation takes place in a state with 
quasimomentum k = 0 and with an average number No ex­
citons in the condensate, then it follows from (57) that 
the amplitude of the coherent wave in the state (55) is 
equal to 

( N )'1. 
la.1 = 1-;./91 . (58) 

The value of J.1. in (55) should be determined from the 
Schrodinger equation for the interacting excitons: 

(59) 

The coherent state of the type (55) satisfy Eq. (59) only 
in the self-consistent approximation. Following 
Keldysh, (4) we confine ourselves to this approximation 
and to the case of relatively small excitation densities 
N/W« 1, corresponding to macroscopic occupation of 
the mode with k=O. From (59) we find that the dominant 
term in the expression for the chemical potential, which 
takes into account only the contribution of the exciton 
condensate (in the absence of formation of excitonic 
molecules), is of the form 

251. ( N.) fto=li+M'+91 1-91 (F.+IM.I), (60) 

where No is the average number of excitons in the con­
densate. 

The stationary coherent (Bose-condensed) state of a 
system of interacting excitons, obtained by solving (59), 
is at T= 0 the ground state of the system and is stable 
under the condition 

F.+IM.I>O, (61) 

i. e., a condensate of Frenkel excitons does not vanish 
when the kinematic or dynamic condensation is turned 
on. We note that the conclusion that the Bose conden­
sation of Frenkel excitons is possible pertains only to 
the case of three-dimensional crystals. The transition 
to one-dimensional and two-dimensional crystals leads, 
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independently of the statistical difficulties(31) (see also 
also(38), to the appearance of a large number of funda­
mental factors that prevent Bose condensation of the ex­
citons. (10) 

To find the spectrum of the elementary excitations, we 
take into account the presence, under Bose-condensa­
tion conditions, of a macroscopic number of excitons 
No with quasimomentum k = 0, by using the transforma­
tion wherein the operators at and a; are shifted by a 
c_number[39,19): 

(62) 

where No is replaced by Nt because of the non-Bose sta­
tistics of the excitons (see relation (17»: 

( No-I) ( No) N,=No l--I)l- ""No 1-9\ . (63) 

The condition for the Bose condensation of the excitons 
is, besides No» 1, also Nt »1, thus impOSing an upper 
bound on No. 

The operators at, a; satisfy the following commuta­
tion relations: 

+ 2N; 2(N;l'!' + , 
[a., a.·]_=o •• · ( 1- -91-) - -91-(a.-•. +a •. -.)-~(q -q), (64) 

[a., a.,]_=[a.+, a •. +]_=O, 

where 

Setting up next a chain of equations for the Fourier 
components of the single-particle temperature Green's 
functions 

in an approximation corresponding to the Bogolyubov 
approximation(39) for a weakly nonideal Bose gas, we ob­
tain for condensation into a state with k = 0 the following 
energy spectrum of elementary excitations in excess of 
the condensate: 

2N" 4N' 2N' 
E. = [ (Mk-M.) , (I-T ) +-i- (1-+) 

x (Mk-MO) (F.-Mol] 'I,. (65) 

The obtained spectrum is valid under the condition 

N-No'«.No'. (66) 

Substituting in (66) the expression (63) for Nt and rec­
ognizing that No- N, we find that the condition (66) is 
equivalent to the condition No/W« 1. The spectrum (65) 
contains characteristic differences from the spectrum 
of a weakly nonideal Bose gas, owing to the non-Bose 
distribution of the excitons. 

The condition for the stability of the Bose-condensed 
state is 
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1 ~ 1 
-~(M.-Mo)+-IMk+Mol>-F •. 

4 No' 2 
(67) 

In the case of repulsion between excitons (F k > 0) this 
condition is always satisfied. For the Bose-condensed 
state to be stable in the case of attraction between ex­
citons (Fk <0), besides satisfying condition (67), it is 
necessary also that no bound states (of the biexciton 
type) be produced. At k = 0 expression (67) coincides 
with the condition (61) obtained above by the method of 
coherent states. 

In the absence of dynamic interaction (Ft = 0), for a 
primitive cubic lattice with constant d=(V/91)1/2, ex­
pression (65) goes over in the effective-mass approxi­
mation m*=n 2/2IMld 2 into 

Il'k' , 12no'll'd Il'k' 'I. 
Ek = l (2m' ) (1-2no'd3 ) , +-m-·-(1-2no'd3 ) 2m']' (68) 

no'=no(1-nod') , no=NIV. (69) 

The Bose-condensed state, in view of the assumed 
smallness of nod 3, is stable; the kinematic interaction 
manifests itself as an effective repulsion, similar to the 
case of a lattice gas. (40] If 2n; d 3 is neglected in com­
parison with unity, formula (68) coincides, apart from 
a numerical factor of little importance, with the result 
of Agranovich and Tosie. (12,10] If the minimum of the 
energy in the exciton band corresponds to a state with 
ko * 0 and the condensation takes place in the state ko, 
the formulas (65)-(67) derived above remain valid sub­
ject to the substitution Mo - Mto ' 

The spectrum (65), at small values of the quasimo­
mentum p 

=lik«{smwo' IM,I+F, }'" 
p ~ 1-2N"/~ , 

(70) 

has an acoustic dispersion Ep=sp with a speed of sound 

(71) 

It is interesting to note that extrapolation of the results 
leads to the conclusion that with increasing exciton con­
centration in the condensate, the energy of the elemen­
tary excitations E k , just as the speed of sound s, goes 
through a maximum. 

The distribution function of elementary excitations 
with energy E t (65) has a quasi-Bose character: 

_ 1- 2N;/'iJt 
n= e~Ek_1 • (72) 

From the spectral representation of the Green's function 
for the average of the operator a;ak of the excitons in 
excess of the condensate excitons we obtain 

(73) 

(74) 

We emphasize that the operator a;ak does not have 
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the meaning of the operator of the number of excitons in 
the state k, for no such operator can be introduced at 
all. (18] However, since the operator of the total num­
ber of excitons is 

(75) 

it follows from (62) that 

N=No' + .E (ak+ak>. (76) 
k",O 

The average number of excitons in excess of the con­
densate is 

(77) 

We now derive an explicit expression for the number 
of excitons in excess of the condensate at T = O. We 
carry out the calculation in the effective-mass approx­
imation and neglect the dependence of the dynamic in­
teraction on k. To this end we introduce the effective 
scattering length a in accordance with the equality 

21'( IMol +F,) =4rrh'alm'. (78) 

At T=O we have 

(79) 

Substituting (78) in (79) and integrating with respect to 
k in the effective-mass approximation, we get 

_, 8N;( n;a3 
)'" 3 N =-- --- -No (nod ). 

3n';' 1-2n;d' 
(80) 

For the number of excitons in excess of the condensate 
to be small in comparison with the number of excitons 
in the condensate, it is necessary to satisfy two con­
ditions: 

no'd3 « 1 and n,'a'« 1. (81) 

If we set the dynamic-interaction constant Fa equal to 
zero, then it follows from (78) that a = 3d/21T'" t d. 

Inasmuch as the excitation spectrum has no energy gap 
in the case of Bose condensation and satisfies the Landau 
superfluidity criterion, one can expect the appearance of 
a superfluid component for Frenkel excitons just as for 
Wannier-Mott excitons. (3,5,41] The appearance of the 
condensate can be accompanied by light and sound am­
plification effects. (5,10,12] We point out also the possibil­
ity of resonant absorption of hypersound(23] by an exciton 
condensate, and this can serve as a method of observing 
the condensate. 

In conclusion, the authors thank V. M. Agranovich, V. 
A. Benderskii, V. L. Bonch-Bruevich, M. A. Kozhush­
ner, V. I. Man'ko, L. P. Pitaevskil, and G. I. Salistra 
for useful discussions of a number of questions touched 
upon in the present paper. 
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I)U can be shown that when applied to the theory of the Heisen­
berg ferromagnet, thlil uncoupling method described here cor­
responds, in the limiting case of low temperatures, to the 
"improved" self-consistent field approximation,IIB,171 when 
the correct temperature dependence of the magnon spectrum 
o.T5/2 is obtained; when better allowance was made for the 
kinematics, the Dyson term in the magnetization aT 4 is ob­
tained. 

2)A similar result for the energy spectrum of the exciton is ob­
tained also when the calculations are made by the diagram 
methodl161 in the self-consistent field approximation. 
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