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The interaction of the conduction electrons of a normal metal with an ordered system of magnetic 
impurity centers has been investigated. In calculating the electron self-energy component, the most 
diverging terms were summed. It is shown that in such a system a marked renormalization of the electron 
spectrum takes place, and in particular, the effective mass at the Fermi surface (and with it the low
temperature electronic heat capacity) increases by several times. The increment in the electronic heat 
capacity exhibits a broad maximum and depends on the concentration of impurity centers and on the 
temperature. These dependences are in good qualitative agreement with the experimental ones. 

PACS numbers: 7S.30.Hx, 7S.30.Jy 

1. Recently the number of papers devoted to the in
vestigation of the interaction of magnetic impurities in 
a non-magnetic metallic matrix has increased sharply 
(see, for example, the reviews[1,Z]). This is apparently 
connected with the fact that even at very low concentra
tions (-10-4 _10-3 at. %) the interaction of impurities be
comes appreciable[3,5] and leads to a marked change in 
the properties of an alloy. 

Magnetic impurities interact with each other through 
indirect exchange via the conduction electrons. The en
ergy of this interaction in second order perturbation 
theory was calculated by Ruderman-Kittel-Kasuya
Yosida (RKKY). [6] With increase in impurity concentra
tion the RKKY interaction leads, as was shown in[7-9], 
to a suppression of the Kondo effect, [10] this occurring 
at rather low temperatures, but above the temperature 
for the magnetic ordering of impurities Te , i. e., the 
impurity atoms were considered as interacting, but the 
average moment of each of them was equal to zero. 
The case of high temperatures (T» max{Te , TK}, TK 
being the Kondo temperature) was analyzed by Larkin 
and his colleagues. [11] Let us note that in all the papers 
referred to above the RKKY interaction, which is sym
metrical with relation to the sign of the exchange con
stant J, was considered. 

In the present paper it is assumed that the alloy is be
low Te and magnetic ordering of the impurity atoms has 
taken place in the system. The results then depend ap
preCiably, as will be shown belOW, on the sign of the 
constant J. As was first shown by Kondo, UZ] a strong 
renormalization of the electron spectrum occurs in such 
a system, leading to an increase of the coefficient in the 
linear part of the electronic heat capacity by several 
times. At the same time, according to Kondo the change 
in the heat capacity does not depend on the concentration 
of impurity atoms. Despite this, a marked concentra
tion dependence is always observed experimentally. [13-15] 
As Abrikosov noted in a review, U6] the correction to the 
electron energy considered by Kondo is the first large 
term of a series containing powers of Jln(max{Q, T}/ 
Dki/ (Q is the energy of an impurity atom in the effec
tive exchange field, T is the temperature, £0 is the 
Fermi energy; the physical meaning of the energy D 
will be discussed a little later). This correction di
verges with increase in In(max{Q, T}/D). Moreover, 
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Kondo's results do not depend on the sign of J. With 
regard to everything that has been said, a theory has 
been constructed in the present work in which the expan
sion is not carried out in terms of the constant J, but of 
a renormalized constant!) Jeff - J/[l - Jln(max{Q, T}/ 
D)/£o]. In the case where Jeff <J (J>O), the expansion 
is improved and the renormalization of the effective 
masses of the electrons begins to depend on concentra
tion and temperature. The resultant form of the con
centration and temperature dependence of the heat ca
pacity is consistent with the experimental results. 

The fact of magnetic ordering of impurities at low 
concentrations is well established experimentally, al
though the theoretical aspects of the problem have not 
been exhaustively studied. Let us note in this connec
tion that from the point of view of the RKKY potential 
usually employed, only ordering of the "spin-glass" 
type is pOSSible, in which, at each lattice point contain
ing an impurity atom, local magnetization occurs with
out rigid correlation with neighboring impurity atoms, 
so that a macroscopiC magnetic moment may be absent. 
Consequently, ferromagnetic ordering, which is often 
observed experimentally (see, for example, [18]) at quite 
low concentrations, is in contradiction to the elementary 
concepts of the mechanism of indirect exchange in met
als. This contradiction can, however, be resolved with
in the framework of the description proposed in a paper 
by Korenblit and Shender, [19] in which it was shown that 
for a complex form of the Fermi surface containing 
small segments with low typical momenta, the occur
rence of an oscillating exchange potential with a rather 
large period is possible. It should be emphasized, how
ever, that the effiCiency of such an ordering mechanism 
is only adequate in good single crystals. On the other 
hand, typical experiments are being carried out on poly
crystalline samples in which, because of the significant 
angular averaging, the mechanism referred to is of low 
efficiency. In the present paper we would like to draw 
attention to one possibility which can be realized even 
in the isotropiC case. The point is that in Kondo's the
ory there is an energy cutoff parameter D, r20] 2D being 
that range of energies in which the interaction between 
the conduction electrons and the d-electrons of the im
purity is appreCiable. If for any reason there is a suf
ficiently narrow spike in the denSity of states of the con-

Copyright © 1977 American Institute of Physics 1121 



duction electrons in the neighborhood of the Fermi sur
face, then electrons with energies in the range of this 
spike will obviously participate more effectively in the 
indirect exchange. Such a spike may occur both as a 
consequence of the specific dispersion law and as a re
sult of the overlap of two bands (a broad and a narrow 
one), the states of which are entangled in a polycrystal 
because of potential scattering, as, for example, in the 
alloy CuTL.!S4. If n?co, the effective exchange interac
tion is the same as the RKKY potential. In the case 
where n« co, the effective interaction assumes the form 

V(r)= - (-~)' ~{cp (~)-Ijl (~) cos 2p,r}, 
2n (PoT)' r, r, 

1 
cp(x) = - (2x[Ci(2x)- Ci(x) l+ 2 sinx - sin2x}, 

x 

1 
Ijl(x) = - ([ Ci(2x) - Ci (x) ]sin 2x - Si (2x) cos 2x+2 Si (x) cos' x}, 

x 

where ro = 2co/npo, Po is the Fermi momentum, and n is 
the concentration of electrons introduced for the sake of 
normalization. At large distances (r» ro) the value of 
V(r) coincides with the main term of the RKKY potential 
(V(r) - cos2Por/(2Por)S), while for r :Sro, V(r) is an oscil
lating but not Sign-reversing function (V(r) - (sinPor/ 
por)2), and the interaction has a ferromagnetic charac
ter. Consequently, ferromagnetic ordering is possible 
at concentrations c? r '(/. 

The mathematical reason which leads to ordering is 
that contributions from diagrams for the spin Green 
functions containing closed electron loops are propor
tional t02) T-k (k;, 1) and consequently at low tempera
tures perturbation theory in terms of the coupling con
stant does not lead to sensible results. A theory will 
therefore be developed below in which the expansion is 
carried out not for the spin Green functions, but for the 
spin semi-invariants (they are defined in the next sec
tion), for which, when ordering is present, the corre
sponding diagrams are proportional to T- k exp(-kQ/T) 
as T - O. Such a theory is fully equivalent to the prin
ciple of cancellation of "dangerous" diagrams4) devel
oped by BogolyubovC2lJ for the case of superconductivity, 
the value of Q being determined from the condition that 
diagrams that diverge as T - 0 be cancelled out. 

2. Let us examine a system of electrons in exchange 
interaction with randomly distributed magnetic impurity 
centers. The Hamiltonian of such a systemS) in Von
sovskii's s-d-exchange model approximation[22J is of 
the form 

(1) 

Here at. and at. are creation and annihilation operators 
for electrons with quasi-momentum k and spin s, Ct is 
the free-electron energy, CJ are the Pauli matrices, and 
rj are the coordinates of the impurity centers. In what 
follows we shall omit the spin indices, having in mind 
that all the electron functions are spin matrices. 

Let us define the single-particle temperature Green 
function 
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(2) 

In formula (2) the angle brackets denote thermodynamic 
averaging, and the Heisenberg representation is taken 
for the dependence of the operators on time. The opera
tor P is defined by the equality 

P=exp[ -is(t)U(t)]. 

Here and in what follows the integration with respect to 
the twice-encountered t-variables is carried out from 
o to - i{3 ({3 = l/T), and U(t) is an arbitrary vector func
tion of time which will be put equal to zero at the end of 
the calculation. 

It is necessary to note that since the Green function 
(2) takes account of the interaction of electrons with im
purity centers, it depends on the coordinates of all the 
impurity atoms. However, the impurity atoms are ran
domly distributed throughout the metal and consequently 
the Green function must be averaged with respect to the 
positions of the impurity atoms. This operation can be 
easily carried out if correlations between electrons in 
various scattering acts are ignored, and the interaction 
of impurity atoms is taken into account in only the mo
lecular-field approximation. It is then sufficient to con
sider the Green function in the single-impurity approxi
mation, and to define the self-energy part of the aver
aged Green function by the relationship 

~.(t-t') =n,T •• (t, t'; U=O), (3) 

ni is the number of impurity centers per electron, n i 
=c/n. The T-matrix in the local s-d-exchange model 
does not depend on the momenta and is connected with 
the Green function (2) by the formal relationship 

Here GOt is the Green function for electrons without in
teraction with impurities. Using the equation for the 
G-function, it is easy to derive an expression for the 
T-matrix: 

J \"1 A , -1 
T(t, t', U)= -:2 ~ a( (TPS (t)a.(t)a.,+ Cf) )/(TP»G • ..(t-t') . (5) 

• 
It is not necessary here to integrate with respect to the 
variable t. 

Using the method proposed by Martin and Schwinger[z3J 
as modified by Kadanoff and Baym, [z4J the equation 

T(t, t'; U)=T.(t, t'; U)-AD(t, t,; U)ti(t" t,; U)T(t" t'; U), (6) 

can be derived for T(t, t '; U), where A =IN(O)/n =3J/4co 
(N(O) is the density of states at the Fermi surface), 

T,(t, t'; U) =-'/,JD(t, t'; U)aM(t), 
M(t) =(TPS(t) )/<TP); 

D-'(t, t'; U)=1>(t-t')HR(t-t')aM(t), 

R(t)= N~O) ~GOk(t); 
• 

n(t,t';U)=R(t-t')ai 1>~(t)' 
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Integrating (6), we obtain a series for T(t, t'; U) in pow
ers of A and of the semi-invariants M "'l···"'n (t1> ••• , tn) 
which are defined by the relationship 

(8) 

Calculation of the various terms in the series shows that 
their order is determined not only by the powers of A, 
but also by the quantities containing powers of 
Aln(max{Q, T}/D) which may prove to be appreciable be
cause of the large logarithm. In this connection let us 
re-group the terms in equation (6) so that the resultant 
series in A does not contain divergences in the limit as 
In(max{Q, T}/D) _00. For this purpose we put T(t, t'; 
U) in the form: 

T(t, t'; U)=T,(t, t; U)E,(f,t'; U). (9) 

Making use of the relationship (6), we obtain the follow
ing equation for Lo 

.... 
E,=L,+L,(oM)-'ITT,E" (10) 

(lOa) 

All the functions in expressions (10) and (lOa) are ma
trices in the time and spin variables, and the arrow in 
(10) identifies the quantity on which the variational de
rivative in the operator fr acts. 

If we now iterate Eq. (10) with Lo as the initial ap
proximation, we obtain a series in powers of ALo, where 
L o-[l- Aln(max{Q, T}/D)]-t, i. e., the constant Aeff =ALO 
will replace A everywhere in the expansion. In an ex
actly analogous way the constant Aeff can also be im
proved by putting Lo in the form: 

E,(t, t'; U) =L,(t, t; U)E,(t, t'; U). 

Continuing this procedure, we finally obtain: 

T=T, IlL .. (11) 
i=O 

In Eq. (11), the matrices L; must be arranged in order 
of increasing i: 

L,(t, t', U) =[6(t-t') -N,(t, t'; U»), (12) 

where No is determined by the equality (lOa), and the 
remaining N/s are found from the recurrence relations 

.... 
N,=(oM)-'rrT,L,L1 ... L,_,. (13) 

The quantities No and N; are of the order of 

N.-Aln (max {Q, T}/D) , N1-(AL,)' In (max {Q, T}/D). (14) 

In calculating Nl two terms arise: the first one contains 
the product of two semi-invariants M"'1"'2 and is of the 
order of [ALoln(max{Q, T}/D)]2, and a member of the 
same order enters in the second term, which contains 
the semi-invariant M"'1"'2"'3, but these members com-

1123 SOy. Phys. JETP, Vol. 44, No.6, December 1976 

pletely cancel each other. As a result of the cancella
tion there remain members of the order indicated in 
(14). As regards the other N/s, it is not difficult to 
see that the estimate for them will not in any case be 
worse than 

'-1 
N.-AN,' II L:->+I. 

'_0 

However, it is quite possible that for Ni the estimates 
will be even more favorable since it is not out of the 
question that the main members in them also cancel each 
other as in N1 • 

The condition for the convergence of the infinite prod
uct (11) is the inequality 

iN,L,I<1. (15) 

In what follows we shall assume that the condition 

I (AL,) 'In (max {Q, T}/D) I «1 (16) 

is satisfied. In this approximation we have L; ,., 1 for 
i?- 1, and consequently 

T(t, t';U) ""T,(t, t; U)L,(f, t'; U). (17) 

This approximation amounts to summing all the terms 
of the infinite series which, for each power of the con
stant A, contain the maximum power of the large loga
rithm In(max{Q, T}/D), which is formally realized math
ematically in the form of an expansion of the T-matrix 
with respect to the renormalized constant Aecc = ALo• Let 
us note that this expansion works well only for the ferro
magnetic interaction constant A> 0, since in that case 
No <0, Lo<l, and the inequality (15) is always satisfied. 
For A < 0, the opposite situation arises, i. e., Lo > 1, 
and although the most divergent terms are summed in 
the T-matrix, the expansion parameter becomes in fact 
poorer. For convergence of the produce (11), the more 
severe inequality No < ~ must be satisfied. In this con
nection, the results given below are quantitatively ap
plicable only to the case A> O. Nevertheless, some 
qualitative conclusions can also be drawn for the anti
ferromagnetiC constant on the basis of an analysiS of 
the perturbation-theory series with allowance for the 
lowest-order terms containing logarithms. 

From formulae (7), (lOa), and (17) it is not difficult 
to derive an expression for T: 

(18) 

Here wo and w~ run through a discrete set of values wo 
= (2n + l)i1TT, and the magnitude of M ",/3 is determined 
from the relation (8): 

M"~(t-t') =<1'8"(t)8'(t') )-M"M'. (19) 

In deriving formula (18), the function U was put equal to 
zero after taking the variational derivatives. 

3. Calculation of expression (18) requires computa-
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tion of the semi-invariants MOl. [Eq. (7)] and MOI.s [Eq. 
(19)]. With the aid of the technique developed above, 
chains coupled equations can be written for them. In 
order not to unduly complicate the problem, we confine 
ourselves to the molecular-field approximation (MFA). 
In this approximation the spin correlators can be com
puted even without using the corresponding equations, 
but an analysis of these equations permits an assess
ment of the MFA accuracy, which is determined by a 
quantity of the order of 1/=I\.D/3£on i • Although in a typi
cal experimental situation 1/ may reach unity, the MFA 
will nevertheless not distort the final results qualita
tively even in that case. Thus, for the semi-invariants 
we have the expressions (see, for example, [25)) 

M=MT=SBs(S~Q)T, 

M"'(Olo)= -i6.,.o'r"'t'~ [S(S+1)-M'-Mcth ~2Q] 
'M Oloie."T'+Q(B.,-T''t') +, . 

Olo'-Q' 

(20) 

(21) 

Here T is the direction of the spin angular momentum 
of the impurity (r2 = 1), Bs(x) is a Brillouin function, Wo 

assumes even values wo=2ni1fT, and eOl.~ is a fully anti
symmetric third rank tensor. 

At this stage it is necessary to take account of the fact 
that the internal field Q is formed by the impurity sub
system on account of indirect exchange via the conduc
tion electrons, i. e., the field Q depends in fact on the 
lattice point at which the impurity is situated. In this 
connection it is necessary to specify concretely the na
ture of the field distribution, since until now we have not 
stipulated what type of ordering has established itself in 
the impurity subsystem. Two extreme cases are pos
sible here: 1) the orientation of the magnetic moments 
of the various impurities are rigidly correlated; 2) no 
perceptible correlation exists between the directions of 
the magnetic moments of the different impurities. The 
first case covers ferromagnetic or antiferromagnetic 
ordering as well as various helicoidal structures. The 
second type of ordered state is customarily termed 
"spin glass." It appears that at sufficiently low impurity 
concentrations the spin-glass type structure is realized; 
with increase in concentration this is transformed into 
a more or less correlated phase. In the present work 
we have confined ourselves to the case of ferromagnetic 
ordering. This obviates an analysis of the specific prop
erties of the discrete crystal lattice, which is needed 
for a correct calculation of antiferromagnetic ordering 
and of helicoidal structures. Moreover, for purely 
ferromagnetic ordering there are also considerable com
putational advantages because the directions of all the 
magnetic moments coincide. In a certain sense order
ing of the spin-glass type also possesses a similar sim
pliCity (in this case the T-matrix in formula (3) must be 
averaged over all possible directions of the vector T). 
The functional dependence of the thermodynamic vari
ables on the system parameters for spin-glass and fer
romagnetic ordering is identical. 

The internal exchange field Qj = QTj acting on an im
purity at the point rj is connected with the Green func
tion by the relationship 
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FIG. 1. The dependence of the right-hand side of Eq. (23) 
(arbitrary units) on Q; the following notation has been adopted 
in this and the next figure: 1-logarithmic corrections not 
taken into conSideration, 2-perturbation theory, 3-present 
theory; the symbols a and b correspond to A ~ 0.2 and A ~ - o. 2; 
the continuous lines correspond to T ~ 1 K, the dashed lines to 
T~5 K; S~O.5, D~500 K. 

(22) 

G is the Green function averaged over the locations of 
all the impurities except the one situated at the point r j, 
and t + = t +0. Making use of relationship (22) and per
forming the calculations at the adopted accuracy, we 
find that Q satisfies the equation 

S ( iJ/(Ol) ) 
Q=-A dOl ---0;;;- RcF(Ol,Q), (23) 

F(Ol, Q)= _ In,~(~Q) 

l-Ag(Q+Ol) + iO'tA[f(Q+Ol)+S(S+1)/2M(~Q) - 'I,] (24) 
X [l-Ag(Q+Ol) J' 

g(Q)=S dOl/(Ol)+v(Q). (25) 
Ol-Q 

Herej(w) and v(Q) are the Fermi and Bose distribution 
functions. The logarithmic divergence in relationship 
(24) is cut off in the usual way at W =D. 

From (23) it is possible to determine the critical tem
perature of the transition to the ordered state for any 
given concentration. In contrast to the situation where 
the logarithmic corrections are neglected, Tc is lowered 
for the ferromagnetic constant and increased for the 
antiferromagnetic constant. For small values of A this 
change in Tc has the form: 

Although relationships (23) and (24) are only good in the 
case where I\. > 0, this conclusion is nevertheless also 
correct for I\. <0 since it follows from the usual pertur
bation theory in 1\.. 

In Fig. 1 are shown curves for the right-hand side of 
(23) at positive and negative I\. (the curves correspond
ing to I\. <0 have a purely illustrative character since, 
as already noted, the results for the antiferromagnetic 
constant are valid only qualitatively) and for two values 
of temperature. For comparison, the right-hand sides 
of this equation without the logarithmic terms are shown 
in the same figure, as are the relations derived from 
perturbation theory. The solutions of Eq. (23), of the 
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FIG. 2. The dependence of Q on the impurity concentration. 
Curves 2a and 3b show that a first-order phase transition 
takes place in the system (the field Q appears jumpwise), but 
these results are not reliable since I Aln(max{Q, T}/D) I ~ 1 in 
the region where T ~ Te , and consequently the conditions for 
applicability of both perturbation theory and the theory pre
sented here are violated for A< O. 

analogous perturbation-theory equation, and finally, of 
the equation in which the logarthmic terms are dis
carded, are shown as functions of the concentration in 
Fig. 2. 

4. Let us now examine the electron spectrum. From 
(3), (18), and (21) it is not difficult to find the self-en
ergy part of the Green function averaged over a random 
impurity distribution: 

~+(<oHS)=F(<o, Q), 
~_(<oHS) =-F'( -<0, Q). (26) 

L. and L_ are the self-energy terms for electrons with 
spin directions parallel to (+) and antiparallel (-) to the 
field Q, and the function F is defined by Eq. (24). In 
the limit as Q - 0 formula (26) leads to the correspond
ing self-energy terms in the Abrikosov[17] approxima
tion. 

From (24) and (26) it is evident that in the neighbor
hood of the Fermi surface the electron spectrum in the 
range w - Q is considerably renormalized, the renor
malization being substantially more clearly manifest 
for (-) electrons. In addition, the effective mass of the 
electrons at the Fermi surface increases sharply (this 
increase is identical for both (-) and for (+) electrons). 
For the increase in effective mass the following formula 
can be obtained: 

11m 8n,Meo u 1 

m 3T K u'+s' In'(u'+!;'') , 
(27a) 

where u=Q/TK, ~ =4T/rrTK' TK being the Kondo tem
perature defined by the relationship TK =Dexp(l/A). For 
the limit I A In(Q/D) I «1 and T« Q it is not difficult to 
derive from (27a) the result previously found by Kon
do. U2] It should, however, be noted that the estimate 
Am/m '" 5 obtained inUZ ] is only valid for the antiferro
magnetic coupling constant, whereas for the ferromag
netic constant Am/m :52, as can be seen by using (23) 
to transform (27a) into 

11m 2u' 

m u'+s' IAln(u'+!;') I' (27b) 

The fact that Am depends on the concentration and on the 
temperature distinguishes this result from that derived 
in[lZ], in which these dependences are absent. 
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As already noted, ReL and ImL are non-monotonic 
functions of w in the neighborhood of the Fermi surface. 
The form of these functions can be reconstructed direct
ly from tunnel experiments (see[Z6]). 

Since the low-temperature electronic heat capacity C 
is proportional to the effective mass of electrons on the 
Fermi surface, it is evident that a change in effective 
mass will result in a change in heat capacity. 

I1C=Cl1m!m. 

The dependence of AC on concentration and tem
perature is shown in Fig. 3. The plots agree well 
qualitatively with the experimental data (see, for ex
ample, [13.14]). No quantitative comparison was made, 
since it is difficult to deduce the alloy parameters from 
the experiments. Let us note that there is a broad max
imum in the temperature dependence of the electronic 
heat capacity. A corresponding Singularity associated 
with a second-order phase transition is present in the 
impurity component of the heat capacity, which is, how
ever, proportional to the impurity concentration and is 
not appreciable at the concentrations under considera
tion (ni :510-2). Anderson suggested[27] that the broad 
maximum in the heat capacity can be attributed to a 
"slow" phase change in which small impurity-center 
clusters first become ordered, and the critical transi
tion temperature is averaged over the clusters. How
ever, as is evident from Fig. 3, the proposed model 
guarantees a smooth behavior of the heat capacity even 
for complete ferromagnetic ordering of the impurity
center subsystem. 

5. In conclusion let us dwell once more on the ap
proximations made in this paper: 

1) the self-energy part is written with an accuracy 
defined by the inequality (16); 

2) the averaging over the random impurity distribu
tion is carried out in a way such that L is calculated in 
an approximation linear in the concentration; 

3) the impurity correlators are calculated in the mo
lecular-field approximation. 

Thus, the solution obtained reduces to the Kondo effect 
in a magnetic field, except that the field is defined self-

~T 
0.8 

1,5 T,K 

FIG. 3. The dependence of TAm/m on temperature at con
centrations of a) 0.4 at. %, b) 0.6 at. %, c) 0.8 at. %, and d) 
1.0 at.%; A=0.2; S=0.5; D=500 K. 
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consistently. Generalization of the problem to the case 
where there is an external magnetic field presents no 
difficulty. 

From the foregoing analysis it follows that in investi
gating the interaction of impurity centers in dilute mag
netic alloys at low temperatures one must not confine 
oneself to the RKKY approximation, since the RKKY 
Hamiltonian only depends on the square of the exchange 
interaction constant, whereas, as shown above, the re
sults obtained depend appreciably on the sign of the con
stant. 

We have explained here the concentration and tem
perature dependences of the electronic heat capacity, 
have shown that for a ferromagnetic coupling constant 
the heat capacity cannot increase by more than three 
times, and consequently, if a larger increase in heat 
capacity is observed experimentally, it is evident that 
the coupling constant has a negative sign. 

The authors are grateful to V. G. Bar'yakhtar for a 
useful discussion of the work and to A. 1. Larkin, V. 1. 
Mel'nikov, and Yu. N. Ovchinnikov for interesting dis
cussions and critical comments. 

!lit should be noted that the analytical theory developed below 
in terms of Abrikosov's[171 "parquet" diagram technique is 
equivalent to summing the most divergent diagrams. 

2)Attention was kindly drawn to this circumstance by A. 1. 
Larkin. 

3)To simplify the notation we set the volume of the system 
equal to unity. 

4)For a treatment of these diagrams see N. M. Hugenholtz, 
Physica 23, 481 (1957) (Translator). 
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