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Excitation of ordinary waves in a plasma with a diffuse 
boundary under anomalous skin-effect conditions 
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We study the absorption of an electromagnetic wave by a plasma with a diffuse boundary. We assume 
that the decrease in the particle density is exponential and that the magnetic field is parallel to the 
boundary of the plasma. We show that the collisionless absorption of waves with the electric vector 
directed along the magnetic field is connected with the excitation of ordinary waves in the plasma for 
those densities for which they can exist in a homogeneous plasma. We study the lineshapes of the electron 
and ion absorption resonances, especially in the effective collision frequency approximation. We obtain 
expressions for the limits of the existence of the ordinary cyclotron waves in the plasma and we solve the 
dispersion equation for a high-pressure uniform plasma. 

PACS numbers: 52.40.Db 

§1. INTRODUCTION 

P. L. Kapitza U 1 was the first to state the problem of 
the anomalous skin-effect in a plasma with a diffuse 
boundary in connection with a study of a high-frequency 
discharge in a plasma at high pressures. Liberman, 
Meierovich, and Pitaevskii[21 constructed a theory of the 
skin-effect in a semi-infinite non-uniform plasma, and 
obtained an integro-differential equation for the electro­
magnetic field in the plasma for an arbitrary relation be­
tween the electron mean free path, the penetration depth 
of the field in the plasma, and the size of the transition 
region at the boundary. This equation has been solved 
for the case of an exponential decrease of the electron 
density outside the plasma under conditions of an ex­
tremely anomalous skin-effect[21 and for an arbitrary 
degree of anomalicity. [31 In[31 a plasma with a magnetic 
field directed parallel to the density gradient for any de-
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gree of anomalicity of the skin-effect was also studied. 
Dikman and Meierovich[41 considered the extremely 
anomalous skin-effect for the case where the magnetic 
field was strictly parallel to the boundary and obtained 
solutions for an exponential and for a power-law de­
crease in the electron density. We study in the present 
paper the absorption of electromagnetic waves in the 
case of arbitrary anomaly of the skin-effect when the 
electric field of the incident wave is parallel to the con­
stant magnetic field which lies in the plane of the plasma 
boundary and we also analyze a mechanism for colli­
sionless absorption which consists in the transformation 
of the incident wave into ordinary cyclotron waves. 

We shall assume that the size of the transition zone 
at the boundary of the plasma is small compared to the 
characteristic dimensions of the plasma, but large com­
pared to the penetration depth of an electromagnetic 
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wave into a uniform plasma with the same electron and 
ion density as are reached in the bulk of the plasma. 
Under those conditions we can assume the particle den­
sity to be a function of a single coordinate x. When 
there is no electromagnetic wave the subsystems of ione 
and electrons are assumed separately to be equilibrium 
ones with temperatures Ti and Te. The particle densi­
ties can be expressed in terms of the Boltzmann distri­
bution formula 

na(x) =noa exp( -Ua(x)/kTa), 

where the U",(x) are the effective potential energies of 
the electrons and ions (here and henceforth the subscript 
Cl'=e, i indicates the kind of particle). It is possible to 
solve the problem completely if the effective potential 
energies change linearly outside the plasma, i. e., if 
the particle densities decrease exponentially: 

n,(x) =ni(x) =noexl", x->--oo. (1.1) 

In §3 we study not only the line shape of the cyclotron 
resonance but also the regions where ordinary cyclotron 
waves exist in the plasma, and also the solution of the 
dispersion equation for ordinary waves in a high-pres­
sure plasma. 

§2. SOLUTION OF THE EQUATION FOR AN 
ELECTROMAGNETIC WAVE POLARIZED ALONG H 

The set of equations for an electromagnetic wave 
Ei(x)e iwt which propagates in a non-uniform plasma 
along the x-axis along the density gradient in the plasma 
consists of the Maxwell equations which connect the field 
components Ei with the current components ji' and the 
kinetic equations for the electrons and ions in the plas­
ma. Under anomalous skin-effect conditions the colli­
sions in the plasma do not play an important role so 
that we can solve the kinetic equations by the method of 
integrating along the particle trajectories in the approx­
imation of constant effective numbers of collisions ve 
and Vi' Using this solution to express the current in 
terms of the variable electric field and substituting it 
into the Maxwell equations we get a system of integro­
differential equations for the field Ei(x). In the case 
where the incident electromagnetic wave is damped in 
the region in which the particle density is described by 
Eq. (1.1) the forces acting upon the particles do not de­
pend on the coordinates (due to the linear x-dependence 
of the effective potentials U", (x» and the kernel of the 
set obtained therefore has the form 

where the matrix Kij depends only on the difference of 
the arguments; i,j =x, y, z. 

Applying the two-sided Laplace transform 

~ 

F;(k)= f E;(6)e-"d;, E;(;)= ~i 'J'~F;(k)e"dk, 
c_iOlt 

where ~ = x/a is the dimensionless coordinate, we get a 
set of functional equations for F/k) (this procedure has 
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been performed in detail, e. g., in[2, 3, 91). The equa­
tions for the components of the external field which is 
directed along the constant magnetic field H parallel to 
the y -axis can be separated from the other two equations 
which connect the components Ex and E z• We can write 
the equation for the Laplace transform F(k) of the elec­
tromagnetic field E,(x) (we drop the index y in what fol­
lows) in the form[91 

(kH)'F(kH) =P(k)F(k), (2.1) 

where 

1: 1: [n(za) 
P(k)= exp(La-z.) ---

« 71"""-00 'Y - nOa 

(2.2) 

Here In(z) is a Bessel function of an imaginary argument, 

Za=-k(k+1)/2cra', cra=taQa, 1.=ta(ro- iVa) , L.=In(allloa)', 

tOl = a/vOl is the mean time for particles to fly a distance 
of the order of the dimensions of the inhomogeneity in the 
density, VOl = (2kT 0l/mOl)1/2 is the thermal velocity of the 
particles, nOl = I e I H/m Ole their Larmor rotation frequen­
cy, and 0001. = (e2vOlmOl/41Te2now)1/3 is the penetration depth 
of an electromagnetic wave into a homogeneous plasma 
with particle density no under anomalous skin-effect con­
ditions. 

Equation (2.1) was solved in its general form in[31. 
We obtained for the reflection coefficient of the electro­
magnetic wave from the plasma the following expres­
sion: 

1 + . roa ~f dw P(iw - 'I,) 
r = ,rt - --In --:-,--:-:-:-c-:-

c _00 ch'rtw (iw + 'I,)' 
(2.3) 

The plasma impedance can be expressed in terms of the 
reflection coefficient through the formula 

Z=2rt(1-r}/c. (2.4) 

As k occurs in (2.2) in the combination k(k + 1) the 
function P(iw - t) depends only on the argument ~ +t. 
We write Q(w2 + t) = P(iw - t). In that case 

(
X' ) 00 In (x'/2cra') 

Q(x'}= l:exp L.- 2~.' ~ -'-'----'-
a - n __ 00 1 - ncra 

(2.5) 

We can reduce the expression for the plasma impedance 
to the form 

(2.6) 

where Ro = 21T 2wa/ e2 is the resistance of a plasma with­
out a magnetic field under the conditions of an extremely 
anomalous skin-effect. [21 

It is important to note that for a uniform plasma with 
a particle density ng the dispersion equation for the case 
of an ordinary wave propagating at right angles to the 
magnetic field takes the form[S,61 

-x'=~Q(x'}, (2.7) 
no 
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FIG. 1. Particle density n as function of the coordinate ~ = xl a. 

where Q(x 2 ) is the function (2.5), x the dimensionless 
wavevector which is connected with the usual dimen­
sional wavevector through the equation x = ka. 

Forgetting about a small damping caused by the colli­
sions of the particles with one another we see that the 
main contribution to the real part of the impedance (2.6) 
which expresses the absorption of the electromagnetic 
wave comes only from the regions where Q is negative: 

W dw 
R= ReZ = R,n J-h-,- (1- signQ(w' + 'I,»~. 

c nw 
o 

(2.8) 

Just in those regions there exist solutions of Eq. (2.7), 
i. e., for any w for which Q(w2 + t) <0 one can find such 

( '+'/)_ w'+'/, 
n, w • - - n, Q(w' +"i'f.}' (2.9) 

that in a homogeneous plasma with particle density 
ng (w2 + t) there will exist eigenwaves with a wavevector 
x = (w2 + t)1/2. In the opposite case, Q >0, eigenwaves 
can not exist for any density nc. This means that the in­
cident electromagnetic wave excites ordinary waves in 
the plasma. 

It is clear from (2.6) that the intensity of the excita­
tion of waves with wavevectors with magnitudes lying in 
an interval d ...... around K is given by the quantity 

x (x'-'/,) -'I, eh-'n (x'-'/,) 'fodx, x>'/,. 

Hence it is clear that an incident wave with a magnitude 
of the wavevector outside the plasma waf c« 1 excites 
in the plasma ordinary waves with magnitudes of the 
wavevector x >t and the intensity of the excitation de­
creases rapdily with increasing x. It is characteristic 
that the intensity of the excitation is determined solely 
by the wavevector and tJie possibility that waves can 
exist (the region Q <OJ. The further evolution of the ex­
cited wave depends on the actual profile of the particle 
density inside the plasma, but we do not study that prob­
lem in the present paper. 

The absorption mechanism discussed here indicates 
that waves with different wavevectors are excited at dif­
ferent places in the plasma and just in that region where 
the particle density is the same as ng (x2 ), i. e., close to 
Hx2 ) (see (1.1) and (2.9»: 

~(x')=-ln (IQ(x') I/x'). (2.10) 

This becomes obvious if the Larmor radius of the par-
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ticles is small; however, even for a large Larmor ra­
dius and, hence, for an appreciable non-localization of 
the skin-effect, this statement is valid; this is corrob­
orated by the behavior of the impedance or the reflec­
tion coefficient. The imaginary part of these quantities 
is connected with the distance from the point of reflec­
tion of the wave. If the whole wave is reflected from 
some point, when we change the distance to that point by 
A~ the reflection coefficient is multiplied by the quantity 

exp (2iwai\~/c) "" 1 +i2wac-' i\~, 

and, correspondingly, the imaginary part of the reflec­
tion coefficient is increased by (2wa/c)A~ and the im­
pedance by-(2Ro/1T)A~ (if one uses Eqs. (2.3), (2.4». 
For our case we can write the imaginary part of the im­
pedance in the form 

Sw dw (' 1) X=ImZ=2R, -,-£ W +- , 
ch- nlV 4 

(2.11) 
, 

whence we conclude that the incident wave propagates 
into a plasma up to ~"" 7fX/2Ro• It is necessary to note 
that the integral (2.11) receives contributions not only 
from the regions in which the excitation of ordinary 
waves is possible, but also from the regions Q >0. Ana­
lyzing (2.11) we see that in the latter case Eq. (2.10) 
also determines the point of reflection because of the in­
troduction of the modulus sign. 

It is now relevant to make a few remarks about the 
applicability of the whole of the theory proposed here. 
In actual fact the particle density can not increase ex­
ponentially in the whole range of change of~. The actual 
form of the density is shown in Fig. 1. It is possible to 
apply the theory given here if the wave is not damped 
until the density starts to differ strongly from noe(. If 
the particle density inside the plasma equals ii this con­
dition can be written in the form 

no cxp(nX/2Ro)«.fi. (2.12) 

The results obtained are qualitatively valid also in the 
case where the inequality (2.12) is not a strong one. In 
that case we must take into account only those waves 
which can exist in the plasma for densities ng < n, i. e. , 
integrate not over the region Q <0, but over the region 
Q/x 2 < - no/no 

§3. REGIONS OF EXISTENCE OF ORDINARY WAVES. 
CYCLOTRON RESONANCE LINE SHAPES 

Since there are no ordinary waves in a cold plasma 
without allowance for the thermal motion of the electrons 
and ions when one neglects the displacement current, all 
of the absorption of an incident wave in a plasma is con­
nected with the electron and ion cyclotron resonances. 
We can use the quantities £ =me/mi« 1 and (3= Te/T/ to 
express the ion parameters in terms of the electron 
ones: 

Q,=eQ" expL,=(e~)'I'expL" 

t,=(~/e)'I,t" a,=(e~r'a,. 

We can rewrite Eq. (2.5) for Q in the form 
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Q(x', CU)=t,-'eL'( ~ e-'·I. (z.) 

(i)-ive-nfl e 

e-"I. (z,) ) 
cu-iv,-nQ, ' 

(3.1) 

where z'" =).t2/2a!. When considering the regions of the 
existence of high-frequency ordinary waves w:G ne» ni 

we can neglect the contribution of the ions (the second 
sum in Eq. (3.1)) and we have: 

() (' ) _ _, L ~~ e-',I. (z,) 
x % ,x -all' ell', 

x-n 

where x = (w - ive)/ne. 

(3.2) 

We study the behavior of the sum occurring in Eq. 
(3.2) using the method used, for instance, inC7l • This 
sum has simple poles at integer pOints. The analytical 
function 

e-'I (z) 
'iJ(z,x)=sinnx ~--'-­.l...J x-n 

(3.3) 

is an entire function of the variable x. We transform 
</I(z, x) as follows: 

~ sinn(x-n) 
e'1jl(z, x) = (-i}"I.(z) -----'----'­

x-n 

= ~ (-1)'I.(z) I cos(x - n)cp dcp = f dcp cos xcp ~ (-1)nln(Z)COS ncp, 
n 0 0 1'1 

or, using the well known formula for a series of Bessel 
functions, 

.p(z,x)= S dcpcosxcpexp[-z(coscp+ 1)]. (3.4) 

Using (3.3) we have 

whence it is clear that the poles of Q are connected 
solely with the factor l/simrx which is independent of ze' 
There occurs therefore always a change in sign of Q for 
w =nne • The other boundary of the region of existence 
of ordinary waves is connected with the zeroes of </I(ze, 
x). We consider the asymptotic behavior of </I (ze, x) in 
ze' 

When z» 1 the main contribution to the integral (3.4) 
comes from the region of cp close to cp = 11. In that case 

.p(z, x) = (n/2z)'" exp (-x'/2z){cos nx 

+sin nx[ III (ixIl'2z) -Ill (-ixIl'2-;)]/2i} , (3.5) 

<I>(x) is the error function. Expression (3.5) is valid for 
any x. In the case x« Z1/2 we can simplify (3.5) after 
which we can write Q in the form 

eL • ,r;-( 2x ) Q=- v- ctgnx+-= • 
cr, 2z, 1'2nz, 

(3.6) 

In the case ane/ve - 0 (3.6) goes over into the equation 
corresponding to Eq. (2.16) of[4J. It is simpler to con­
sider the other limiting case ze «1 by starting from Eq. 
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~~=:-n"'3 
\\~~-,<-"pz 

z J 100 ze o 
,(..t.J/Qel 

Il-t-------b r-----=======,'P=TOZ 

A 

l'z -------~---.---~-= 

o 10 TOO z, 
"'e fllMI 

FIG. 2. The. shape of the regions of existence of ordinary 
waves in the wine. ze-plane (ze=,hj;/2a2n~): a) for different 
numbers n (indicated by the numbers at the boundaries of the 
regions) of the resonance; the regions where the waves exist 
are hatched; b) for n = 1. A is the line of integration in the in­
tegral (2.6). Inside the region of existence of the waves we 
have drawn the dispersion curves for a uniform plasma for dif­
ferent values of p = 87riiekTel H2, indicated by the numbers at the 
curves. 

(3.2) retaining in it only the main term and the reso­
nance term: 

Q = eL
• (~+ ~..,...z~----:-) 

cr, x n!2n (x-n) , 
(3.7) 

Putting the right-hand sides of Eqs. (3.5) to (3.7) to 
zero we find the lower bound of the negative values of Q 
for ve =0: 

x= (n-'/2)[ 1 + (2/,,'z.),Io], z,»1, n'«z,; 

x=n[ 1- (2"Z,)-'I. exp (-n'/2z,)], z,»1, n'»z,; 

x=n(1-z,"/2"11!), z,«1. 

(3.8a) 

(3.8b) 

(3.8c) 

The form of the regions of existence of ordinary waves 
for different values of n are shown in Fig. 2a. 

To determine the reSistivity of the plasma we must 
evaluate the integral (2.8). Introducing g =R/Ro we get 

g= ~ ±4[ 1 + exp(2nY2cr,'z~'-'I,) ]-', (3.9) 

where z!j) are the points where the line of integration 
A (w = const, ze > 1/8a~) intersects the boundaries of the 
region of existence of the waves (see Fig. 2b). The 
plus sign in (3.9) is used in the case when for increas­
ing ze we go from a region where there are no waves to 
a region where they exist, and the opposite, minus sign 
in the opposite case. If ze = 1/8a~ occurs already in the 
region where the waves exist, the sum (3.9) includes a 
term equal to 2 corresponding to that point. 

It is clear from Eq. (3.9) and Fig. 2 that R = 0 for 
n-l<x<n-t, R=2Ro forn-o*<x<n, where 0* is the 
pOint where the lower limit (3.8) of the region of exis­
tence of the waves intersects the line Ze = 1/8a~. In the 
case ne« vela, n« ve/ane: 
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o Qb 1.5 Z ;;5 ;} wigp 

FIG. 3. Line shapes of absorption resonance: a: for alle/ve 
~ 0.1; b: alle/ve ~ 0.5. The numbers at the curves indicate the 
values of the parameter ve/Ile' The line shapes for p~102 are 
qualitatively indicated by a dotted line. 

6,'=I/.-4n-'I'(n-'/,)aQ,lv,; (3. lOa) 

if, however, in that case the number of the resonance is 
very large, n» vel aOe, with logarithmic accuracy 

(3. lOb) 

In the case of strong magnetic fields 0e» vela: 

6,"= (4aQ,Iv,) -'nl (n-1)! (3.10c) 

In the interval between n - t and n - 0* R increases 
and has at x =n - 0* a square-root singularity and is ex­
ponentially small at x =n - t (Fig. 3). The actual form 
of g =RIRo in some limiting cases is given by the equa­
tions 

g=2-2th{~[( ('/'-~")Q, )'-1]'!'}, 
2 Ol-(n-'/,)Q, 

Q,«v,la, n«v/aQ" n-'/'<Ol/Q,~n-6,'; 

g=2---'2th{~[ Ina,' -1]'!'} , 
2 In(n-Ol/Q,) 

Q,«v/a, n>v,/aQ" 0<n-/),'-Ol/Q,«1; 

g=2-2th {; [( n~:~~ ) 'In -1] '(,} , 
Q,>v,la, 0<n-/),'-Ol/Q,«1; 

{ 4 (n-'/,)aQ.'} 
g=4exp --=--- , 

l'nv, (ol-(n-'/,)Q,) 

ne -arbitrary, O<Ol/Q,-n+'/,«'/,-6'. 

(3.11a) 

(3.11b) 

(3.11c) 

(3.11d) 

The absorption of an electromagnetic wave in the re­
gions of x close to half-odd-integral values is connected 
with large particle densities. As inside the plasma the 
density reaches the limiting value ii, it is useful to esti­
mate for which densities our solution is correct and how 
it changes when the particle density changes. The dis­
persion curves for a uniform plasma have been studied 
earlier analytically only for the case of a low-density 
plasma or in the limiting cases when the dispersion 
curve lies around the resonance frequency (see, 
e. g., [5,6]). If the dispersion curve is removed from 
resonance, it has been studied numerically or qualita­
tively (e. g., [8]). In the case of a high-pressure plasma 
p = 8rriiekTelH2» 1 we can obtain the equation for the dis­
persion curve (Fig. 2b) for ze» 1 by substituting into 
Eq. (2.7) the asymptotic form (3.6): 
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n)'''( 2X) -2z,=px (- etg nx+ -== . 
2z, 1'2nz, 

The dispersion curve has a minimum 

Xrnin =n-'/,+4n-'I. ('I,) ,I, (n-'/,) 'I'p-'I., (3.12) 

which is reached for Z. min = (n - t)(pI6)1/2; ze - Ze min 

x= (n-I/,) {1 +n-'I, [p-' (n-I/2) -, (2z,) '''+(z,l2) -'I,]. 

x=n[1-pn-'''(2z,) -'''] , (3.13) 

while for Ze« 1 it is the same as Eq. (3.8c) and in the 
case p» 1 it is to a first approximation independent of p. 

The asymptotic expressions (3.13) and (3. 8c) are the 
same as Eqs. (5.7.1. 5) and (5.7.1. 7) of the book[S]. 

It is clear from (3.12) that for large p the limiting 
dispersion curve, corresponding to the density ii, can 
approach x =n - t rather closely, without, however, 
going through that value. [8] Under realistic conditions 
for particle densities in the plasma of ii _1015 cm-3 and 
Te -106 K[lJ we have p- 3 x 106IH 2 (Oe). In the region 
between n -1 and xmin waves cannot be excited and the 
cyclotron resonance line acquires the form qualitatively 
shown in Fig. 3 by a dotted curve. 

We give some results when one takes into account the 
non-vanishing collision frequency in the plasma. We 
consider first of all the case of an extremely anomalous 
skin-effect 0e« Vela. If lie» 0e, we have 

( 'II, ) . ( ol ) wa g=1-4n-' exp -2n Q, sm 2n Q, -21, V. ' 

where 

I,=2n-'I, r dx / ( l' x'+l eh' n2x) = 0.6461. 

• 

v, 
00«::-, 

a 
(3.14) 

In the opposite case, 11.« 0e, it is necessary to consider 
the absorption coefficient in different sections of the 
spectrum: 

g=1-SignSin(2n~)+4'11.[,. (1 /Q) 
i::tl'oe Q.e SIn 2ttw "'e 

1 ( nOla + Q,a w )] --I -tgn-
2 'v, cos' (nw(Q.) v, Q, 

whenlw-nQ,I>'II" IOl-(n-'/,)Q,I>max {'II" ('/,-6,')Q,}; 

2 Ol-nQ, 2nOla 'II, 
g=1-----r-::--- I , 

It Ve Ve Qe 

whenl w-nQ,1 «'II,; 
2 w-(n-'/,)Q, 2aQ,Ol 

g= 1+ --_-I, 
n Ve nVeVe 

when I (0)- (n-'/,)Q,I «v" 'Ii,> ('/,-8,') Q,. 

(3.15) 

When ne» Vela we have in the case lie» 0eo; the Lorentz 
formula for the absorption line: 

2 Ve v.Q", • 
g=-aretg-+( ")'+ ,6,L2no 

n (i) O)-ni::tl'ot' Ve 
(3.16) 

L2n=S~ ~(4w'+1)n=n-' '0 c.nl (2"-2)B,.I, 
eh' nw £...J , "_0 
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FIG. 4. The electron cyclotron resonance line shape for aQ I 
iie» 1 and weak damping. The numbers at the curves indica:e 
the values of the parameter vel Ii1Qe . 

G are the binomial coefficients, and B2k the Bernoulli 
numbers; 

1-,=3/211, 1-,=37/1511, 1-.=1129/21011, ... 

The curves corresponding to the two limiting cases are 
drawn in Fig. 3. Equations (3.14) to (3.16) are correct 
. ' If ve is much broader than the fine structure of the line. 

If, on :he other hand, ~«1, where a = vel({ - oime 
for 0e« vela and a = velos Oe when 0e» vela we can trace 
the change in the shape of the absorption curve. In that 
case we can split off from 1m InQ which occurs in the 
integral of (2.6), apart from the sign, the term 

I 1 ( () +.) 11 0)-0) (z.) 
m n 0) z. -0) tV. =-+arctg , 

2 v. 

where w(ze) is the equation of the curve in the w, ze­
plane (Fig. 2) which describes the boundary of the re­
gion of existence of waves in a uniform plasma. If the 
frequency w lies close to the lower boundary of the re­
gion of existence of waves, but not in the immediate 
vicinity of the pOint w = (n - o*)Oe, we can to a first ap­
proximation in the parameter a write the change in g in 
the form 

6.g=2a/ (~). 

Here 

- dw 
/(~) = f --g+[ (4w'+1)I-1]sign/)-< 

o ch2 :n::w ' 

~=[0)-(n-6,')Q.1/6,'Q .. I=n when Q,~v,!a; (3.17) 

~=[0)-(n-6,·)Q,1/(';'-6,·)Q .. 1--'/2 when Q!¢:v,la. 

The integral (3.17) is taken in the principal-value sense. 
In the point t = 0 corresponding to the square root singu­
larity in the collisionless plasma, W = (n - o*)Oe, and the 
integral (3.17) diverges. Near that point there arises 
for ve different from zero a non-analytical ve-dependence 
ofg: 

g=2-
a 

121/1 (~Hs2+a')'" 
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At the point w = nOe there also arises a non-analytical 
behavior, but in a more familiar form: 

2 O)-nQ. 
g= 1--arctg---. 

It 'V~ 

The shape of the cyclotron resonance for small damping 
is shown in Fig, 4. 

We must say a few words about the transition to the 
limit as H - 0 in the case ve = O. When there are no col­
lisions there occurs only a decrease in the line width 
without a change in the amplitude with an increase in the 
number of the resonance. It is therefore necessary 
when determining the resistance of the plasma to aver­
age the plasma resistance which oscillates fast between 
o and 2Ro for small magnetic fields. Thus, if we con­
sider the region walve « 1, we get, integrating Eq. 
(3.11a) over a period, 

R=Ro (1-21,O)alv,). 

i. e., Eq. (3.5) from[3]. We can similarly take the limit 
H - 0 also in other cases. 1) However, when decreasing 
H usually there starts earlier a smearing-out or a de­
crease in the amplitude of the resonances due to the fact 
that ve is finite (it is clear from Eq. (3.14) that the res­
onances are conserved only down to fields for which Oe 
2: ve after which they decrease exponentially fast while 
the plasma resistance tends to the same limit as in the 
collisionless case) or the resonances start to smear out 
due to the fact that when the radius of the Larmor cir­
cles increases the particles leave the region of densities 
which can be approximated by an exponential function. 
In the latter case it is necessary to take into account the 
energy-dependence of the frequency 0e. 

We consider now briefly the ion cyclotron waves. It 
is well known[Sl that ion waves lie appreciably closer to 
the ion cyclotron frequencies than the electron waves to 
the corresponding cyclotron frequencies so that the lines 
for the excitation of ion cyclotron waves are consider­
ably narrower. The equation which determines the 
boundaries of the existence of ion waves is obtained from 
(3.1). Since the frequencies of the ion waves are ap­
preciably smaller than Oe and since the solutions of in­
terest to us lie in magnetic field regions for which ze 
«1, we retain only the first electron term: 

Q=t.-'eL • (_1_._+ 81:, exp(-z,)ln(z,) ). 
(I)-lVe '" co-n(L-ivi 

We consider only the collisionless case. Taking col­
lisions into account is qualitatively analogous to the 
electron cyclotron wave case. In that case the upper 
boundary for Q being negative is the same as the ion 
cyclotron frequencies w =nO i and the lower one is deter­
mined by the equation 

(3.18) 

In the case oialv i = (c (3)1I20ealve « 1 we have for 0 
<nO i - w < oi*Oi 
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FIG. 5. Ion cyclotron resonance 
line shape: 1: for 8u~z i min < 1, 
2: 8U;Zimln> 1, 3: 8u;»1, 
collisionless case (Ui =an/ii";). 

with a square root singularity on the boundary of the ab­
sorption spectrum; in the remaining band of frequencies 
R =0. It is clear from (3.1B) that the boundary curve 
has a minimum which is reached in some point Z i min-1 
and which is equal to n - Bci*, Bci* - c. Using this one 
can easily show that when Bn~a2z i min <v~ the absorption 
line does not change qualitatively: there is a square­
root singularity at the lower boundary of the spectrum 
and an exponential one near 2 when w"'nn;, w<nn;o In 
the opposite case Bn~a2 Zi min >ifl there are two square 
root type singularities. If ni » 'ii/a, we have for nni 

- w« Bri*n i 

( n6,"Q, g~2-4exp ----) 
nQ,-w 

{ n [( nQ ._(ll ) '" ] '''} - 20«n-o,")Q,-w)th 2- 6':'Qi -i . 

Here 8(x) is the Heaviside step function and 

6"'~e (4aQ/vi) -"j (n-i)! 

We can near the boundary of the spectrum w"'nn i - B6'*ni 
expand expression (3.1B) in a series in Zj -Zj min: 

where 

Hence 

n [ ( (ll-nQ+6,"'Q· )'"]''' g~2 th T 8ai'Zi mi,,-1 +8a.'A e~i ' 

n [ ( (ll-nQ+6,"'Q· ) "']'" -2 th 2 8a.'Zi min-1-8a;"A e~i' . 
(3.19) 

It is clear from (3.19) that g has a square root singu-
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larity at the point w = (n - Bci*)n j ; when the second singu­
larity approaches the same point, i. e., when B(j~Zi min 
=1, there arises a higher-order singularity, g- (w -nn i 

+ Bci*ny/4. We show in Fig. 5 various ion resonance 
line shapes for B(j~zimin<l (curve 1), for B(j~Zimln2:1 
(curve 2), and for Bif;» 1 (curve 3); in the last case the 
nature of the line is similar to the electron line, as the 
Singularity at the boundary of the spectrum is exponen­
tially small. 

As Bci* - c =me/m i' the maximum line width is also 
small and the lines are strongly smeared out by electron 
and ion collisions. 

If we take the finite density of the plasma into account 
the electron resonance lines have also a similar char­
acter, as is shown in Fig. 3 by the dotted line. Taking 
the finite density into account for the ion resonances 
does not lead to qualitative differences in the absorption 
line shape. 

The author thanks academician I. M. Lifshitz for dis­
cussions of this work and B. E. Meierovjch for his in­
terest in the paper and for many discussions. 

1)We use the opportunity to correct an error which slipped 
into[3]: in Eq. (3.7) the numerical factor in the coefficient 
in front of the exponent should be 8/13 and not 2/13. 
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