
decreasing plasma-density gradient and increasing os­
cillation frequency. Virtually total absorption is ob­
served in the case when the wavelength of the oscilla­
tions turns out to be comparable in magnitude to the 
characteristic dimension of an inhomogeneity of the 
plasma. 

The found experimental values of the reflection coef­
ficients are in fairly good agreement with the values the­
oretically computed from the formula (3). 

The authors wish to express their gratitude to A. V. 
Timofeev for useful discussions. 
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Direction of transfer of energy. and quasi-particle number 
along the spectrum in stationary power-law solutions of the 
kinetic equations for waves and particles 
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We determine the sign of the flux along the spectrum in exact power-law solutions of the kinetic 
equations for waves and particles. The direction of the fluxes is uniquely determined by the exponents of 
the distribution and of the dispersion law, and for the activation spectrum also by the sign of the 
dispersion term; it depends only on the sign of a simple combination of the exponents. In particular, the 
direction of the energy flux for waves with a decay spectrum depends on whether the index of the 
distribution is larger or smaller than - I. We obtain similar criteria also in other cases. 

PACS numbers: 03.40.Kf 

§ 1. INTRODUCTION 

We know at present many examples of power-law dis­
tributions for waves[1-41 and also for particles, [51 ob­
tained as exact solutions of the kinetic equations which 
describe the interaction of a stochastic ensemble of 
waves or particle collisions. stationary non-equilib­
rium isotropiC solutions correspond to a constant, non­
vanishing flux of the number of quasi-particles or of en­
ergy along the spectrum (see, e. g., [6,71). The direc­
tion of the flux, which is an important characteristic of 
the distribution, can sometimes be determined from 
qualitative considerations using the specific nature of 
the system (e. g., short-wavelength damping in hydrody­
namiCS, and so on). 

We obtain in the present paper general results about 
the direction of the fluxes for waves with a non-decay 
(§3) and with a decay (§6) spectrum, and also for par­
ticles (§4).1l We consider separately the case of an 
activation spectrum which is of interest in connection 
with plasmon, exciton, electron, and hole distributions 
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in metals and semiconductors (§5). It turns out that 
when we determine the direction of the flux we can by­
pass the calculation of the integral which connects the 
flux with the distribution functions (§2) if we use sym­
metry transformations which enable us to find the 
power-law distributions. [1,2,7,91 These calculations are, 
however, necessary for finding the dimensionless con­
stants in the distribution function (see the Appendixes). 

The direction of the flux is determined by simple in­
equalities concerning the exponent of the distribution. 
An analysis of these inequalities shows, in particular, 
that the transfer of energy and of quasi-particle number 
proceeds, as a rule, in different directions, as was 
noted by V. E. Zakharov for hydrodynamic types of sys­
tems. 

§2. CONNECTION BETWEEN FLUXES AND 
DISTRIBUTION FUNCTIONS 

In a uniform medium when there are no external 
forces the kinetic equation has the form 
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on(k) 
at =Icoll {n}, (2.1) 

where leo11 {n} is the collision integral which describes 
the interaction of the waves or the particles, k is the 
wavevector (or momentum), and n(k) is the distribution 
function. Since the energy is conserved in the elemen­
tary interaction process, we have 

S on(k) S 
dkro (k) <---at = dk ro (k)Icoll {n}=O, 

w(k) is the frequency (energy) of the waves. Hence, we 
can introduce the energy flux density in k-space h 
=it (k)[7]: 

div j, =-ro (k)I coil {n}. (2.2) 

Similarly, if the number of particles (or waves) is an 
integral of motion, we can introduce the particle flux 
density i =io [7]: 

div j.(k) =-1 coil {n}. (2.3) 

We restrict the consideration to the isotropic case 
when the transition probability, the dispersion law W(k), 
and also the distribution function n(k) are invariant under 
rotations. Only the radial component of the flux density 
is then non-vanishing so that j = (bkd -1t 1J(k)k/k, where 
d is the dimensionality of k-space, J(k) is the total flux, 
and b is a numerical coefficient (b = 21T in the two-dimen­
sional case and b =41T in the three-dimensional case). 
We get thus from (2.1) and (2.2) for the fluxes (cf. [5,7]) 

• 
J,(k) =-b S dk kd-1ro' (k)I<ull {n}, i=O,1, (2.4) 

i = 0 corresponds to the particle flux and i = 1 to the en­
ergy flux. Equation (2.4) enables us to find the flux, if 
we know the distribution n(k). 

We proceed now to find the fluxes for the case of 
power-law distributions. 

§3. SCATTERING OF WAVES 

We consider the collision integral which describes 
wave scattering processes: 

Ieoll{n}=Sd-rhw.f., dT.= dk,dk,dk" (3.1) 

w.=U(kk,lk,k,)o(k-l-k,-k,-k,)o (w-l-ro, Ol,-ro,) 

is the transition probability and 

We assume that the dispersion law w(k) and the interac­
tion matrix element are homogeneous functions: 

ro (Ue) =f!ro(k), U(f.Hk,J l.k}.k,)=Am U(kk,J k,k,). (3.3) 

For a power-law distribution 

n(k) =Aul', (3.4) 
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leOll {n} is also a power-law function: 

(if leoll {n} agrees with the distribution (3.4» so that we 
get for the fluxes from (2.4) (cf. [8]): 

d . Icoll 
J,(k)=-bk ro'(k) ~(v+i) , 

In that case 

m+3d 
v=v(s)-3s-1-1----, 

~ 
i = 0, 1. 

(3.5) 

so that we shall have Jo = const when I' =0, and J1 = const 
when 11=_1. 2) Those values s =sO,S1 which lead to 11=0 

(s =so) and II = -1 (s = S1) correspond to stationary solu­
tions of the kinetic equation (leo11 =0 for v=O, _1[7.9]), 
while the solution with s =So corresponds to a constant 
particle flux (Jo*O, J1 =0) and the solution with s =S1 to 
a constant energy flux (Jo =0, J1 *0). 

Expression (3.5) for J; with II(S) = - i contains an in­
determinate expression of the form 0/0. The fluxes are 
therefore, as noted earlier for the case of particle 
power-law distributions, [8] proportional to the deriva­
ti ve of leo11: 

Ji ~ Meoll / av 1. __ " i=O, 1. 

To find the derivative we use the factorized form of the 
collision integral [7] 

whence we find, using (3.5) 

Using the explicit expression (3.4) for n(k) for s =s; we 
get an expression for the flux which is convenient for 
what follows: 

X[ro'inro -I- ro,'In ro,- ro,' In ro, - ro,'ln ro,]. (3.7) 

It is clear from (3.7) that A a: IJI1!3 which, by the 
way, follows both from dimenSionality considerations 
(see{l·2.7]) and from Eqs. (2.2) and (2. 3) (cf. [7J). It is 
clear, however, that (3.7) establishes an exact connec­
tion between the flux and the parameter A of the distribu­

·tion which enables us, in particular, to find the dimen-
sionless numerical coefficient which cannot be deter­
mined by dimensionality considerations. The explicit 
evaluation of the integral in (3.7) requires detailed 
knowledge of the transition probability which we shall 
not give in the present paper. It is important that by 
using the presentation (3.7) we can reach a conclusion 
about the sign of the flux and thereby find its direction: 
J> ° and J < ° correspond to fluxes in the direction of 
larger and smaller wavenumbers, respectively. 
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TABLE 1. 

I J. I J, II' I J, I J, 

--------------+-~-~-----------

"'>"~-3d } <0 >0\1 -3d<m<~--3d } <0 <0 
s,<-'/" so<-1 -'/,<s,<O, 0< SO<'/.1 

3 (B - d) < In < I,~ - 3d 1 I m < - 3d } ° 
-'I,<s,<-I,-I<'o<-'/,J >0 >0\ 0<5,. '/,<SO <0 > 

~-3d<m<3(B-d) } >0 <0 
-1 <S.<-'/,,-'/,<so<O 

Note: The directions of the fluxes are indicated for ~ > O. When ~ 
< 0 the directions of the fluxes are reversed for the same s. 

Indeed, the probability wk is essentially positive and 
the remaining part of the integrand has a fixed sign so 
that its sign depends on the value of the index S of the 
distribution. To prove that statement we use the in­
equality 

(!J),!J),-uHotl (cp+<p! -'1"-'1") sign cp";;.O, 
'1'='1' (!J)) , CP",='I'(!J)m), 'I'''=d''I'ld(u'*O, 

W+W 1=ro2+uh, 

(3.8) 

which can be obtained by using Szego's inequality[ll] for 
convex functions. Applying (3.8) to the functions (p(w) 
= wilnw and X(w) = W-si, i =0,1, we get 

(3.9) 

whence, if we use the fact that (w lnw)" >0 and (lnw)" 
<0, it follows that the integrand in (3.7) has a fixed 
sign. From (3.9) and (3.7) we get for the direction of 
the fluxes 

(3.10) 

It is clear from (3.10) that the direction of the fluxes 
depends strongly on the sign of the degree of homogene­
ity (3 of the dispersion law, i. e., on whether the fre­
quency increases or decreases with increasing wave­
number. Moreover, the direction of the fluxes changes 
when the corresponding exponents So and Sl pass through 
the values 0 and -1, while in agreement with (3.7) J i 

=0 when Si =0, 1. When S =0, -1 the collision integral 
(3.1) is made to vanish by the power-law distribution 
(3.4) which in these cases corresponds to the equilib­
rium distributions n = T /w(k) (s = -1) and n = - T / J1 (s 
=0), where T is the temperature and J1 the chemical po­
tential. Equilibrium distributions correspond to zero 
fluxes. Since the collision integral vanishes for the dis­
tributions (3.4) for four values of s (s =0, -1, So, and 
Sl), its derivatives with respect to s in the points s = so, 
Sl which determine the magnitude and the direction of 
the fluxes will have different signs, depending on the 
relative positions of the numbers 0, -1, So, and Sl' 

As the exponents So and Sl are not independent, So =Sl 

+t, Sl = - (m +3d)/3{3, [7] there are five variants for the 
arrangement of the pOints enumerated (see Table I). 

For all presently known wave distributions with a non­
decay dispersion law (see[l] for gravitational waves on 
the surface of a liquid and[2] for Langmuir plasmons) 
the condition m >4{3 - 3d (so, Sl < -1) is satisfied and, 
hence, the particle flux is in the direction of long waves 
and the energy flux in the direction of short waves. This 
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is not an accident, for two reasons. Firstly, if there 
are in the system no parameters with the dimensions of 
length and time, except k-1 and W(kt1 (i. e., if there oc­
curs total similarity as, for instance, for gravitational 
waves on the surface of a deep liquid U,4]), we have m 
= 10 - 2d as follows from dimensionality considera­
tions. [7] A violation of the inequality m >4{3 - 3d is thus 
possible only for large (3 > t(d + 10) "" 3 (d "" 2). For a 
non-decay dispersion law without activation {3 < 1 and 
therefore necessarily Jo <0, J l >0. Secondly, when 
{3< 1, d "" 2, 4{3 - 3d < - 2 and the condition m > 4{3 - 3d 
can be violated only for negative m, m < - 2. However, 
in hydrodynamic types of systems the interaction is 
"frozen in" when the wavelength increases, A = 2rr/k 
_00, which leads to positive m. The change in the sign 
of the quantity 4{3 - 3d corresponds to too large a (3 so 
that also for an activation non-decay dispersion law3) 

when the restriction {3 < 1 is lifted the change in the di­
rection of the fluxes also correspond to negative m. 
Nonetheless, in prinCiple it is not excluded that there 
is a possibility of an interaction leading in a limited 
range of wavenumbers to m <0 (see, e.g., m =0 in[2]) 
which can lead to a change in the direction of the fluxes 
as compared to the usual J o < 0, J1 > O. Moreover, for a 
decreaSing disperSion law ((3<0) the direction of the 
fluxes changes also for m > O. 

It is necessary to note that the consideration given 
here is valid in the case when the collision integral con­
verges for power-law distributions with S =so, Sl, i. e., 
if these distributions are local. [1,4,7] If, on the other 
hand, one of these distributions is local, only the for­
mulae referring to it are correct. 

§4. SCATTERING OF PARTICLES 

We consider fluxes for non-equilibrium stationary 
power-law particle distributions which are produced by 
a Boltzmann type collision integral. [5]4) leol1 then has 
the form (3.1) with the obvious SUbstitutions k-p, w(k) 

- E(p), fk - fM where 

(4.1) 

P is the momentum and E(p) the energy. Under the same 
assumptions as before we get for the fluxes expressions 
such as (3.6), whence we get after substituting n(p) 
=AEs 

+E,'lnE,-E,'lnE,-E,'lnE,], i=O.l, (4.2) 

where, as before, the s i are determined by the condi­
tions II(SO) =0, II(Sl)=-l, and lI(s)=2s-1+(m+3d)/{3.[sJ 
From (4.2) we get immediately that the particle flux has 
a fixed sign, if we transform the integrand for i = 0 to the 
form 

EE, 
[(E,E,)"-(EE,) '']In--= so-'(E,E,)"(l-x)ln x, 

E,E, 

x""(EE/E,E,)" 

and use the inequality (1 - x) lnx '" O. Hence 
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sign l,=-sign ~s,. (4.3) 

To determine the direction of the energy flux it is suf­
ficient to use inequality (3.8) and the easily verified in­
equality 

whence we get 

(4.4) 

The different directions of the flux for {3s <0 and (3s >0 
are a consequence of the fact that n(p) = const (s =0) 
makes the particle collision integral vanish. It follows 
from (4.4) for a Coulomb distribution of non-relativistic 
particles ({3 =2, Sl = - ~ (5) that the energy flux is in the 
direction of small velocities, as had been shown earlier 
by US(5) using the Landau equation and also by Karas' 
et al. (8) We note here that under the conditions when 
the Born approximation is valid the distribution with an 
energy flux will be local, if the degree of homogeneity 
of the matrix element - 5 <m < - 3, and the one with a 
particle flUX, if - 3 < m < - 1. (5) For a given m only one 
of the distributions is therefore local and the energy 
flux is in the direction of small, and the particle flux in 
the direction of large momenta. 

In the case of a power-law interaction potential V(r) 
= Vor-a the fluxes will be in the same direction as in the 
Born approximation for a wide range of the exponents a. 
USing similarity considerations we find[1Z,5l in three­
dimensional space m = 2{3 - 4 - 2{3/ a. USing the fact that 
Sl =- (m +3d)/2{3, So =Sl +t we get from (4.3), (4.4) 
(j3>O): 

a) 1,>0,1,<0, if a<O or a>2~/(~+5), 
b) 1,<0, 1,<0, if 2~f(2~+5)<a<2~M+5), 
c) /,<0,1,>0, if O<a<2~/(2~+5). 

Hence it follows that the cases b) and c) correspond 
to very narrow ranges of values of the exponent a of the 
interaction potential both for non-relativistic ({3 = 2), and 
also for ultra-relativistic particles ({3 = 1), while only 
the possibility a) is realistic with a>2{3/({3+5). 

§5. ACTIVATION DISPERSION LAW 

In a number of interesting cases (plasmons, excitons) 
the dispersion law has the form w(k) = Wo + ow(k). If in 
this case the additional dispersion ow(k) is a power func­
tion ow(k) - k''', there exist, as before, power-law dis­
tributions (see, e. g. , (2) corresponding to the energy or 
the particle flux being constant, because the activation 
frequency Wo drops out of the energy conservation law 
when seattering takes place. 5) 

There arise, however, important differences in com­
parison with the considerations given above. Firstly, 
the energy flux J1 which is a parameter of the non­
equilibrium distribution is determined solely by the dis­
persicn terms, which corresponds to replaCing w(k) by 
ow(k) in (2.4). The total energy flux 31 is a linear com­
bination of the quasi-particle flux J o and J 1, jl = woJo +J1 

and is the same as J 1 for the distribution which corre­
sponds to an energy flux when s = Sl and Jo = O. In con-
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trast to (3.4) we look for the power-law distribution in 
the form 

n(k) =A Illw(k) I'. (3.4') 

Secondly, the dispersion term can have either sign (in 
particular, ow >0 for Langmuir plasmons, and ow <0 
for optical phonons) which leads to a change in the cri­
terion (3.10) which determines the direction of the ener­
gy flux to 

(3.10') 

We have thus verified that for given parameters (3 and S1 

the direction of the energy flux is reversed when the sign 
of ow(k) is changed. On the other hand, the flux of the 
number of waves is, as before, given by the criterion 
(3.10). 

Similarly in the case of scattering of particles with a 
dispersion law E(p) =Eo + oE(p) the direction of the en­
ergy flux is given by the condition 

(4.4') 

instead of by (4.4). For instance, for holes in semi­
conductors or metals OE < 0 and the energy flux is in the 
direction of larger momenta, if the interaction is the 
Coulomb interaction, which, however, corresponds to a 
transfer towards lower energies. We note in this con­
nection that the heating up of carriers and the appear­
ance of large emission currents when tungsten foils are 
illuminated by a laser[1S,8) require a reverse flux direc­
tion for their explanation. 

We note here that V. M. Kontorovich drew the au­
thor's attention to the possibility that the direction of 
the energy transfer might be changed for quasi-particles 
with a negative dispersion term in their spectrum. 

§6. DECAY AND FUSION OF WAVES 

Because of the non-conservation of the number of 
waves there is for a random ensemble of weakly inter­
acting waves with a decay spectrum w(k) - k8, (3>1 the 
possibility of a non-equilibrium stationary distribution 
only with a constant energy flux. [1-4,6,7) Proceeding as 
before and using the collision integral in the factorized 
form(7) we get for the energy flux the expression 

b d S /, = Tk dTkw.!.!,.,_,[wIn w-w,In w,-w, In w,], (6.1) 

/.=n,n,-nn,-nn" v(s) =2s-1+ (m+2d)/~, 

where the decay probability wk contains the energy con­
servation law w = wl + Wz and where the solution with a 
constant energy flux corresponds as before to II(S) = - 1 
(s = S1 = - (m +2d)/2{3). [7) Hence, for n =Aws 

X[wInw-w,Inw,-cu,lnw,h s=s,. (6.2) 

Using the energy conservation law we can check that 
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while the function 

has a sign which is the opposite of that of s + 1 as wI, w2 
""'W. Hence 

sign/,=-sign ~(sl+l). (6.3) 

The energy flux is thus for Sl < -1 (m >2(j3 - d)) in the 
direction of short wavelengths, and for Sl > -1 (m < 2(j3 
- d)) in the direction of long wavelengths. The change 
in the sign of the flux for s = - 1 is connected with the 
vanishing of leOl! for the Rayleigh-Jeans distribution n 
= T/w which corresponds to a zero flux along the spec­
trum. As d - j3 is as a rule non-negative, the energy 
flux is for m >0 (cf. the discussion in Sec. 3) in the 
direction of k = OIJ. As an example we mention capillary 
waves on deep[ll and shallow[4] water. 

The calculation of the constant A in the power-law 
distribution nk =Aw' requires, in fact, the evaluation of 
the integral (6.2). It is shown in Appendix I that this in­
tegral can in the general case be reduced to a single one. 
As an example we calculate in Appendix II the constant 
for the turbulent distribution of capillary waves on shal­
low water. 

In conclusion we note that the approach to the calcula­
tions of the fluxes considered here can be transferred 
also to other systems, for instance, such systems in 
which power-law distributions are formed which are 
caused by wave-particle interactions. [13,14] 

I consider it a pleasant duty to express my gratitude 
to V. M. Kontorovich for valuable hints and discussions 
of this paper. 

APPENDIX I 

Expression (6.2) for the energy flux in the case of 
waves with a decay dispersion law can be reduced to a 
single integral 

2b (k) d I 
I, = -!lA';V; S dx T(x, l-x)[x(i-x) j'[ i-x-'-(l-x)-'jxlnx, 

'S=SI' (1.1) 

T (x, y) = T (y, x) = w'-"n+''''''(k,k,)d-' ddk, ddk, U (klk,k,)x (lcik,k,) , 
(01 Wz 

w, = xw, w, = yw, (I. 2) 

x(klk,k,)~ldx,dx26(k-k,-k2), xi~kJki' (I. 3) 

In deriving (I. 1) we integrated over angles which re­
duces to an averaging of the momentum conservation law 
(I. 3) as the matrix element U(k I k"k2) can without restric­
tion of generality be considered to be a function only of 
the wavenumbers. Apart from this we changed to an in­
tegration over the frequencies and the integration over 
w2 was performed by using the energy conservation law. 
The final result was obtained by using the symmetry of 
T(x,y). The averaging over the angles in (1.3) leads to 
the result: 
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X(klk,k,) = { Ll-' (k, k" k,),. 
2rrlkk,k" 

d=2, 

d=3, 
(I. 4) 

if k, kl' k3 satisfy the triangle inequality, and X=O in 
the opposite case. Equation (1.1) enables us to find the 
constant A for the distribution (3.4). 

We note that the fluxes can for the case of a non-decay 
dispersion law and also in the case of scattering of 
waves be reduced to a form analogous to (1.1) (with an 
integration over two frequencies), but the averaging 
over the angles involves in that case also the matrix ele­
ment. 

APPENDIX II 

We find the constant in the distribution for weak tur­
bulence of capillary waves on shallow water. [4] In that 
case d = 2, j3 = 2, s = - 2, m = 4, and the matrix element is 

U(klk,k,)= U,k" 1 (a )'" 
U, = 32rr ph ' k>k" k" (11.1) 

where (J is the surface tension coefficient, p the denSity, 
and h the depth of the liquid. The dispersion law is 

w(k)=1k', 1=(ah/p)'''. 

USing (1.4), (11.1), and (11.2) we find 

T(x,y)= 2~: (xy)-''', 

so that 

I, = 2nU, A'I, 
l' 

I dx ( x ) 'I, I=-S- -- Inx=2rr. 
x' i-x 

o 

(11.2) 

(11.3) 

One can easily evaluate the last integral through the 
substitution x-I = 1 +Z2 with subsequent integration by 
parts. The constant A in the distribution n =Aw-2 is 
thus equal to 

(11.4) 

\)The directions of the fluxes (and the dimensionless constants 
in the distributions) have previously been found for acoustic 
turbulence[31 and for the scattering of particles with a qua­
dratic spectrum inthe case of the Landau collision integral151 

and in the case of the Boltzmann collision integral in the 
Born approximation. IBI An expliCit calculation of the colli­
sion integrals for power-law distributions was then carried 
out; this is possible only in the Simplest cases. 

2 )These distributions are related to the spectrum of the Kolmo­
gorov turbulence of an incompressible liquidllOI (for details 
seell- 71 ) . 

3)We have here in view the positiveness of the power-law term 
in the activation spectrum; for details see § 5. 

4)Explicit expressions for the fluxes for the interaction of par­
ticles were obtained earlierlB1 on the basis of a direct evalua­
tion of the collision integral for a matrix element which de­
pended solely on the transferred momentum. 

5)The activation spectrum for small dispersions I ow(k) I «wo 
is, clearly, a non-decay spectrum. 
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Excitation of ordinary waves in a plasma with a diffuse 
boundary under anomalous skin-effect conditions 
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We study the absorption of an electromagnetic wave by a plasma with a diffuse boundary. We assume 
that the decrease in the particle density is exponential and that the magnetic field is parallel to the 
boundary of the plasma. We show that the collisionless absorption of waves with the electric vector 
directed along the magnetic field is connected with the excitation of ordinary waves in the plasma for 
those densities for which they can exist in a homogeneous plasma. We study the lineshapes of the electron 
and ion absorption resonances, especially in the effective collision frequency approximation. We obtain 
expressions for the limits of the existence of the ordinary cyclotron waves in the plasma and we solve the 
dispersion equation for a high-pressure uniform plasma. 

PACS numbers: 52.40.Db 

§1. INTRODUCTION 

P. L. Kapitza U 1 was the first to state the problem of 
the anomalous skin-effect in a plasma with a diffuse 
boundary in connection with a study of a high-frequency 
discharge in a plasma at high pressures. Liberman, 
Meierovich, and Pitaevskii[21 constructed a theory of the 
skin-effect in a semi-infinite non-uniform plasma, and 
obtained an integro-differential equation for the electro­
magnetic field in the plasma for an arbitrary relation be­
tween the electron mean free path, the penetration depth 
of the field in the plasma, and the size of the transition 
region at the boundary. This equation has been solved 
for the case of an exponential decrease of the electron 
density outside the plasma under conditions of an ex­
tremely anomalous skin-effect[21 and for an arbitrary 
degree of anomalicity. [31 In[31 a plasma with a magnetic 
field directed parallel to the density gradient for any de-
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gree of anomalicity of the skin-effect was also studied. 
Dikman and Meierovich[41 considered the extremely 
anomalous skin-effect for the case where the magnetic 
field was strictly parallel to the boundary and obtained 
solutions for an exponential and for a power-law de­
crease in the electron density. We study in the present 
paper the absorption of electromagnetic waves in the 
case of arbitrary anomaly of the skin-effect when the 
electric field of the incident wave is parallel to the con­
stant magnetic field which lies in the plane of the plasma 
boundary and we also analyze a mechanism for colli­
sionless absorption which consists in the transformation 
of the incident wave into ordinary cyclotron waves. 

We shall assume that the size of the transition zone 
at the boundary of the plasma is small compared to the 
characteristic dimensions of the plasma, but large com­
pared to the penetration depth of an electromagnetic 
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