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It is shown that the transition radiation emitted by ultrarelativistic particles depends on the curvature of 
the interface crossed by the charge. The effect of focusing of transition radiation of a charge crossing a 
conducting surface in the shape of a paraboloid of revolution is investigated. The intensity of the transition 
radiation is found at the focus of the paraboloid and at large distances. The possibility of using the 
focusing of transition radiation to detect ultrarelativistic particles is discussed. 
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" INTRODUCTION 

Transition radiation emitted by a uniformly moving 
charge crossing the interface between two media was 
predicted in 1946 by Ginzburg and Frank[l] and since 
then this phenomenon has been investigated in detail by 
many authors. [2-101 However, the investigation was 
restricted to plane interfaces between the two media. 
Only Askar'yan[131 has investigated the transition radia­
tion emitted by a nonrelativistic charge crossing a 
spherical surface. Meanwhile, an uncommon depen­
dence of the transition radiation on the curvature of the 
interface arises for ultrarelativistic particles, as can 
be seen from the following considerations. Transition 
radiation can be regarded as the appearance of a re­
flected wave and a refracted wave when the self-field of 
a uniformly moving charge passes through the interface. 
As is well known, the self-field of an ultrarelativistic 
charge with energy £» m (c = 1) is concentrated in a thin 
disk-shaped region with small longitudinal and macro­
scopically large transverse dimensions (at a frequency 
w, the transverse size of the field region is -£/mw). If 
the radius of curvature of the interface f - (£/m w), the 
self-field of the charge intersects different pOints of the 
interface between the two media at different moments of 
time and, consequently, the transition radiation from 
different points of the interface arrives at the observa­
tion point with different phases. Taking into account the 
possibility of using transition radiation for the detection 
of ultrarelativistic particles, one can use the interfer­
ence of the waves at the observation point for a maximal 
amplification of the signal by an appropriate choice for 
the shape of the interface. In order to amplify the sig­
nal it is also advisable to choose a perfectly reflecting 
interface, i. e., the interface between the vacuum and a 
perfect conductor. 

The optimal shape of the interface is determined from 
the condition that the transition radiation from every 
point on the surface arrive at the observation point with 
the same phase. If the difference between the velocity 
of the charge and that of light is neglected, the surface 
of a paraboloid of revolution having its axis along the 
particle velocity and its focus at the point where the de­
tector is located will satisfy these conditions. In fact, 
in this case all phase relations for the transition radia­
tion remain the same as for the reflected waves pro-
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duced by a short pulse of light incident in the same di­
rection. It should be noted that it follows from the con­
ditions f- (c/m w) and £» m that the wavelength A of the 
radiation is small in comparison with the focal distance 
f and the parabolic reflecting surface ensures focusing 
of the radiation. 

2. THE CURRENT DENSITY ON THE INTERFACE 

The physical cause of the onset of transition radiation 
is the current density produced in the surface layer of 
matter by the charge's self-fields Eo(r, w) and Ho(r, w). 

In the case of a perfect conductor this current is only 
generated in a thin skin layer at the interface and can be 
regarded as a purely surface current. In this case for 
the determination of the surface current density it is 
convenient to use the boundary conditions at the inter­
face between vacuum and a perfect conductor 

[n(r)XH(r, w)]=4Jtj(r, w), (2.1) 

where n(r) denotes the unit vector normal to the inter­
face at the point r, and H(r, w) denotes the total field in 
vacuum near the point r, consisting of the charge's self­
field Ha(r, w) and the field of the transition radiation 
H1(r, w). Following Fock, [u1 we eliminate the field 
H1 (r, w) from Eq. (2.1), and express the current density 
in terms of only the charge's self-field Ho(r, w). This 
yields the following integral equation for the current 
density 

i (r, w) = ~ [nCr) X Ho(r,w)] 
2Jt 

1 r [." exp(iwlr-r'l) ]] 
-21T jdS Ln(r)X JCr,w)XV Ir-r'l ' (2.2) 

where the integration is over the interface on which the 
points rand r' are located. In the usual theory of dif­
fraction by convex surfaces, where Eq. (2.2) is fre­
quently used, the integral term in (2.2) is small in the 
case fW» 1, where f is the characteristic radius of 
curvature, and a rather good approximation is given by 
the well known equation 

j(r,w)=~ [n(r)XHoCr,w)] =2jex(r,w) 
2Jt 
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(2.3) 
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(the surface current is simply equal to twice the exter­
nal current[l1,121). This corresponds to solution of the 
integral equation (2.2) by the method of iterations. The 
validity of the first approximation is essentially due to 
the fact that diffraction by a convex surface is caused 
by single scattering. 

When applying (2.2) to the reflection of a plane wave 
from a concave paraboloid, on which a plane wave is in­
cident parallel to its axis, it must be borne in mind that 
in this case each light ray is reflected from the surface 
of the paraboloid, passes through the focus and is re­
flected a second time from the paraboloid. One can say 
the same about the transition radiation of an ultrarela­
tivistic particle moving parallel to the axis of a para­
boloid of revolution (z = - p2 / 4f + f) in the positive direc­
tion of the z axis. The first reflection of the self-field 
leads to the formation of a transverse wave. This wave 
passes through the fOCUS, is reflected a second time, 
and emerges from the paraboloid. 

It follows from this that the first approximation (2.3) 
is insufficient for the solution of the problem of a con­
cave paraboloid, and it is necessary to take the second 
approximation into account, replacing (2.3) by 

. 1 
I(r, w)= - [n(r)Ho(r, w) 1 

2n 

- (2~)2 J dS [n(r) [ [n(r')Ho(r',~) 1 V expi:::,~r") ]] . (2.4) 

For a paraboloid of revolution having a symmetry axis 
z along the particle velocity and a focus at the point z = 0, 
it is convenient to evaluate the integral and to estimate 
the errors of the approximation in the parabolic coordi­
nates ~, 1), and cp: 

In these coordinates Eq. (2.2) takes on the surface ~ =f 
the form 

1 
i.(I],cp)= 2n Ho(1'], cp) 

+LSSdl]' d<j/ j,,(q',<p') (_1_)'" e'wHF(I]',<p'), (2.5) 
Jt /+1'] 

where 

R'=(1']-1']'),+4f[ Ij + I]' -2 (1]1]') 'f, cos (<p-<p') ], 

F(ll', cp') = l-~~R {1']+rj'-2(ljl1')"'COS (<p_<p')}. 

Solving Eq. (2.5) by successive approximations, we put 

where 

(2.3') 

One can use the method of stationary phase[10-121 to es­
timate this integral. It is not difficult to find that the 
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phase will be stationary at the point cp' =cp +1T, 1)' =f2 /1). 
Hence we obtain 

• (2) i ( 1 ) 'f, ( (f) 'I, mw ) 
'" (I],<P)= 4n' 1](I]+f) 2{ -;;- ~ 

( ( f) 'f, mw) X K, 2/ -;- -;;:;- exp (3;w/+iw1']) (2.7) 

(K1 denotes the Macdonald function). The following re­
striction on the dimensions of the charge's self-field 
follows from the requirements for applicability of the 
stationary phase method: 

(2.8) 

Substituting (2.6) into the expression for j~3), we have 

.(') ( )- t Sa 'Sd ,.(2) (' ') '·"F(' ') '" 1'],cp ---;:;- 1'] CPI" 1'],<P e 1'],<p, (2.9) 

from which it is not difficult to obtain the result that, in 
order of magnitude, 

. (') 1 (f) ~ .. (2) 

,. = - 8iw (fl]l''' /+1] I., (2.10) 

so that j~3) «j~2) for A «f and one can neglect the quan­
tity j~3). Thus, for fW» 1 the total surface current is 
given by the sum of expressions (2.3) and (2.6). The 
electromagnetic field of the transition radiation may now 
be found with the aid of the usual formulas for the re­
tarded potentials. 

It should be noted that the obtained expressions (2.3'), 
(2.7), and (2.10) very much resemble the analogous re­
lations in the case of diffraction of a plane wave by con­
vex bodies at wa» 1, where a is the characteristic ra­
dius of curvature. [121 This fact is quite understandable 
if it is taken into consideration that at v - c the field of 
an ultrarelativistic particle is nearly transverse or, in 
other words, the combination of the particle's magnetic 
transverse magnetic and electric fields is almost equiva­
lent to a wave packet of linearly polarized radiation. 
Since the approximation of geometrical optics is valid 
for wa» 1, it is not difficult to see that the magnitude 
of the field at the focal point is completely determined 
by the surface current j~l) whereas the spectral and 
angular distribution of the transition radiation at infinity 
is determined solely by the current function j~2). It is 
also necessary to note that expression (2.7) takes into 
cons ideration the influence of the region 1);S A under the 
assumed restriction (2.8) on the dimensions of the par­
ticle's field. 

3. THE FIELD OF THE TRANSITION RADIATION 
NEAR THE FOCUS OF A PARABOLOID 

We consider first the case of particle motion along 
the axis of the paraboloid. To evaluate the transition 
radiation field at the focus we shall utilize the expres­
sion 

E(r,w)=~S {V(V)I w'}j':'::'ar'. 
w R 

(3.1) 

Since it follows from the symmetry of the problem that 
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only the component Ez , obviously directed against the 
particle's motion, differs from zero on the axis of the 
paraboloid, to within terms of order (wj)-l we obtain 
the following expression from Eq. (3.1): 

(3.2) 

In Eq. (3.2) the current density j~l) is determined by 
Eq. (2.3') andj+1J=R denotes the distance from the fo­
cal point to the point of integration on the surface of the 
paraboloid. We note that mathematically the focusing of 
the transition radiation is associated with the fact that 
the current density j~l) contains the rapidly oscillating 
factor exp{(iw/v)(f -1J)}, which cancels the correspond­
ing factor in the integrand of expression (3.2); there­
fore, the value of the integral (3.1) at the focus is con­
siderably larger than its value at any other pOint of 
space inside the paraboloid. 

It is evident from Eq. (3.2) that for elm w ~j the value 
of E z is almost independent of the particle energy e be­
cause in this case the value of the integral (3.2) is de­
termined by the region TJ$j. However in the case e/m 
< w j, the integral (3.2) is obviously determined by the 
region TJ;:;e/mw and for E. one can obtain 

(3.3) 

Now let the vacuum-conductor interface be half of a 
paraboloid that is cut along its symmetry plane x =0. 
As before the trajectory of the particle coincides with 
the paraboloid's axis of revolution. It is obvious that, 
just as before, the current density j~l) will be given by 
expression (2.3'). As to the current density j~2), it will 
be small in comparison with j~l) since there is no sec­
ond scattering of the transition-radiation field. It fol­
lows from the symmetry of the problem that only two 
nonvanishing components of the field exist at the focus: 
E., which is equal to half of the corresponding expres­
sion (3.3) for the complete paraboloid, and Ex, which 
is given by 

.. 11/2 ) 

Ex(O, w) =iwfS S «(f-Y) 'I r'j~') exp {iwf+iwY)} cos <jl dY) d<jl. (3.4) 
f+Y) , 

o _n/2 

Confining ourselves to the most interesting case e/m 
< w j, we obtain 

(3.5) 

At wj» 1 one can neglect the influence of boundary ef­
fects on the value of the field near the paraboloid's fo­
cus in the first approximation. 

Now let us consider the more general case of off-cen­
ter entry of the particle into the paraboloid. Here we 
shall assume that the particle's trajectory does not co­
incide with the paraboloid's axis of revolution, but re­
mains parallel to it and is displaced from it by a dis­
tance d. The particle field Ho will excite two nonvanish­
ing components of the surface current: 
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.(l) 1 .(l) 1. ( f)';' '" =-Hocos(1jJ-<jl), J. =-Hosm(1jJ-cp) -- , 
2n 2n Y)+f 

where the angle I/! is defined in the following way: 

(3.6) 

and fulfillment of the condition I/! = cp is required at 0 = 0; 
here d'= 2(fO)1/2. The corresponding expressions for the 
surface current j (2) can be easily obtained from Eqs. 
(3.6) in analogy with th~ procedure of Sec. 2. 

As a consequence of the symmetry of the problem the 
field at the focus is determined, to within terms of or­
der (w j)-1 by the component of the current j~l). To avoid 
cumbersome calculations, let us consider the simplest 
but nevertheless important case: e/m« wd and e/m 
« w j. Here it is obvious that the surface current j~l> 
will be concentrated near the pOint (f, 0) on the surface 
of the paraboloid in a region of dimensions -e/m w• 
This segment of the surface is seen from the focus at an 
angle 0 determined by the relationship cos{) = (f - 0)/ (f 
+ 0); therefore the waves arriving at the focus have wave 
vectors concentrated about the value 

(3.7) 

Calculations using Eqs. (3.6) give the following results 
for the components of the field E at the focus 

2ie e. 
E = - -- (f1\) 'I, - e',·f 

, uFTs m ' 

E = ~ (f-1\) ~ e"·f 
x uFT5 m' 

(3.8) 

where T = (1 + 0/j)1/2. From Eqs. (3.7) and (3.8) it is 
evident that E' k = 0, that is, the field is transverse at 
the focus. 

4. SPECTRAL AND ANGULAR DISTRIBUTION OF 
THE TRANSITION RADIATION 

At large distances from the paraboloid and for cen­
tral entry of the particle, the distribution of the radia­
tion can be easily obtained from Eq. (2.7) with allow­
ance for the bounded nature of the region of existence of 
the current j~2). At large distances the vector potential 
is given by the expression 

ei!l.R 

A, = R J j,,(' (Y)', cp')exp{-iw cos 1'1 (J-Ij') 

--iw sin 1'1. 2 (h') 'I, cos (<jl--cp')} . 2/ dY)' d(p', (4.1) 

H/R={cos cp sin tl;sin cp sin tl;cos tl}. 

The rapidly oscillating integrand in (4.1) has a station­
ary-phase point at cp' =cp and TJ' =jtan2 ({)/2); hence for 
A~ we have 

e ( 2mw/ 1'1) (2mwj 1'1 ) cxp{iwl!+2i(o)j} A =--- --ctg- [(, --ctg- . 
, 2nvRw BV 2 £v 2 sin(O/2) 

(4.2) 

Consequently, we obtain the following result for the en­
ergy emitted per element dn of solid angle in the fre­
quency interval dw: 
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dO e' (2mwf ti)' ,(2mWj ti)(. ti)·, 
dQ d-;; = 4n'v' ----;;-ctgz K, -;;;-ctg -z- S!ll-~ . (4.3) 

Here it is obvious that 7T/2 ",; () ",; 7T because the radiation 
originates in the left half space. In the case of small 
radius of the field, £/mw «f, approximate integration 
of (4.3) over the angles gives 

~~~(_e )', 
dw n mwj 

(4.4) 

which is found to be in agreement with Eq. (3.3). 

Direct conversion from the derived formulas to the 
case of a planar boundary cannot be achieved simply by 
the limiting transition f - 00. The difference between a 
paraboloid and a plane is that the beam is reflected 
twice from the surface of a paraboloid, but only once 
from a plane. As f- 00 the second reflection point moves 
to infinity. For the correct conversion to the planar 
case, it is necessary to use the first-order approxima­
tion (2.3) for the current density and find the field 
created by it. The result agrees with the results ob­
tained in[1-4]. 

5. DISCUSSION OF THE RESULTS 

The strong dependence of the transition radiation at 
the focus of a paraboloid on the particle's energy allows 
one to utilize this effect for the detection of high-energy 
particles. An important circumstance here is that this 
dependence arises at all frequencies ranging from the 
radio to the optical band. The optimal size of the parab­
oloid obviously corresponds to the case when the trans­
verse radius of the self-field is comparable with the fo­
cal distance, £/mw - /. In this connection it is obvious 
that it is sufficient to use half of a truncated paraboloid 
for measurement of the field at the focus (the paraboloid 
truncated in the focal plane is next cut along a plane 
passing through the symmetry axis). In the case £/mw 
;of such a surface will act as half of an infinite parab­
olOid, and formula (3.5) will be valid for the field at 
the focus. An amount of energy 

e' ( e )' dw dO~- - -
l' m w' 

(5.1) 
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passes through a detector of area w-2 near the focus in 
the frequency interval dw. Let the band of frequencies 
measured by the detector lie between Wi and w2• Then 
the total energy registered by the detector is 

(5.2) 

For radiation from a beam of particles or relativistic 
nuclei with large Z, the radiation intensity will be suf­
ficient to be detected even in the optical region. It is 
interesting to note that interference between the transi­
tion radiation at optical frequency, due to passage of an 
electron beam through two planar surfaces, has already 
recently been observed. [10] However, to detect the 
transition radiation from a single proton it is more con­
venient to use radio frequencies. Here, however, it is 
necessary to take into account the increase in the geo­
metrical dimensions of the paraboloid with increasing 
£/111. Thus, for £/111 -103 and centimeter waves, the di­
mensions of the paraboloid should reach tens of meters. 
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