
A transition with a large number of quanta presup­
poses overcoming the first several vibrational levels as 
a result of the "anharmonicity overlap" due to rota­
tional, field-induced, etc. broadening. For small an­
harmonic shifts, on the order of several reciprocal 
centimeters, this condition is easily realized in a large 
number of molecules. The highly excited vibrational 
states are in turn well described by the solution of the 
classical problem (see (8)). For the parameters writ­
ten out above and at V12 - 0.11 Vll - V22 1, P -lD, M 
_10-25 g, y-lOll sec-I, and n= 50 it is easy to verify 
with the aid of formulas (4) and (7) that the threshold 
value of the field intensity, at which complete excitation 
of the gas take s place, is F - 105 V / cm. 

The authors are grateful to V. P. Krainov, V. I. 
Osherov, N. F. Perel'man for a discussion of problems 
connected with the behavior of a two-level system in a 
strong electromagnetic field. 

1 )We note that the definition of ilJ,2 includes a phase CPo, which 
can be found by the method of the adjoint equation. [131 We 
shall consider below, however, the case v»l, as CPo-O. 

2 )See the remark in the paper by Bychkov and Dykhne[ 151 con­
cerning the applicability of the theory to the case of strong 
fields. 

3)In the case of the nonlinear time regime, it is possible to ob-
tain from (2) an equation for the probability W 2(t) of the pop­
ulation of the excited level, analogous to formula (6) of 
Krainov's paper, [16] in which we must put R2 co b2• 
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Both perturbation theory and a quasic1assical method for calculating the quasienergy spectrum have been 
developed for the problem of a nonlinear quantum oscillator with a resonant force. The results are applied 
to a description of intermode resonances in autonomous systems. It is shown that quantum effects lead to 
strong restrictions on the existence of stochastic layers and Arnol'd diffusion and examples of magnetic 
traps, accelerators, and the solar system are considered. The problem of the decay of an excited mode in 
molecules and nonlinear chains is discussed. An estimate is made of the limits of transition to a stochastic 
regime of motion in molecules. A number of the results of the theory is applied to a description of 
collisionless dissociation of molecules in the field of an intense resonance wave. 

PACS numbers: 05.30.-d, 31.10.Cc 

1. INTRODUCTION of Kolmogorov and Arnol'd, [1-3] to the development of 
the theory and practice of such systems as accelerators 
of elementary particles, plasma oscillations etc., and 
particularly to "mathematical experiments" using elec­
tronic computers with different model systems. [4-71 

This theory is based on a consistent taking into account 

In recent years significant progress has been achieved 
in understanding the overall picture of the motion of an 
n-dimensional classical system of a general form. It 
is due to the work of mathematicians, in particular that 
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of the terms of the Hamiltonian that vary least rapidly 
with time (or resonance terms) in a restricted region 
of phase space which leads to the concept of isolated 
resonance. The next step is to take into account inter­
action between resonances. If they are separated by 
distances exceeding their nonlinear widths, then this 
interaction is exponentially small and the motion is 
basically stable. El-3] In the opposite case (the so-called 
Chirikov(7] criterion) the motion is unstable, quasiran­
dom and statistical methods are applicable. 

The present work has two aims. The first consists 
of transferring the ideas and methods of this theory to 
the case of quantum systems. The second consists in 
its application to the motion of atoms in an isolated 
molecule, and also to a molecule in the field of an in­
tense electromagnetic wave which is resonant with re­
spect to one of its modes. 

The theory of nonlinear resonance in the quantum case 
is presented in Sec. 2 using the simplest example of 
one-dimensional motion (nonlinear oscillator) under the 
action of a perturbation periodic in time. Depending on 
the ratio of the width of the resonance to the Planck con­
stant two regimes are possible, in one of which pertur­
bation theory is applicable, and in the other the quasi­
classical method. In the latter case it is convenient to 
carry out the quantization in terms of the action-angle 
variables. A number of examples of applying this meth­
od is given, in particular a simple derivation is pre­
sented of the spectrum of quasienergies(S,9] for linear 
parametric and linear external resonances which are 
already known from an exact solution. (10,9] An investi­
gation is made of the "standard,,(1l·7] nonlinear reso­
nance, and also of nonlinear resonance near a ground 
state which occurs when molecules are excited by a 
resonance field. 

Section 3 is devoted to a discussion of the role of res­
onances in multidimensional autonomous systems, and 
in particular to their effect on the spectrum. The 
quasiclassical results of this section generalize in a 
certain sense the results OfEla•13]. 

Interaction between sufficiently separated resonances 
is discussed in Sec. 4. Its principal effect consists of 
the formation of a stochastic layer near the separators 
of the resonances which forms the base for a universal 
slow instability-the Arnol'd difussion. (3.7] In the quan­
tum case the stochastic layer is not always present. 
Moreover, the conditions for its existence turn out to 
be so rigid that they might not be satisfied for what 
would appear to be perfectly classical systems: mag­
netic traps, colliding beams, the solar system. In or­
der to avoid misunderstandings it should be said that 
quantum effects have entered the problem as a result 
of investigation of subtle effects accumulated over a 
long period of time. 

In Sec. 5 the problem is considered of a lengthy evo­
lution of an initial excitation of molecules or of nonlin­
ear chains of a nature similar to them. The simplest 
case is when a single linear mode is excited in the be­
ginning. It is shown that its decay is determined by 
intermode resonances which are investigated both in the 
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classical and in the quantum formulation. The rate of 
decay has a number of thresholds as afunction of the 
nonlinearity or of the amplitude of the perturbation. 
The results are applied to the problem of a polyatomic 
molecule in the field of a resonance wave. In particu­
lar, we succeed in giving rough upper estimates on the 
threshold values of the intensity of the wave and in ex­
plaining why in the experiments(14] with I", :S 109 W Icma 

dissociation of BCI3, OS04, SF6 was observed, while 
dissociation of OCS, CCl4 was not observed. 

The sixth and last section is devoted to a description 
of the transition from the dynamic motion of atoms in a 
polyatomic molecule to stochastic motion. An estimate 
is given of the excitation energy at which this transition 
takes place. On its basis it is possible, in particular, 
to understand why monomolecular decay of molecules 
with a number of atoms N. ~ 4 takes place in better 
agreement with the statistical theory of Kassel,(l5] than 
with the theory of Slatter, (16] cf., 07.1S]. At the same 
time nonstatistical anomalies exist in the case of tri­
atomic molecules. El7] Transition to a stochastic re­
gime leads to an unrestricted accumulation of energy 
by a molecule situated in the field of the wave, and this 
leads to its dissociation. The accumulation of energy 
takes place by an irregular, "diffusion" route. An es­
timate of the diffusion coefficient enables one to esti­
mate the average energy accumulated by the molecules 
during a laser pulse, and the results agree with the 
data of(14] • 

2. ISOLATED RESONANCE OF A QUANTUM 
NONLINEAR OSCILLATOR 

We begin the study of quantum nonlinear resonance 
with the simplest case of. a one-dimensional system sub­
jected to the action of a periodic perturbation. This 
system possesses a set of states lJI-.(t) having the follow·· 
ing property[8.9]: 

(1 ) 

where T is the period of the external force, £n is the 
so-called quasienergy. Being eigenfunctions of the op­
erator representing evolution over a period, the states 
lJI n constitute a complete orthogonal set, so that an ex­
pansion in terms of them describes the evolution of any 
arbitrary state. 

To provide a complete picture we begin with the case 
of a sufficiently small perturbation. It is clear that in 
this case lJI n are close to the unperturbed stationary 
states, while En are close to the unperturbed energies 
En so that one can use perturbation theory. It differs 
somewhat from the standard theory presented in text­
books since instead of a definite initial condition we 
must satisfy condition (1). For lack of space we shall 
not present it here but only state the expression for en 
to second order: 

(0) 1 ~ IV!~) I' 
En=En+Vnn +-i...l---+'" , 

h LQ-wmn 
m.L 

hw".,,=Em-En, V~';! = pdt exp(iLW) <ml V(t) In), 
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which is of sufficiently usual form. As can be seen from 
(2), at resonance ILn - w",nl « I v~~l Iff perturbation 
theory is no longer applicable. If only a single pair of 
levels are in resonance then the problem is easily 
solved exactly. Under the above condition the quasien­
ergies are simply 81(2) =Ei(2)(-) I Val. The fact that the 
correction became linear in V is a consequence of auto­
phasing which will be discussed below. 

If the number of levels involved in transitions is not 
small, then it is natural to utilize the quasiclassical 
method. The conditions for the applicability of the fol­
lowing discussion can be represented in the form of re­
strictions on the magnitude of the perturbation 

/ 
dw dw 

MY -~V~h-. 
dn dn 

Here 

dw d'E. 
-~--(no) 
dn dn' 

is the nonlinearity near the resonance 

(3 ) 

D is the distance between the harmonics of the perturba­
tion. For a periodic perturbation D = n, but when (3) is 
satisfied one can consider also more general perturba­
tions which contain a discrete set of incommensurable 
harmonics. Violation of the first inequality leads to 
the overlapping of resonances, i. e., to stochasticity 
(cf., below), while violation of the second inequality 
brings us back to the domain of applicability of pertur­
bation theory. 

A quasiclassical investigation of the neighborhood of 
the resonance turns out to be particularly convenient 
also because in this approximation it is possible to make 
a transition to the action-angle variables, in terms of 
which an investigation of resonance phenomena is par­
ticularly convenient. We note that the question of ca­
nonical transformations in quantum mechanics remains 
open, specifically the difficulties in making the transi­
tion to action-angle variables are discussed in the re­
view. [19] These difficulties do not occur in the quasi­
classical approximation. 

In the absence of perturbation the quasiclassical 
quantization in terms of the action-angle variables is 
tri vial since in terms of them the Hamiltonian depends 
only on the action HoW. Making the replacement 
j - iffal a8, we have the SchrOdinger equation 

(4) 

the solution of which is 

1 i 
'1',,(8) = -=8XP [- --I(E)8], 

1'2" It 
(5) 

where I(E) is a function inverse to HoW. The condition 
of periodicity with respect to 8 leads to quantization of 
action and of energy: In=nff, En=Ho(nff). 
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In the presence of perturbation the Hamiltonian has 
the form 

Il(I, 8, t)=Ilo(l)+V(l, 8, t). (6 ) 

In virtue of the periodicity of the Hamiltonian with re­
spect to angle and time it can be represented in the form 
of a double Fourier series 

V(I,8,t)=.E Vmn (I)exp(im8-inQt). (7) 
m.' 

Resonances appear at values of the action such that for 
integer and k and l we have 

kw (/') =ZQ, w (/) ""'dIla/dI. (8) 

It is essential that near resonances the perturbation 
terms with m, n such that mk =nl playa special role, 
since their dependence on the time is the slowest. In 
other words, in a certain approximation it is possible 
to restrict oneself only to a part of the perturbation 
uU, a) which depends on the angle and the time only in 
the combination a'" kB - tnt, which is called the reso­
nance phase. Going over to the variable I"" conjugate 
to a, where we shall in future omit the index a, we ob­
tain the time-independent resonance Hamiltonian (k = l 
= 1 for the sake of Simplicity): 

J1(I,a)=Ilo(/)-QJ+u(I, a). (9) 

The role of the neglected terms will be discussed later. 

Before going on to quantize this Hamiltonian we shall 
show that its eigenfunctions possess definite quasiener­
gies coinciding with its own eigenvalues. For this it is 
sufficient to write them in terms of the initial variables 
8, t 

(10) 

where cP n(a) is an eigenfunction of BU, a). In virtue of 
the periodicity with respect to angle of the functions 
cPn(a), 'lon evidently possess the property (1). We recall 
that the definition (1) fixes the quasienergy up to an ad­
ditive term Nffn, just as in the case of the quasimomen­
tum. 

Quantization of the Hamiltonian (9) in the quasiclas­
sical approximation, for example in the a-representa­
tion, is carried out in the following manner. The wave 
function is a superposition of solutions of the form 

rp(a)=exp (-+ f Ie(E,a')da'), (11) 

where I,,(it, a) is a solution of the equation E = flU", a) 
with coefficients guaranteeing periodicity with respect 
to a. We shall demonstrate this procedure with a num­
ber of examples. 

The first of these is the standard nonlinear reso­
nance, [11.7] corresponding to the smallness of the width 
of the resonance compared to the resonance value of 
the action 10 , This enables us to expand the quantities 
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appearing in (9) near 10 and to bring it to the form 

doo (1-10)' 
B(I, a) = -(10)--- + u(io, a) +const, 

d1 2 
(12) 

which has the usual form of the sum of potential and 
kinetic energy. The regions of finite and infinite mo­
tion are separated by a special trajectory, the separa­
tor, which will be important for the discussion of Sec. 
4. The existence of restricted oscillations in phase is 
known as autophasing of nonlinear oscillations. [Zl] The 
width of this region, or simply the resonance width, is 

(13) 
~u=max u-min u, 

and therefore the condition of applicability of this ap­
proximation can be represented in the lucid form 

(14) 

describing the smallness of the dimensioness perturba­
tion compared with the dimensioness nonlinearity. The 
quantization of such a Hamiltonian is standard and we 
shall not dwell on it. 

The next example is linear parametric resonance, 
i. e., the periodic modulation of the frequency of a lin­
ear oscillator. In this case the resonance Hamiltonian 
has the form 

D(I,a)=eI+V(a)l, (15) 

where & = 2w - n is the deturning of the frequency, c; 

= 2e - nt. Following the prescription formulated above 
we easily obtain the quasienergy spectrum 

1 on da 
En=ntlA A-l~_ s---

, 2:rt 0 e+V(a) , 
(16) 

in agreement with the result of the exact solution. [10] 
The condition for the finiteness of A -1: I & I > I V(c;) I is 
the well-known condition for the stability of parametric 
resonance. This conclusion is of a general nature: in 
the domain of instability the spectrum of quasienergies 
En is continuous. In this region it is convenient to in­
troduce a small nonlinearity which stabilizes the reso­
nance and makes the spectrum discrete, in analogy to 
the standard device of placing the system with a con­
tinuous spectrum into a fictitious box. 

The resonance of a linear oscillator with an external 
force is described by a perturbation of the type xfcosnt 
and this leads to 

D(I, a) =el+jJ'i' cos a. (17) 

so that the spectrum of quasienergies is En = &n + fZ 14&, 
again in agreement with[10]. 

The last example is less trivial, it refers to nonlin­
ear resonance near the ground state, when (14) does not 
hold. Just such is the situation in the excitation by an 
intense laser pulse of molecules which were initially in 
the ground state. This problem was considered in[Z2] 
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for a diatomic molecule, but in classical formulation. 
It was shown in particular, that rotation does not play 
any serious role in a typical situation and essentially 
only changes the nonlinearity somewhat. The resonance 
Hamiltonian for this problem can be written in the form 

fl(l, a) =e1+'/2OO'I'+/]'" cos a, oo'=doo (O)/d1, (18) 

where & = w(O) - n is the deturning of the frequency, w' 
is the nonlinearity, f =exEln1 / 2, where E is the field 
of the wave, ex is the dipole moment for the first tran­
sition V = 0 - V = 1. The dynamics determined by this 
Hamiltonian can be understood most simply with the aid 
of the socalled phase portrait, i. e., of a system of 
equipotentials on the phase plane (Fig. 2). Of particu­
lar interest is the case a in which there exist two re­
gions with the same value of E: (I1I Z) , (I3, 14)' In the 
classical case one can arrive in such a region under 
different methods of excitation, for example, in the 
case of an adiabatic variation of frequency from the 
case c to a we find ourselves on the upper branch_ In 
the quantum case there exists a probability of a tunnel­
ing transition, which can be conveniently written in the 
I-representation: 

2 " 
W = cxr[ - h S Im ae(J?, I')dJ'] , (19) 

I, 

( E-e1-oo'P/Z) 
ae(E, J) = arccos . , . 

Jf!' 
(20) 

Quantization is determined by the condition that the area 
between the equipotentials En and En + 1 is equal to 2rrn. 
The corresponding formulas are quite cumbersome, and 
it is simpler to calculate the quasienergy spectrum nu­
merically in a specific situation. We note only that the 
molecule situated in the field absorbs and emits fre­
quencies wmn = (Em - E n)ln, where Em( n) are certain val­
ues of quasienergy (with an accuracy up to an integral 
multiple of n[B]), These frequencies are of the order 
of magnitude 

(21) 

Their dependence on the field may find practical appli­
cations. So far they have not yet been observed experi­
mentally. 

Now a few words on the dissociation of diatomic mole­
cules in a field. In a classical formulation[ZZ] it is pos­
sible only in a field of intensity Iw""1014 W/cm2 • Quan­
tum tunneling makes this possible at any arbitrary in­
tensity, but with a very low probability. The "tunnel­
ing length" diminishes in the case of negative detuning 
of & (Fig. 2b). Estimates show that an optimum choice 
of & can diminish the threshold Iw by approximately an 
order of magnitude. So far no experiments have been 
conducted with such intensities. 

Having concluded the discussion of the quantization of 
a nonlinear resonance we note the most important fea­
tures. The perturbation gives rise to an essential re­
construction of the wave functions in the region of reso­
nance. In contrast to unperturbed states which do not 
have an average value of the phase, the exact solutions 
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(11) do have such a value, and it rotates with the reso­
nance frequency n. Outside the region of resonance the 
reconstruction of states sharply decreases, and this can 
be more definitely verified by calculating the probability 
of overlapping of the states (11) and the unperturbed 
functions (5): 

(22) 

Near resonance this integral has a real saddle point and 
outside resonance it has a complex saddle point, so that 
am. falls off exponentially with departure from reso­
nance. 

3. RESONANCES IN AUTONOMOUS 
MULTIDIMENSIONAL SYSTEMS 

Resonances between degrees of freedom essentially 
complicate the motion of a multidimensional system, 
since they lead to subtle effects cumulative with time. 
Formally this manifests itself in the form of divergence 
of the perturbation theory series due to "small denomi­
nators, " c. f., for example[2]. Naturally they also com­
plicate the problem in its quantum formulation. A well­
known example of such type in molecular physics is the 
Fermi resonance in CO2, Resonances of special form­
periodic motions-have been studied in the theory of 
resonators, [12] in nuclear theory[23] and in quantum field 
theory[24] in the quasiclassical approximation. 

In quantum-mechanical language resonances denote 
degeneracy, or more accurately-anomalous condensa­
tion, of definite values of the total energy. Indeed, the 
validity of the relation 'ik i Wi ~ 0 (k i are integers, Wi are 
frequencies of individual modes) means that as the oc­
cupation numbers vary by k i the total energy will under­
go only a small change. Thus, for example, for a two­
dimensional system consisting of two uncoupled nonlin­
ear oscillators this change is equal to 

E(n,+Nk" n,+Nk,)-E(n" n')""'j,N'((jJ.'k,'+(jJ,'k,'), (23) 

c 

E 

FIG, 1. Phase potential u(u) and the structure associated with 
it of the condensation of levels due to resonance in a two-di­
mensional system: a-in the absence of mode coupling, b-in 
presence of coupling; c -distribution of condensations in the 
spectrum. Near the threshold p~ (E - E th)-1/2 in case a and 
p~ linn" in case b, which corresponds to the approximation of 
small phase oscillations (26). A further increase in p is as­
sociated with condensation near a separator (cf., Sec. 4). 
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c 

c 

------

........................ _---"'-

FIG. 2. Phase portraits of the Hamiltonian (18) in three cases: 
a)&>&_~-3(w'f2/2)1/3/2, b)£~£_, c)£<O, w'<O. Thesolid 
curve corresponds to the trajectory with E ~ 0; in case a there 
are two such trajectories: AB and CD. The broken curves 
correspond to other trajectories. The values of II, 12, 13, 14 
shown in diagram a correspond to the limits of phase oscilla­
tions at a certain energy. 

where W;.2 are the nonlinearities of the oscillators, i. e. , 
it is small when W;.2 are small. If we now switch on a 
perturbation which introduces a coupling between modes 
and which has matrix elements of the order of V, then 
for V» fi 2w' it leads to an essential reconstruction 
ANT -(V/fi 2w')1/2»1 of states in the region of condensa­
tion of levels. Therefore, in spite of the absolute 
smallness of V, it cannot be taken into account using 
perturbation theory. In the opposite case V« fi 2w' it is 
naturally applicable. 

The quasiclassical method developed in the preceding 
section can be applied to the description of this recon­
struction of states near resonance due to coupling be­
tween modes, the physical meaning of which consists 
of their mutual phasing. We shall demonstrate this with 
a two-dimensional autonomous system as an example. 

Going over from the action-angle variables for indi­
vidual modes 11 ,12 ,81,8 2 to the variables 

a=k,8,+k,8" 8='/,(k,8,-k,8.), 

I~=I,/2k,+I,/2k" I.=I,lk,-I./k" 
(24) 

and picking out only the a-dependent part of the pertur­
bation u(a, I"" 19 ), we obtain the resonance Hamiltonian 
according to which 19 is conserved and the problem be­
comes in essence one-dimensional. For the "standard" 
case when (14) holds it assumes the form (){ = w{ k~ 
+ w~ k~) 

(25) 

where n=ri,(I~O),I~O») is the frequency at resonance. 
From this it can be seen that in the energy spectrum 
there are condensations separated from each other by 
the quantity fin-while the structure of the condensations 
themselves is determined by the quasiclassical quanti­
zation of the phase oscillations in the potential u(a). 
Schematically the structure of inhomogeneities of the 
spectrum brought about by resonance is shown in Fig. 1. 

, 
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If the amplitude of phase oscillations is small, i. e. , 
if it is in the lower part of the condensation, then their 
spectrum is naturally of an oscillator form. Just such 
a result was obtained in(13] as a result of a fairly awk­
ward evaluation of integrals along the trajectories by 
the saddle point method 

(26) 

where E ~~I,; corresponds to the Bohr- Sommerfield quan­
tization along the orbit, while (3j =dv/dT, where Vj are 
the so-called stability indices. Our method, in which 
we first make a transition to convenient variables and 
only then introduce quantization, does not require the 
phase oscillations to be small, but only that they should 
be quasiclassical. 

If the number of degrees of freedom is greater than 
two, then our method effectively reduces the number of 
variables near resonance, but in the case of several 
oscillating phases additional assumptions are required 
for the solution of the problem in explicit form. Gen­
erally, as will become clear from subsequent discus­
sion, in multidimensional systems the number of reso­
nances is so large that finding stationary states and ex­
panding in terms of them becomes complicated and in 
many cases inadequate for the desired aims. 

4. INTERACTION OF RESONANCES AND 
STABILITY OF MOTION 

In the preceding sections we restricted ourselves to 
taking into account only the resonance part of the per­
turbation near resonance. We now go on to a discus­
sion of the nonresonance terms which when taken into 
account yield the phase Hamiltonian 

H(1, a, t)=H(I, a)+V(l, a, t), (27) 

where B(I, a) corresponds to (9), while V contains the 
dependence on the time with frequencies equal to the 
difference in the frequencies of the initial perturbation 
Q* and the resonance frequency n. If these differences 
significantly exceed the frequency of phase oscillations 
(which is equivalent to the first inequality (3)), I Q * - Q I 
»Qp, then, as has been shown by Kolmogorov and 
Arnol'd, [1-,'1] the effect of nonresonance terms is small. 
The point is that in this case v(t) oscillates rapidly and 
its matrix elements contain the "adiabatic smallness"[7] 

[ IQ'-QI] <V)cx: exp - const-g;;- . (28) 

If we introduce the parameter of the smallness of the 
perturbation e, then since in accordance with (12) Q p 

-e1/2 and (V)<xexp(-const/eI/2). The nonanalytic na­
ture of this dependence shows that although this effect 
is of the same order of smallness as e, it cannot be ob­
tained by perturbation theory. 

The nonresonance terms (28) can become significant 
only owing to resonances of the second order[7,25] of the 
type In * - Q I =nQp, which condense near the separator, 
where S2p - 0, and create a stochastic layer. [7] Although 
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such layers are exponentially thin (28), they in a multi­
dimensional case form an intersecting net which serves 
as the basis of the universal weak instability-the 
Arnol'd diffusion. [3] 

We consider the following question: what are the con­
ditions for the existence of stochastic layers in quantum 
systems? In virtue of the discrete nature of quantum 
levels the frequency of phase oscillations near the sep­
arator does not reach zero value, and its minimum val­
ue is of the order of 

(29) 

where Qp=(W'~u)1/2, while ~lr=2(t:.u/w')1/2 (13). This 
means that near the separator a condensation of levels 
by a factor of In (~IT/n) occurs, i. e., in order for 
quasiclassic resonances of the second order to exist 
we must have In (~I/n)>> 1, which is much stronger 
than the usual condition for a quasiclassic situation to 
exist t:.1r»n. 

Further, the magnitude of the perturbation must ex­
ceed the distances between the levels, otherwise its 
role will be small and it would be possible to take it 
into account by means of perturbation theory. Taking 
(28) into account this can be written in the form of a 
condition on the perturbation parameter 

[ const ] z 
e~ InUo/li) , 

(30) 

where 10 is a certain characteristic value of the action 
which need not be known more accurately since it only 
appears as the argument of a logarithm. We consider 
a number of examples which will show how rigid is this 
condition. We start with the case of an adiabatic mag­
netic trap[26] which confines particles in the transverse 
direction by a magnetic field and in the longitudinal di­
rection by magnetic barriers. Resonances between the 
longitudinal motion (of frequency nil) and the Larmor 
frequency wH=eH/rnc in the case wH»n ll correspond to 
a perturbation parameter which itself contains the adi­
abatic smallness parameter: 

e - exp (-canst IiIH), 
QII 

(31) 

so that the condition (30) for the existence of stochastic 
layers along which it is possible to escape from the trap 
acquires the form 

~> canst 
iii" Zln In (1o/li) (32) 

An estimate under experimental conditions[27] leads to 
a value of the right-hand side of approximately 0.1, 
while the left-hand side has a value of 0.3-0.1. This 
means that the experiments were carried out very close 
to the quantum domain, and that in connection with this 
further investigations would be of interest. 

The second example refers to the stability of particles 
in storage rings which has also been discussed in detail 
by Chirikov. [7] Resonances are possible between trans­
verse (betatron) oscillations, which are excited by the 
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colliding beam, by the inhomogeneities of ionization 
along the orbit, and by other perturbations. In this 
case the nonlinearity itself is - 1:, so that ~p - 1: and not 
1:1 / 2. For this reason (30) contains in its right hand side 
the first and not the second power. The author is grate­
ful to B. V. Chirikov for this remark. 

An estimate gives for 1: a limiting value of approxi­
mately 1/30. At the same time Arnol'd diffusion has 
been found experimentally(28] for 1: ~ 1/20. In(29] it is 
proposed to explain by the same mechanism the slow 
beam blow-up of colliding proton beams of CERN but 
according to our estimate 1: in this case is not greater 
than 10-2. Thus, the question remains open. 

Finally, the last example which has no application 
significance, but is quite interesting, refers to the 
solar system. Could one of the planets be expelled 
from it to infinity? A negative answer has been "proved" 
repeatedly in the sense that ever weaker instabilities 
have been eliminated. In accordance with(3] the Kol­
mogorov instability can be destroyed by effects of the 
Arnol'd diffusion type. This means that the times for 
the development of instabilities for all the large planets 
are much greater than the time of existence of the Uni­
verse, while for certain asteroids this is not so, and 
this enables one to explain the so-called Kirkwood gaps 
in the case of resonances with Jupiter. (7] 

The quantum condition for the existence of stochastic 
layers (30) restricts the smallness parameter of the 
perturbation to a value of the order of 10-5, while its 
actual value roughly speaking is 

(33) 

where n1, n2 are obtained from the resonance condition 
W1n1 = wan2, M, Mo are the masses of the planet and of 
the sun, e is the eccentricity of the orbit. Even in the 
case of Jupiter M/Mo =10-13 , while e is of the order of 
a percent. As a result of this condition (30) is in gener­
al not satisfied for all the planets, i. e., Arnol'd diffu­
sion does not exist even in the academic formulation of 
the problem for infinitely long times. For resonance 
asteroids, (33) exceeds 10-9 at q$ 4. 

5. INTERACTION OF MODES IN POLYATOMIC 
MOLECULES AND NONLINEAR CHAINS 

In this section we study the lengthy evolution of an 
initial excitation of the system. Because of its simplic­
ity, and also of its practical importance, we shall ba­
sically study the case in which the initial excitation is 
an excitation of only one of the linear modes. Closely 
associated with this case is the case of continuous reso­
nance excitation of one of the modes which occurs in the 
case of a molecule situated in the field of a resonance 
wave. The questions of interest to us are as follows: 
How and at what rate is the energy transferred from the 
excited mode which we shall denote by the subscript 1 
to other modes. The characteristic feature of this 
problem consists of the fact that the excited modes are 
near the ground state and their nonlinearity is less than 
the interaction with the exciting mode 1. This makes 
inapplicable the "standard" resonance (Sec. 2) and the 
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Kolmogorov theorem associated with it concerning the 
stability of motion. (1] As a result of this the initial state 
of the type under consideration necessarily decays in 
the presence of any arbitrarily small nonlinearity, al­
though of course the rate of decay can be very small. 
This conclusion agrees with numerical experiments 
conducted in recent times with nonlinear chains(7,30] 
(of course, with the exception of the special case of ex­
actly integrable chains). 

In the approximation of small oscillations the Ham­
iltonian can be represented in the form 

H= ~ H(l) +E ~ c.x.+ ~ H(n', +H,int)+H(,n" .£...J' ~ t I £...J I , 
(34) 

i 

where H\/) = (x, + w, x~)/2 is the energy of the individual 
modes in the linear approximation, x i are the normal­
ized displacements of atoms from the equilibrium posi­
tion, the second term is the linear dipole interaction 
with the field, H;") = ax~ + bx~ + . .. gives the nonlinear­
ity of the modes, and the interaction between them 
H(!'!) is given by 

(35) 

and, finally, the nonlinear corrections to the interac­
tion with the field are 

(36) 

The smallness of the amplitude of the oscillations leads 
to the smallness of the last three terms in (34), but be­
cause of resonances perturbation theory in terms of 
them is still inapplicable for the description of a suffi­
ciently lengthy evolution. In particular, in Sec. 3 we 
discussed their role in the case of stationary states. 

In this section we consider the stage in the decay of 
the initial state at which it is possible to limit oneself 
to a single leading resonance. This means that we are 
considering times much longer than a period of oscilla­
tion, at which resonance effects already become sepa­
rated from nonresonance oscillations, but, on the other 
hand, much smaller than those at which other resonances 
become Significant. Such a description has a meaning 
which is curious from the formal point of view: we are 
investigating an approximate Hamiltonian whose eigen­
states are not stationary and not even close to them, 
and yet are conserved during a restricted time period. 

We begin with the case of three-frequency resonance, 
i. e., we assume that the frequency of the excited mode 
W1 is close to w2 + W3' The resonance term in (35) cor­
responding to this case is AmX1X2X3 which is the only 
one that we retain. It can be easily seen that if X2 =X3 
=X2=X3=0 for t=O, then this will also hold for all t in 
this approximation. However under certain conditions 
this solution is unstable, i. e., the initial values x2 (0), 
X3(O), ••• later grow. Assuming X2, X3 to be small we 
neglect their nonlinearity, and also their effect on xl, 
i. e., we consider X1(t) to be a given function of the time. 

Following the prescription of Sec. 2 we go over from 
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FIG. 3. Schematic representation of the phase portrait of the 
intermode resonance (41). The solid curve shows the stability 
boundary, the broken curves represent certain trajectories in 
the stable A and unstable B, C regions. The critical value of 
the action shown in the diagram is equal to lor 
= [2e/(m _1)Vj2/(m-31. 

the variables 12 , 13 , 82 , 83 to the resonance variables 
QI =8 2 +e3 - e1(t), e =e2 - e3, la = (12 +/3)/2,18 = (12 - 13)/2 
and introduce for the frequency de tuning the notation 
1: = w2 + W3 - W1' Further, we pick out from the perturba­
tion the resonance part, i. e., the part depending on QI. 

As a result of this we obtain the resonance Hamiltonian 
of the following form: 

Since in this approximation 18 is conserved, then it is 
equal to its initial value, i. e., to zero. As a result of 
this (37) turns out to be identical to the Hamiltonian for 
parametric resonance (15). The classical equations of 
motion can be easily solved, the behavior of the solu­
tions depends on the ratio of 1: and u. If 11: I > I u I, then 
the motion has the nature of bounded beats, while in the 
opposite case exponential growth occurs 

1.(t)~I"(O) exp [(u'-e')'''!j. (38) 

Of course, this growth is stopped by a nonlinearity or 
simply by the storage of energy in the case of mode 1. 

A quantum investigation of the Hamiltonian can be 
carried out using quasiclassical methods, as in Sec. 2, 
or with the aid of the exact results ofllO,9] for parametric 
resonance. As usual, in problems associated with the 
linear oscillator the difference between quantum results 
and classical results is not great. In particular, the 
condition for stability and the law for the growth of in­
stability (38) are not altered. There is one important 
difference: the instability can be developed also start­
ing from the ground state. We present the probability 
of transition into the state n2 =n3 =n for this case: 

W (2n)! ( 'I 

n ~ 2'nn! p" l-p) " 
e' sin'[ (e'-u,)'/,tj 

p ~ e'-u'+e' sin' [(e'-u')'/'tj , 

and this yields for large values of the time and of n 

(39) 

Wn~(~)'''exp(-~), l(t)~ he'. exp[(u'-e')'/'tJ. 
nn1(t) l(t) 4(u'-e') 

(40) 

Comparison of (40) with (38) enables us to state that the 
growth of instability arises from zero-point oscillations. 

If the leading resonance includes a large number of 
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frequencies, W1 = W2 + ... + Wm , the discussion is con­
ducted in an analogous manner. Going over to reso­
nance variables, and retaining only the part of the Ham­
iltonian depending on QI =82 + ••. em - 81 and la, we have 

The regions of instability and other characteristics of 
the motion described by the Hamiltonian (41) can be un­
derstood with the aid of the phase portrait shown in Fig. 
3. For m> 3 the solution for large values of the time 
has an "explosive" behavior in the region of instability 

t ] _2/(m_3) 

1"(t)~I.(O)[l-t, , 

m-1 
t,-1~V-2- (1.(0»'/1",-3 1, 

(42) 

Of course, the applicability of the approximations made 
above ceases at t < to and nothing actually becomes iIlfi­
nite. We do not dwell on the quasiclassical quantization 
of (41), since it is completely analogous to the examples 
of Sec. 2. For our purposes it is sufficient to recog­
nize the fact that the characteristic time for the building 
up of the resonance is of the order of t o-Il/(A(mlxm), and 
it grows rapidly with increasing order of resonance rn. 
Therefore usually the decay of a given mode is deter­
mined by a single resonance which lies sufficiently 
closely in frequency and at the same time is not too 
weak. Since the net of resonances is everywhere dense, 
the decay will occur by one means or another. As the 
nonlinearity, i. e., the coefficients A (m 1 in (35), is 
changed the rate of the decay of the mode undergoes 
sharp jumps, as soon as the detuning of the frequency 
becomes comparable with the width of the region of in­
stability. Such phenomena have been observed in nu­
merous experiments. [7,30] 

These conclusions can be easily generalized to the 
case of a molecule situated in a field of frequency which 
is in resonance with mode 1. As was shown in Sec. 2, 
in this case oscillations in phase e1 arise and in the 
classical formulation near the frequency Wl there ap­
pear in the sectrum also modulation frequencies WI ± Op, 

± 2 Op, ••• , where np is the frequency of the phase oscil­
lations (21). In the quantum formulation of the problem 
they correspond to the frequencies wm, n = (Em - E n)/Il, 
where Em(nl are the values of the quasienergies. It is 
clear that the decay of mode 1 becomes possible if at 
least one of these frequencies from its spectrum falls 
in the region of instability of some intermode resonance. 
Since these frequencies of phase oscillations (21) grow 
with increasing magnitude of the field of the wave, there 
exist definite values of the magnitude of the field at 
which they attain values of deturning up to the boundary 
of the region of instability of sufficiently close reso­
nances. For these threshold values of the field the rate 
of transfer of energy from mode 1 to other modes in­
creases sharply, in analogy to the threshold phenomena 
as a function of nonlinearity which were referred to ear­
lier. 

We shall demonstrate this line of argument by con­
crete examples. We first of all estimate the character­
istic times for the build-up of molecular resonances in 
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FIG. 4. Schematic representation of the positions of intermode 
resonances in COS, BCl3, CCl4, Os04 andSFs molecules, the 
values of the frequencies were taken from(31l. The quantity 
m is the index of the resonance, i. e., the number of fre­
quencies contained in it. Frequencies are given in cm -1. 

order to be able to determine whether it has time to oc­
cur during the time of action of the field under experi­
mental conditions. One can make a rough estimate of 
the amplitude of the terms of the Hamiltonian (35) in the 
following manner: A (m)x m -IfwoA m-2, where Wo is the 
characteristic value of the frequency, the constant A 
= 0.03-0.1. The time for the build-up of the m-fre­
quency resonance is of order of Aa..n periods, while the 
duration of the laser pulse in experimentsU4 ] is of order 
of 10-'7 sec or 106 periods. Thus, resonances with m 
~mo =6-7 are unimportant, while those with m < mo 
lead to a Significant transfer of energy. 

The arrangement of the resonances between frequen­
cies for some molecules, and in particular for COS, 
BCI3, CClh OS04, and SF6, which have been studied ex­
perimentally, l14] is shown in Fig. 4. The values of the 
frequencies are taken from the handbookl3l ]. It can be 
easily seen that as the number of atoms increases the 
net of resonances become more dense. This effect 
would have been even stronger if these molecules were 
not symmetric, resulting in degeneracy of a number of 
frequencies. 

A preliminary estimate of the order of magnitude of 
the threshold intensity of the resonance field at which 
an effective transfer of energy to other modes can take 
place may be obtained by equating the frequency of phase 
oscillations (21) to the distance to the nearest resonance 
with m < mo. In such a case we have (in W Icma): 
Iw -10la for COS, 108 for BCIs, 1010 for CCI4, 109 for 
OS04, 3 x 108 for SF 6' Thus, already this estimate en­
ables us to explain why in experimentsl14] with Iw S 109 

W Icma dissociation of BCI3, OS04, SF6 occurred, and 
did not occur in the case of COS, CCI4. It is clear that 
for collisionless dissociation the possibility of transfer 
of energy to other modes is essential (cf., also Sec. 6). 

However, the accuracy of this estimate is not great. 
Firstly, it is determined simply by the accuracy of the 
values of the frequencies from lSl ]. Moreover, in the 
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case of degeneracy of the frequency being excited the 
role of the width of its band of frequencies can be as­
sumed not by field broadening, but simply by the dis­
tance between its branches. In the special case of SFs 
it was notedl14] that the anharmonism can be compensated 
by a transition to the other branch, i. e., "triple reso­
nance" is possible. Finally, the mechanism considered 
by us is "classically allowed." Owing to quantum "tun­
nel" effects, there exists a definite probability of the 
process also below threshold. All these effects can di­
minish the threshold intensities, so that the estimates 
given above should be regarded as overestimates. And, 
indeed, the experimental value of the thresholdl14e] in 
the case of SF 6 is smaller by an order of magnitude than 
according to the above estimate. In order to obtain 
more accurate estimates one must have spectrometric 
information which is at present unknown, at least to this 
author. 

6. THE STOCHASTIC NATURE OF THE MOTION 
OF ATOMS IN MOLECULES 

In the preceding section we have studied the initial 
state of decay of modes in which it was possible to re­
strict oneself to an investigation of a single leading 
resonance, and also to neglect the reaction on the ex­
Citing mode 1. What happens further? 

In principle the nonlinearity may stop the transfer of 
energy via an intermode resonance, and the motion will 
have possibly a more complicated but still a periodic 
character. This type of motion of nonlinear chains was 
observed already in the first numerical experiment. [4] 
However, for a sufficiently long period of time, as in 
the problem concerning molecules which is of interest 
for us, necessarily other resonances will become in­
cluded which excite other modes, etc. We note, that 
the net of resonances becomes more dense also because 
resonances Wl = L;njwi with negative values of nj become 
effective. As a result of this the motion becomes con­
siderably more complicated and it becomes difficult to 
hope for a detailed description of it. Nevertheless un­
der certain conditions this process carries on so far 
that statistical methods become applicable to its descrip­
tion. This question was studied on model systems 
in l6 •7]. 

We begin a discussion of this question with the follow­
ing remark. In the preceding discussion the frequencies 
of the modes were regarded as given quite definite quan­
tities. However interaction of modes leads to their be­
ing smeared out, in a manner completely equivalent to 
broadening by an external force (Sec. 2) by an amount 
of the order of 

(43) 

where n is the average number of quanta in modes 2, 3 
(we have in mind the resonance Wi = W2 + ws). As the de­
gree of excitation of the molecule grows, i. e., as n 
grows, the nonlinear broadening (43) increases and at 
a certain value of n becomes equal to the distance in fre­
quency to another resonance of the same order, for ex­
ample, Wi::; Ws + W4' We denote this distance by ~o, an 
obvious estimate of its magnitude is ~o- wo/N;, where 
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Wo is the characteristic value of the frequency, while 
Nf is the num oor of frequencies of the system. 

When resonances overlap, i. e., in the case ilw» ;lo, 
the motion of each mode is determined simultaneously by 
many resonance terms of the Hamiltonian. In this case 
the motion acquires a quasirandom or stochastic char­
acter and statistical methods are applicable. This as­
sertion, known as Chirikov's stochasticity criterion, has 
been repeatedly verified on different model systems 
(cf., [7]). We note that according to Chirikov[7] this 
condition is the same for resonances of any arbitrary 
order. 

Thus, the stochasticity criterion for molecules can 
be written in the form 

(44) 

where we have substituted typical values of the nonlin­
earity Ifw' / Wo - 10-2, A (3) ~ /lfwo - 10-1; the quasiclassical 
nature of (14) requires ii ~ 1. Stochasticity in an essentially 
quantum region will be discussed in a separate paper. 

Even this estimate enables us to draw a number of im­
portant conclusions. ThUS, for example, it enables us 
to explain the following observations concerning mono­
molecular dissociation of excited molecules. At one 
time the theory of these reactions was developing along 
the following two directions. In one of them, the Slatter 
theory, U6] the intermode transfer of energy was ne­
glected, while in the statistical theory of Kassel' et aZ[lS] 

a sufficiently rapid relaxation within the molecule was 
assumed. Numerical [17] and certain "real" experi­
ments[lB] have shown that for molecules with the number 
of atoms Na "" 4 Kassel's theory works better, while in 
triatomic molecules there are anomalies, for example, 
the nonexponential distribution with respect to lifetime. 
But there was no clear understanding of these facts. In 
accordance with the estimate (44) at an energy of sever­
al electron volts (dissociation energy) molecules with 
Na "" 4 already fall within the domain of stochasticity and 
the reby explain the Validity of Kassel's theory. If the 
nonlinearity of the molecules were smaller the result 
would be different. 

Another important phenomenon associated with transi­
tion to stochasticity occurs in the problem of a molecule 
in the field of a wave. It is known as stochastic insta­
bility[7] and consists of an unlimited accumulation of en­
ergy by a molecule prior to dissociation. Its qualitative 
content can be explained as follows. The action upon 
mode 1 on the part of the other modes irregularly jolts 
its phase 81, As a result the difference between 81 and 
the phase of the field Ot becomes random, i. e., the 
problem essentially becomes the same as in the case of 
a random external force, when an unlimited accumula­
tion of energy is obvious. 

A quantitative description of this phenomenon can be 
given in the following manner. We write the Hamiltonian 
for the effect on mode 1 on the part of other modes in the 
form of a sum of resonance contributions lying within the 
nonlinear width (43) in the form 
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H ,in,) -[ ",~ F ·(8 8) 
I - 1 ~ nCOS 1- 11 • (45) 

This interaction alters the quasienergy (9) of mode 1 in 
the following manner: 

dE, 'h ~. ex,E ,,-, . 
--=/, (Q-w(I,» F n sm(!J,-8n)--;;;-I' FnSlD An. 

dt 2,.' ....... 

The first term describes the intermode relaxation, 
while the second term describes the interaction with 
the field which is of interest to us. Considering the 
phase 8n to be random we see that (;lEl > '" 0, while 

< (/',.E)')=D(E)t. 

(46) 

(47) 

This means that the accumulation of energy is irregular, 
of the type of diffusion with the coefficient D(E). The 
calculation of D(E) is carried out similarlyC7] to the re­
sult 

D(E)= :n (ex,E)'I(Q), I(Q)= IF~~) I' . (48) 

The quantity J(O) has the simple meaning of spectral in­
tensity of the perturbation (45) at the frequency of the 
wave of the field. A knowledge of D(E) enables us to 
describe the process by means of a Fokker-Planck equa­
tion 

ap(E,t) =-L.D(E) oP(E,t) 
at aE rJE· 

(49) 

We note that this equation, well known in molecular 
physics, is here utilized in an essentially new situation: 
there are no collisions (heat reservoir), and the force 
is not random but completely determined. The statisti­
cal element in the problem is brought about exclusively 
by the complex character of intramolecular motion. 

In conclusion we note that in[32,33] a hypothesis was 
also advanced concerning the possibility of an unlimited 
accumulation of energy in the quasicontinuum of states 
lying above a certain excitation energy. However the 
conditions for the existence of this phenomenon were 
assumed to be the following: the spectrum of states is 
dense and the lines of the spectrum overlap by the finite 
width of rotational bands. The insufficiency of this con­
dition can be already seen from the fact that the nonlin­
earity of the molecule plays no role in it. And yet it is 
clear that in the absence of coupling between modes the 
density of the spectrum of the states is useless, since 
the matrix elements for transitions into them are equal 
to zero. A large number of rotational states also does 
not help since angular momentum is conserved and states 
with different values of angular momentum do not mix. 
In this sense rotation is analogous to translational mo­
tion, which makes the spectrum continuous, but does 
not help in the absorption of quanta. In our discussion 
the mixing of states is brought about by nonlinear inter­
mode resonances. 

Formula (47) can be applied to estimate the rate of ac­
cumulation of energy by a molecule in the regime of 
stochasticity. The magnitudes of Fn and ;lo (the amplitude 
Df the three-particle resonance and the distance between 
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them) are estimated as has been done previously. As a 
result we obtain 

(E)(eV)-1O-1 ex (D) [Iw(MW Icm2) t(nsec)]1/2 • (50) 

For t= 10-7 sec the amount of energy accumulated during 
a laser pulse agrees in order of magnitude with experi­
mental dataU4h ] and at the same time the basic depen­
dence on the intensity of the wave is also well satisfied. 
Moreover, as has been noted in the literature, [14d] the 
rate of dissociation for compound transitions is propor­
tional not to the square of the dipole moment of the tran­
sition, as for a usual absorption line, but to its first 
power. This characteristic feature is also satisfied in 
accordance with (50). 

Further study of the questions touched upon above 
presents a wide open field for experimenters. Thus it 
is of interest to discover the frequencies of phase oscil­
lations of the mode being excited to check the depen­
dence of the average energy accumulated during a pulse 
(50) on its duration in order to verify its diffusion char­
acter etc. Of interest are experiments with two syn­
chronized lasers of different frequencies. [14t] If the 
first one brings the molecule into the regime of stochas­
ticity, then the frequency of the second one is no longer 
of importance and accumulation of energy takes place 
anyway. We note that in addition to interesting applica­
tions, for example, separation of isotopes[14] and other 
selective reactions, the behavior of a polyatomiC mole­
cule in the field of a wave is of interest also from a the­
oretical point of view as an example of a transition from 
dynamic motion to statistical motion in a finite quantum 
system. 

The author is grateful to B. V. Chirikov for numerous 
useful discussions of questions touched upon in this pa­
per, and also to V. I. Arnol'd for useful discussions. 
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