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A Hamiltonian formalism in two-fluid hydrodynamics is developed. On the basis of the formalism the 
nonlinear processes of Cerenkov emission of second sound by first sound and decay of first sound into two 
second sounds are investigated. It is shown that for all temperatures T> 0.9K, excluding a narrow region 
near T = 1.2K, the Cerenkov-excitation threshold is below the decay threshold. However, the latter 
process becomes dominant after the decay threshold has been reached. For a certain range of parameters 
the steady-state regime depends strongly on the geometry and boundary conditions. In particular, in a 
broad beam of first sound, second-sound waves almost perpendicular to the incident wave are 
preferentially excited. 

PACS numbers: 67.40.Tr, 67.40.Ge 

INTRODUCTION 

Pushkina and Khokhlov[ll considered the process of 
parametric excitation of second sound in superfluid 
helium during decay of first sound. The equations of 
two-fluid hydrodynamics were used, with the assump­
tion of zero thermal-broadening coefficient. In the 
present article it will be shown that allowance for the 
terms depending on the thermal broadening changes the 
result in two respects. First, it leads to a change of 
the effective vertex describing the decay, by a quantity 
of the same order as that taken into account in[1]. Sec­
ond, Cerenkov second-sound emission processes for 
which the threshold for their nonlinear excitation is 
lower than the decay threshold become possible. More­
over, in a broad sound beam an important role is played 
by decays in which the emitted second sound propagates 
at an angle to the incident sound. 

The nonlinear processes are conveniently investigated 
USing the Hamiltonian formalism. For two-fluid hydro-

ed b 1· [2l dynamics this formalism was develop y us ear ler. 

We shall describe briefly the content of the paper. In 
Sec. 1 an account of the Hamiltonian formalism is given. 
The normal coordinates corresponding to first and sec­
ond sound are introduced in Sec. 2. In Sec. 3 the effec­
tive vertices (third-order anharmonicities) describing 
the Cerenkov process and decay process are calculated, 
and the kinematics of these processes is analyzed. Sec­
tion 4 is devoted to calculating the threshold first-sound 
intensities and to investigating the nonlinear phenomena 
that occur at high intensities. In Sec. 5 decay at an 
angle to the incident wave is investigated. 

1. HAMILTONIAN FORMALISM IN TWO-FLUID 
HYDRODYNAM ICS 

The equations of twO-fluid hydrodynamics can be writ­
ten in Hamiltonian form if we take the Hamiltonian to be 
the energy of the fluid in the stationary coordinate 
frame: 

[ pv 2 ] 
H= f T+pv,+e(p,S,p) dV, (1.1) 
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where p is the density, Vs is the velOCity of the super­
fluid component, and p is the momentum of unit volume 
of the liquid in the frame moving with velocity vs; £ (p, 
S, p) is the energy of unit volume of the liquid in the 
same frame, and is determined by the thermodynamic 
identity 

de = TdS+ fldp + (vn-v.) dp. (1.2) 

The momentum of unit volume of the liquid in the rest 
frame is 

j=pV.+P=P.V.+P.V .. (1. 3) 

The Hamiltonian variables are the three canonically 
conjugate pairs (p, a), (S, f3) and the Clebsch variables[3l 
(f, y). Besides the quantities p and S already defined 
earlier, we introduce the four new quantities a, {:3, f 
and y, the physical meaning of which is as follows. The 
quantity a determines the velOCity of the superfluid com­
ponent 

v,=Va. (1. 4) 

The quantities {:3, y and f determine the momentum of 
the relative motion 

(1. 5) 

The expression (1.1) acquires the meaning of a Ham­
iltonian after (1. 4) and (1. 5) are substituted into (1.1). 
The Hamilton equations have the usual form: 

p=IlH/lla=-div j, 

a=-IlIilllp=- (fl+pv.'/2), 

S={jH/Il~=-div (Svn), 

~=-{)H/IlS=-T-v"v~, 

j=IlHIIl1=-div (lV n ) , 

1=-{jH/Il~=-Vn '171. 

(1. 6) 

(1.7) 

(1. 8) 

(1. 9) 

(1.10) 

(1.11) 

Equations (1. 6) and (1. 8) are the well-known continu-
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ity equations for the density and entropy. Equation (1. 7) 
is the equation of the superfluid flow, as one can easily 
convince oneself by taking the gradient of both sides of 
the equality. Differentiating Eq. (1. 5) with respect to 
the time and using Eqs. (1. 6), (1. 7)-(1.11), we obtain 
the well-known equation of the relative motiont4J : 

p+p divv,,+ v (pvn ) - [vn x rotp) + SVT = 0 . (1.12) 

Combining Eqs. (1. 7) and (1. 12) we obtain 

IIik=pv'iV" +V'iP, + piVn. +p<'ii., 

where the pressure p is determined as follows: 

p=-e+TS+~,p+ (v "-v,, p). 

Thus, we convince ourselves of the correctness of the 
choice of canonically conjugate variables. The variables 
f3, f and yare necessary for the description of the three 
independent eomponents of the vector p. 

The Hamiltonian (1. 1) can be obtained in the usual way 
from the Lagrangian formulation of the equations of two­
fluid hydrodynamics, proposed by one of the authors. tSl 

The Hamiltonian formalism makes it possible to prove 
easily the following theorem. Suppose that at a certain 
initial time t = to the quantity curl(p/S) was equal to zero 
in all space. Then it also remains equal to zero at all 
subsequent times. In fact, it follows from (1. 8) that the 
quantity f possesses this property. From this and from 
Eq. (1. 5) we obtain the statement made above. Thus, 
an analog of the familiar vortex theorem of the hydro­
dynamics of an ideal fluid exists in two-fluid hydrody­
namics. This statement can also be obtained directly 
from the equations of two-fluid hydrodynamics in their 
usual form. In fact, it is not difficult to obtain the fol­
lowing equation for curl(p/S): 

~ (rot ; ) = rot [ V no X rot ; ] . 

2. NORMAL COORDINATES 

As usual, it is convenient to treat the nonlinear sound 
processes in helium in normal coordinates. These can 
be introduced in the usual way, as the eigenvectors of 
the linearized Hamilton equations. Flows with small 
velocities v. and momenta p and small deviations of p 
and S from their equilibrium values are considered. 
Since we are considering small oscillations against the 
background of the liquid at rest, we can put the function 
f equal to zero in any order in v/ c, as follows from Eq. 
(1. 5). Therefore, it is suffiCient to confine ourselves 
to just the first four of Eqs. (1. 6)-(1.11). In the flows 
that we are considering the momentum p has the form 

p=SV~. 

The linearized equations of motion in the Fourier rep­
resentation with respect to the time and coordinates 
have the form 
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The eigenvalues w of the system (2.1) are equal to ± Wi 

= ± clk, ± w2 = ± c2k, where the first- and second-sound 
velocities Ci and C2 are determined as the positlve roots 
of the equation 

c'-c' (fl 01' + 2S af! + .S' ~) + ~S' a (f!., T) = O. 
op oS p" as p" 0 (p. S) 

This equation acquires a more familiar form (cf. t4l) 

when we change to the variable C1=S/p (in place of S): 

c· c' - +- - +- - --, [( OP) p.o' (OT)] p.o' (aT) (OP) -0 
- op" p" 00, p" 00 p ap T • 

We shall denote the eigenvectors of Eqs. (2.1) by qi 
and q~. The subSCripts indicate the absolute value of 
the eigenvalue (w =Clk' C2k) and the superscripts indicate 
its sign. An arbitrary four-component vector (Pt, St, 
~, f3 t ) can be .represented by the linear combination: 

(2.2) 

The quantities.at and bt are normal coordinates. They 
are the classical analogs of the annihilation operators 
for phonons of first and second sound. In the following 
w~ shall call at and bt the first- and second-sound am­
plitudes. The normalization of the eigenvectors qi, qi 
is chosen so that the following conditions are fulfilled 
for the Poisson brackets: 

(2.3) 

All the other Poisson brackets {at, an, {at, b:,}, ••. , 
are equal to zero. In the variables at, btl a: and b: 
Hamilton' sequations take the form 

a.=-iF,H/<'ia', b.=-ifJHI6b ... 

We shall represent the Hamiltonian H in the form of 
a series H =Ho +Hl +H2 + ••• in powers of the deviations 
lip, liS, a and f3 of the variables p, S, a and f3 from 
their equilibrium values (the equilibrium values of the 
first two variables will be denoted, as before, by p and 
S; .the equilibrium values of a and f3 are assumed to be 
equal to zero). The terms Ho and Hi are trivial. The 
quadratic Hamiltonian H2 is diagonalized by the trans­
formation (2.2). With the choice of normalization con­
ditions (2,3) the Hamiltonian H2 takes the canonical 
form: 

H,= L,(CJJ,.a.a"+CJJ2kb.b~·). 
• 

In the following we shall need the explicit form of the 
transformation (2.2). In order not to encumber the text 
with long formulas we shall write out this transforma­
tion apprOXimately, neglecting quantities whose ratio to 
those kept is of the order of ~/cf. We shall assume the 
ratio c~/ cf to be a small quantity, which is true in the 
temperature range from 0.8 K to the ~-point. To this 
accuracy the transformation (2. 2) takes the form 
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(2.4) 

(2.5) 

(2.6) 

(2.7) 

The quantity if is of order c~, but in formulas (2.4) and 
(2.7) it is necessary to keep terms - u2/ d since at and 
bt are arbitrary. 

3. CALCULATION OF THE THIRD-ORDER 
ANHARMONICITIES RESPONSIBLE FOR THE DECAY 
OF FIRST SOUND 

The term H3 of third order of smallness in the Ham­
iltonian can be obtained from the general formulas (1.1), 
(1. 2): 

H,= S [~a'J.t (6p)'+~~(6p)'6S+~ a'J.t 6p(6S)' 
Ii ')p' :2 iJp as 2 as' 

1 a'T ,1 a (1) , ,1 a (1) , I +--(6S) +-- - S 6p(V~) +-- - S I\S(V~) 
6 as' 2 ap pn 2 as pn 

+6Sva.V~+~6S(V~)'+~6P(Va)']dV. (3.1) 
pn 2 

We transform to the Fourier components 6Pt, 6St , 

at and f3 t and then to the sound amplitudes at, d~, ~ 
and ~, in accordance with (2.2) and (2.4)-(2.7). A 
number of terms of third order in the amplitudes will 
arise. Those terms which satisfy the momentum and 
energy (frequency) conservation laws correspond to de­
cays. The general theory guarantees the invariance of 
the~e resonance amplitudes under the canonical trans­
formations (cf., e. g., [6]). 

Specifically, we shall be interested in the amplitude 
Unit2 for decay of first sound with momentum k into two 
second sounds, and in the amplitude Vn 'ti for emission 
of second sound by first sound. The first quantity is the 
coefficient of the product atb:i b:2 , where the momenta 
k, ki and ~ satisfy the conditions 

k=k,+k" c,k=c,(k,+k,). 

Since Ci» C2, the second-sound momenta kl and ~ are 
much larger than k in magnitude. Therefore, the sec­
ond-sound phonons that appear as a result of the decay 

FIG. 1. 
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C3 K, 

x 
• FIG. 2 . 

have almost opposite momenta. The angle at which the 
second-sound phonons fly apart, relative to the direction 
of propagation of the first sound, will be denoted by 8 
(see Fig. 1). The moduli kl and k2 are approximately 
equal. Therefore, second-sound phonons with frequen­
cies close to half the first-sound frequency appear: w2 

'" w1/2 (Wi =c1k). The decay amplitude Un1t2 depends es­
sentially on only two variables W and 8. 

In the following we shall use the notation U(w, 8) in 
place of Unit2 ' USing the conservation laws we find, 
after standard transformations, 

U( 8)- p·I·W·" [ 1 2p. '9 (apn-') +P, a'Plaa') 
W, - 2f/zpsCI - -pcos -pnp ---ap- 0 (;2 aTI8cr • 

(3.2) 

Here p and (J have been chosen as the independent vari­
ables. If we change to the variables p and T, the ex­
pression in the square brackets (which will be denoted 
by [U] in the following) acquires the following form: 

[UI 1 2p., • apn-' 
=- --cos a-pupc'--a-

Il P 
,[ a (P.) aalap p. a (aalap )] 

+PnC, aT p. ~-p'aT aalaT . (3.3) 

According to the thermodynamic identity, we have au/ 
ap = p -2ap/aT. Therefore, the terms in the square 
brackets in (3.3) contain ap/aT and a2p/aT2. 

In[1] the interaction between first and second sounds 
was obtained directly from the hydrodynamic equations, 
and it was assumed from the outset that ap/aT=O. As 
can be seen from the result (3.3), such an assumption 
is incorrect. Moreover, we have taken into account the 
possibility of decay into a pair of phonons at an arbi­
trary angle to the incident sound, and as a result a de­
pendence of the amplitude (3.2) on the angle 8 has ap­
peared. The results of[1] correspond to 8=0. 

We turn to the calculation of the amplitude Vn 'ti for 
emission of second sound by first sound. This ampli­
tude is the coefficient of the product atfl:,b:i , where the 
momenta k, k' and ki satisfy the conservation laws 

k-k'=k" c, (k-k') =c,k,. 

Because of the inequality C2 «Ci the change in the fre­
quency of the first sound in this process is small. 
Therefore, the vectors k and k' lie on the same sphere, 
of radius w/ci' We denote the angle ·between the vec­
tors k and k' by X (see Fig. 2). The second-sound fre­
quency w2 is expressed in terms of the first-sound fre­
quency Wi and the angle X: 

c, . X w,=2W,-SIll-. 
C, 2 
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The emission amplitude V kk'kl depends on two quanti­
ties: the frequency wand angle X. In the following we 
shall use the notation V(w, x). The calculations give 

PC') ] 
(fJp/rJo) , ;-cos x , 

(3.5) 

where ca = (8p/8p)o. 

The amplitude U(w,8) depends strongly on the tem­
perature. Using the known experimental data (cf. r7,Sl) 
we can show that the expression (3.3) for [U] vanishes 
at T -1. 6 K. In the "roton" region of temperatures (T 
> 1 K) the characteristic magnitude of [U] is of the order 
of 0.2-0.5. At T::: 1 K this quantity increases sharply 
and then remains::: 5. The other factors of U(w, 8) are 
practically independent of temperature. 

The temperature dependence of the amplitude V(w, X) 
of the Cerenkov process is principally associated with 
the factors (8p/8T)p and (8a/8T)-1/Z. It is knownr9l that 
p -18p/8T changes sign at T::: 1.15 K. In the region T 
>1.15 K the quantity 81np/8T is positive (Panomalous 
behavior). The quantity in the square bracket in (3.5), 
denoted by [V] below, is of the order of 3-10 in the ro­
ton temperature region. In the low-temperature region 
it is expressed in terms of the two dimensionless pa-

. rameters v and z in the following way: 

3z+3v-6v'-I-'/, 
[V]= 1+3t: +cosx. 

where 

( a In C,) 
F= fJ Inp T' 

p' a'c, 
'::;=-­

c, fJp' 

(3.6) 

The parameters v and z were estimated in the paperrlol 

by Landau and one of the authors: v ::: 3, z::: 20. There­
fore, [V] -1 in the low-temperature region. 

4. THRESHOLDS FOR PARAMETRIC EXCITATION 
OF SECOND SOUND 

In the propagation of high-intensity first sound in he­
lium, two processes leading to coherent excitation of 
second sound occur: Cerenkov emission of second 
sound (I) and the creation of a pair of phonons with al­
most oppOSite momenta (II). The analysis of the con­
servation laws (cf. Sec. 3) shows that the frequencies 
of the second sounds excited in these processes differ 
greatly from each other. In the first process second 
sound with frequency of the order of 2Caw/Cl is excited, 
and in the second process the second-sound frequency is 
equal to w/2, where w is the first-sound frequency. 

The threshold intensities for excitation of these pro­
cesses also differ substantially. To simplify the calcu­
lations we shall consider the simplest situation, in which 
the first sound propagates as a narrow beam. In this 
case the phonons flying out at an angle to the original 
beam are not amplified. It can be assumed that the wave 
vectors of the inCident sound and excited sounds lie on 
one straight line. To calculate the threshold intensity 
it is necessary to take into account the attenuations (\ (w) 
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and 0a(w) of the first and second sounds. We cite the 
well-known formulas for these quantitiesr4l : 

ffi' p. ( 4 p. x aT) 6,(ffi)=--- -1']+---
2pC2' p. 3 p. T fJcr ' 

(4.1) 
where 7/, b and x are kinetic coefficients. The thresh­
old first-sound amplitudes ax and all in processes I and 
II are determined in the familiar manner (cf., e. g., rSl): 

laII= [/l'(OO)/l, (2 ~: 00) r / V, 

iall i =/l,(ool2)/U. 

(4.2) 

(4.3) 

The ratio I ax I / I all I is formally of order (CZ/cl )lIa. 
However, the quantity ca/cl is not very small (-0.1), 
and this is all the more true of its root. Therefore, a 
more careful numerical analysis is necessary. Using 
formulas (3.2)-(3.6) and (4.1), we find 

/~ /= (/l'(ffi) 2"::")'{, p' (fJcr/aT)'/' ~ 
alI 8,(ffi) c, p,c, fJp/aT [V]' (4.4) 

Experimental data for the ratios 0l/WzCl and 0a/w2cz 
are given in the review. rlal The other experimental 
data have been gleaned fromr7,sl. For an analYSis of the 
expressions for [U] and [V] see Sec. 3. The results of 
the analysis are as follows. In the region T ~ 1. 4 -1. 7 K 
the ratio lax/aul is small (-0.01-0.1), and at T::: 1. 6 
K this ratio passes through zero; at T::: 1. 2 K the ratio 
(4.4) is much greater than unity. On further lowering 
of the temperature it decreases, and for 0.8 < T < 1 K 
becomes equal to -0.5-1. The behavior of the ratio 
lax/au I is shown schematically in Fig. 3. The inter­
section of this curve with the strai$ht line I ax/au I = 1 
separates the region in which the Cerenkov threshold 
comes before the decay threshold (region I) from the 
region (II) in which the decay threshold is reached be­
fore the Cerenkov threshold. The threshold energy­
flux for process I is 

W.=c,oolaII' = 16/l,(oo)/l, (ffi)p'C, fJo/fJT 
ffi' (ap/aT) '[ V]' 

At T::: 1. 5 K we find from (4.5) 

AtT:::0.9K, 

(4.5) 

Thus, parametric excitation at T < 1 K and reasonable 
frequencies is scarcely possible. We note that in the 
region T::: 1. 2 K we can observe the pure decay process. 

llt;-
I I II I I 
I! ! _ 

FIG. 3. 

alJ 1 I.Z 1.4 1.6 T,K 

V. L. POkrovskil and I. M. Khalatnikav 1039 



5. NONLINEAR PROCESSES IN THE REGION 
BEYOND THE THRESHOLD 

We shall consider the Cerenkov process in the case 
when the incident-wave amplitude is considerably greater 
than the threshold amplitude. In this case we can ne­
glect the damping of the waves. We confine ourselves 
to considering the stationary regime. We denote the 
slowly varying first-sound amplitudes by a (x) (the in­
cident wave) and a'ex) (the scattered wave) and the slow­
ly varying second-sound amplitude by b(x). In the case 
under consideration the wave vector of the scattered 
wave has the opposite direction to that of the incident 
wave (X=1T), and the second-sound frequency is equal to 
2C2w/Cl. The equations for the slowly varying ampli­
tudes have the standard form[13] (cf. also[6l): 

da , 
c,-=-iVab, 

dx 

da' ' •• 
c,-=!Vab, 

dx 
db '." c,-=-!Vaa. 
dx 

These equations have two constants of the motion: 

la'12+ C2 Ib!2=q:!, laI2-la'12=r-q2. 
c, 

(5.1) 

There exists a solution of Eqs. (5.1) with a coherent 
phase relationship: 

arg a-arg a'-arg b=nI2. 

In the following, this relation is assumed to be fulfilled. 
The only unknown quantities are the absolute values, 
which, as before, we shall denote by a, a' and b. It is 
convenient to introduce the new variable 

u=xVr/(c,c,) 'I, (5.2) 

and the unknown function jj = (C2/ Cl)1/2b. The equations 
(5. 1) take the form 

r da = -a'c, 
du 

da' 
r-=-ali', 

du 
db '. r-=aa . 
du 

The general solution of Eqs. (5.3) is 

(5.3) 

a'=qcn(u+uo), o=qsn(u+uo), a=rdn(u+uo). (5.4) 

The modulus k of the elliptic functions is expressed in 
terms of q and r: 

k'=q'/r'. (5.5) 

The solutions (5.4) depend in an essential way on the 
boundary conditions. As an example we shall consider 
the case when the first- and second-sound waves emerge 
from the system without reflection. In this case, 

(5.6) 

From (5.2), (5.5) and (5.6) we find Uo = 0, r =ao and 

lVao/(c,c,) "'=K(k). (5.7) 

The quantity k is found from Eq. (5.7) and substituted 

1040 SOy. Phys. JETP, Vol. 44, No.5, November 1976 

into (5.5) to determine q. A solution of the type con­
sidered exists only under the condition 

(5.8) 

Otherwise, a coherent solution with the boundary condi­
tions indicated does not exist. The ratio of the energy 
flux We necessary for realization of the coherent regime 
to the threshold energy-flux WI turns out to be a quan­
tity of the order of 3 x 1030w-4Z-2 at a temperature of 
about 1. 5 K. For Z- 5 cm and w-107 the quantities We 
and WI are of the same order. It should be noted that 
with these values of the parameters the damping cannot 
be assumed to be weak. This does not lead to qualita­
tive changes. On the other hand, by varying the tem­
perature, frequency and length, it is possible to select 
the necessary optimal conditions. 

If the condition (5.8) is not fulfilled, coherent second 
sound can be obtained by mixing two first-sound waves: 
one (ao) is admitted from the left (x = 0) and the other 
(a~) from the right (x = Z). The boundary conditions in 
this case are 

The modulus k of the elliptic functions is determined 
from the equation 

k' en' [Vaol/(c,c,),"] = (a/lao) '. 

The constants of the motion are r = ao and q = kao. 

An entirely different situation arises in the case when 
the second sound is almost totally reflected at the bound­
aries while the first sound passes through without re­
flection. Besides the second-sound wave traveling to 
the right, there arises a wave of the same intensity, 
traveling to the left. On interacting with the scattered 
first-sound wave this gives a secondary scattered first­
sound wave, traveling to the right but with a frequency 
different from the frequency of the incident wave. The 
interaction of the secondary scattered waves with the 
second-sound waves leads to the appearance of a whole 
series of first-sound waves with equally-spaced frequen­
cies 

ron=ro (1+2nc,fc,), n=O,±1,±2 ... , 

and of a standing second-sound wave with frequency 
equal to 2C2w/Cl. The waves traveling to the right cor­
respond to even n and those traveling to the left corre­
spond to odd n. Thus, the spectral composition of the 
first sound is represented by two combs inserted into 
each other, corresponding to the different directions of 
propagation (Fig. 4). 

FIG. 4. 
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A more detailed analysis shows that the geometric 
resonance of the secondary waves is not exact. The 
difference in the wave vector of the n-th wave and the 
sum of the wave vectors of the (n + l)-th wave and the 
corresponding second-sound wave is Akn = 2czknl Cl' 

Therefore, the amplitudes of all the secondary waves 
are small. To detect the effect it is advantageous to re­
duce the ratio czl Cl as far as possible. 

At large incident-sound amplitudes, exceeding the 
threshold (4.3), the nonlinear process of decay into two 
second sounds with frequencies wl2 begins. Since at 
this point the Cerenkov process is already strongly de­
veloped, the near-threshold phenomena develop against 
the background of a spatially nonuniform sound field 
a(x). Then, with increase of the amplitudes bl(x) and 
bz(x) of the second sound arising as a result of the decay, 
the waves a(x), a'(x), b(x), bl(x) and bz(x) interact with 
each other in a complicated manner. However, as is 
easily shown, the amplitudes bl and bz grow much faster 
than a' and b. Therefore, at powers substantially ex­
ceeding both thresholds, it is the decay process (II) that 
principally occurs. 

We shall show that the process II is the more impor­
tant one at high powers. We write out the equation for 
a, with allowance for both processes, 

da/dx=-iVa'b-iUb,b,. (5.9) 

If process I is unimportant, then bl - bz - (cll CZ)1/2a (cf. 
the conservation laws (5.11». With regard to the ampli­
tudes a' and b, they do not in any case exceed the values 
they have in conditions when process II is absent. We 
have already convinced ourselves that in this case a' - a 
and b- (cdcz)lIza. The ratio vlu is formally - (CZ/Cl)3/2. 
In the region T'" 1. 6 K, for numerical reasons this ratio 
may be not very small. For the statement expressed 
above to be correct it is sufficient that V Iu be much 
smaller than (cll C2)1/2 • In this case the second term in 
the right-hand side of (5.9) is much smaller than the 
first. 

The equations describing process II have the form 

da 
c, - = - iUb,b" 

dx 

db, 
c,-= - iUab;, 

dx 

db, 
c,-= Wab,' 

dx 
(5.10) 

The equations (5.10) have two constants of the motion: 

I b, 1'+ I b,I'=q', c, I a 1'+c,1 b, I'=c,r'. (5.11) 

The phases a, bl and b2 are connected by the relation 

arg a-arg b,-arg b,=n/2. 

~ FIG. 5. 

o 1 x 
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FIG. 6, 

The general solution for the moduli I a I, I bll and I b2 1 
has the form 

a=r dn (u+uo), b,=q sn (u+uo), b,=q en (u+u,) 
ll=xUr/c" k'=c,q'/c,r'. 

(5.12) 

The constants of the motion, q and r, are determined 
by the boundary conditions. In[ll the solution of the sys­
tem (5.10) was found with the boundary conditions 

a!x_o=ao, btlx=o=biO , b2 !x=1=O, 

usually used in nonlinear optics. [13] In the present prob­
lem the more natural conditions are those correspond­
ing to complete transmission of the waves: 

or to reflection of the second-sound waves at the bound­
aries: 

(I b, 1'_1 b,I') I.~,=( I b, 1'_1 b,I') 1.~l=O 

In the former case, Uo = 0 and r = ao. The modulus k 
of the elliptic functions is found from the equation 

K(k) =Ua,l/c" (5.13) 

and the constant of the motion q2 is determined from 
Eq. (5.12). A solution of (5.13) exists only under the 
condition Uaollc2> rr/2. The distribution of the first­
and second-sound amplitudes is shown schematically 
in Fig. 5. 

In the case of reflection of the second sound the equa­
tion determining the modulus k has the form 

Uaol 
(2-k') -'I,. 

sn c, (4-2k') '/, 

The parameter uo is found from the equation snUo = 1/12. 
In this case, 

( 2 ) '1. 
r=a, 2-k' . 

The distribution of amplitudes in this case is shown in 
Fig. 6. The criterion for the existence of a solution in 
this case is the same as in the previous case. 

6. DECAY AT AN ANGLE TO THE INCIDENT WAVE 

In a broad incident beam, processes of Cerenkov 
emission and decay in which the emitted waves are at 
an arbitrary angle to the incident wave are possible. 
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Here we shall consider only decay processes. The 
power thresholds at which second-sound waves appear 
at an angle 8 depend on the angle. The minimum thresh· 
old is that for decay at angle 8 = O. At powers substan­
tially greater than the threshold values the equations for 
the stationary process can be written in the following 
form: 

(6.1) 

where p is the wave vector of one of the second-sound 
waves, 8p is the angle between p and the direction of the 
incident sound, and Up == U(w, 8p). 

The constants of the motion of the system (6.1) are 
the quantities 

1 b,. 1'+ 1 b,. I'=q.', 
2c, lal'+ E c, cos 8.(1 b,.I'-1 b,.I') =l. 

The relation between the phases a, blp and bzp is easily 
established: 

arg a-arg b,.-arg b,.=n/2. 

It is convenient to change to the variables CPJl: 

1 b,. 1 =q. sin <P., 1 b,. 1 =q. cos <P., 

The equations (6.1) take the form 

(6.2) 

dx c, cos 8. 
(6.3) 

The system of equations (6.2), (6.3) can be solved in 
the case of weak conversion, when a is almost indepen­
dent of x. 

Putting a =ao in (6.3), we find 

For simplicity we use the boundary conditions for 
total transmission: 

U.a,lIc, cos 8.=nI2. (6.4) 

The equation (6.4), in analogy with the inequality (5.8), 
determines the threshold for coherent excitation of 
waves traveling at the given angle. This threshold is 
smaller the smaller is cos8J1' The limitations on the 
size of cos8J1 are determined by geometrical factors. 
Thus, in a broad beam it is primarijy second-sound 
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waves propagating at right angles to the incident wave 
that are coherently excited. 

In the developed nonlinear regime, Eqs. (6.2), (6.3) 
can only be solved numerically. 

CONCLUSION 

The Hamiltonian formalism ofZ1 has made it possible 
to analyze nonlinear processes of conversion of first 
sound into second sound in detail. These processes are 
the Cerenkov emission of second sound by first sound 
(process I) and decay of first sound into two second 
sounds (process II). According to our estimates, the 
threshold for parametric excitation of process I is the 
lower one for T-1.3-1.8 K. However, near T"'1.2 K 
there is a narrow "window" for process II. In this nar­
row temperature range the threshold for II is found to 
be the lower of the two. 

Above the I threshold second sound with frequency 
2czw/ Cl, where w is the frequency of the incident sound, 
is excited. The stationary process is coherent for suf­
ficiently large amplitudes, satisfying the inequality 
(5.8). Above the second threshold the role of process 
II grows sharply and at sufficiently high powers this 
process becomes dominant. In process II, second sound 
with frequency w/2 is emitted. We shall discuss the 
role of absorption. In the region of powers substantially 
above threshold, Eqs. (5.1), (5.10), in which terms 
corresponding to damping have been discarded, are true 
locally with great accuracy. However, over large dis­
tances, damping effects can accumulate and can lead to 
a substantial change in the picture. The solutions that 
we have given are valid under the assumption that the 
damping length is substantially greater than the size of 
the system. Otherwise, our solutions are qualitatively 
correct over an interval of the order of the damping 
length. 

In weak solutions of 3He in 4He the phenomena of con­
version of first sound into second are much stronger 
than in pure 4He, since the Cerenkov vertex contains 
the quantity 8lnp/8lnc (c is the concentration), which 
is not small, in place of the small quantity 8lnp/aInT 
_10-3_10-4 in pure 4He. 

The authors are grateful to N. I. Pushkina and R. V. 
Khokhlov for discussions and to L. P. Mezhov-Deglin 
for assistance in finding the necessary experimental 
data. 
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Spontaneous symmetry-breaking in a gas of nonequilibrium 
phonons 
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Irradiation of a dielectric by nonresonance infrared light leads to excitation of short-wavelength phonon 
modes (two-phonon absorption). ~It is shown that there exists an intensity threshold above which 
spontaneous lowering of the symmetry occurs in the gas of nonequilibrium short-wavelength phonons-the 
stable state of the gas is one in which the phonon distribution function is of lower symmetry than the 
crystal. 

PACS numbers: 63.20.-e 

1. THE MODEL AND KINETIC EQUATION 

An isotropic model of a crystal with a center of in­
version is considered; in the crystal there are two 
acoustic branches (a transverse (TA) and a longitudinal 
(LA) branch) and several optical branches (0) (see Fig. 
1). The crystal is at a low temperature T« WD, where 
wD is the Debye frequency. 

The frequency II of the incident light does not coincide 
with any of the limiting (q =0) frequencies Wo of the op­
tical phonons active in infrared absorption. In this case 
the absorption is associated with the creation of a pair 
of short-wavelength phonons (usually acoustic) and pro­
ceeds according to the scheme 

v->-TA+LA; (1.1) 

the frequencies of the phonons created are of the order 
of wD • 

The LA phonons created are rapidly thermalized in 
spontaneous decay processes, and therefore their oc­
cupation numbers can be assumed equal to zero. Spon­
taneous decay of the TA phonons is impossible. [11 
Therefore, they can be destroyed either by scattering 
by defects with the conversion TA- LA[21 or by interac­
tion between nonequilibrium TA phonons. In lowest or­
der in the anharmonicity the latter corresponds to the 
coalescence process 

TA+TA->-O. (1. 2) 

O-branch phonons are also rapidly thermalized and if 
we assume their occupation numbers to be equal to zero 
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the coalescence .of two TA phonons is equivalent to their 
destruction. 

The kinetic equation for the occupation numbers of the 
TA phonons can be written in the following form: 

N(q)=D(q)+G(q). (1. 3) 

The term G describes the generation of TA phonons by 
the light and the term D describes the destruction of 
these phonons. 

We shall consider first the generation term G, assum­
ing, as inC3l, that the spectral intensity of the exciting 
light is given by a Lorentzian form factor 

{l'1v/2)Z 
q>(v)= (v-vo)'+(l'1v!2)" cp(vo)=1 (1. 4) 

with central frequency 111) and width all. We then have[81 

G(q) =Aq>(q) [N(q) +1], (1. 5) 

where 

w 

FIG. 1. 
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