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The dependence of Te on composition and strain is computed and compared with the corresponding 
dependence of T",. It is shown that the superconducting and structural properties of the A-IS compounds 
can be described, at least qualitatively, in the quasi-one-dimensional model previously deveJ.oped by the 
authors. It is assumed that the superconductivity mechanism is analogous to that of the BCS theory. The 
upper critical field, He2, of the V3Si and Nb3Sn compounds turns out to be much higher than that of V or 
Nb. 
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1. INTRODUCTION 

As is well known (see the reviews[1-31), the most 
carefully and thoroughly studied of the entire group of 
compounds with the {3-W structure are, at present, the 

I compounds Nb3Sn and V3Si. Among their unusual prop­
erties should, first of all, be mentioned the low-tem­
perature, so-called Martensitic, structural transition 
(of transition pOints T m '" 49 and 21-25 K, respectively). 
This transition is presaged by specific temperature de­
pendences ("precursors"), extending right up to room 
temperatures, of the magnetic susceptibility and the 
elastic moduli Cll and C12 • Both compounds are high­
Tc superconductors (TC(Nb3Sn) = 18.2 K, Tc{V3Si)=17.0 
K). Numerous experimental data (seeU •21) indicate an 
interrelationship between their elastic and supercon­
ducting properties. 

The phenomenological approach [41 uses the assump­
tion that the density of states in the vicinity of the Fermi 
level has a fine structure-a narrow peak, whose width 
is estimated from experimental data to be ~ 200 K. The 
microscopic theories in one form or another are based 
on the assumption, first noted by Weger, [51 that the 
chains of transition-element atoms in these compounds 
play an especial role. In the Labbe-Friedel model[61 
and the more Simplified RCA model, [71 it is assumed 
that the bottom of the empty bands of the d electrons 
localized on these chains is located precisely at the 
Fermi level for the overlapping s- and p-electron bands. 
Such an assumption is utterly artifiCial, and, earli-
er, [8,91 we developed a detailed microscopic theory of 
the structural properties of these compounds, consider­
ing the above-indicated structural transition to be the 
result of a special type of the Kohn or Peierls instabil­
ity in the spectrum of the transverse acoustic phonons. 

The purpose of the present paper is to attempt to de­
scribe, at least qualitatively, the distinctive features 
of the super conducting properties of V 3Si and Nb3Sn. In 
using the word qualitatively, we have in mind not so 
much the complexity of the formulas obtained below, 
as, first and foremost, the well-known irreproducibil­
ity of, and the scatter in, the experimental data, [1.101 a 
circumstance that, strange as it may seem, apparently 
serves as an argument in favor of our model. 
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Let us briefly formulate the basic physical assump­
tions underlying the theory. [8,91 Like Weger, [51 we 
assume that, in the first approximation, there exists a 
relatively narrow (~E~ 3-5 eV) one-dimensional band 
(its origin is connected with the d electrons of the tran­
sition-element atoms) for the electrons moving only 
along the three orthogonal V- or Nb-atom chains. In 
contrast to[5-71, it is assumed, however, that this band 
does not overlap other bands (there are no other car­
riers). The space group symmetry of the A-15 struc­
ture guarantees a compulsory degeneracy of the elec­
tronic term at the X point. [81 The location of the Fermi 
level is thereby automatically determined, the number 
of carriers in the band is large and equal to two (per 
period of each chain). As has been demonstrated, [8) 
instability of the structure is already possible in this 
approximation. The overlap of the electron wave func­
tions among the orthogonal chains of the transition-ele­
ment atoms is not too small. According to rough esti­
mates (see, for example, [21), the corresponding overlap 
integral, B, is of the order of several tenths of an elec­
tron volt. Allowance for these effects rectifies the one­
dimensional character of the electron spectrum. The 
characteristic "three-dimensionality" parameter T* is 
of second order in B (T* ~ B2j ~E), and is estimated at 
several hundred degrees K. The three-dimensionality 
effect can either eliminate altogether the indicated pure­
ly one-dimensional Kohn anomaly ("truncate" it at T 
~ T*), or leave it, only slightly changing the correspond­
ing transition temperature. ll In the latter case (if we 
abstract ourselves from the possibility of an accidental 
play on figures) we should expect T mZ T*. Since real 
T m '" 20-50 K, we choose the first possibility. 

A detailed investigation of the structure of the elec-
. tronic spectrum shows [81 that the electronic density of 
states is not a constant in the vicinity of the X point of 
the reciprocal-lattice unit cell and has at energies El = 0 
and E2 = - 2 T * two logarithmic peaks of the form 

2 32T· 
y (e) =y (0) -;; In '"T,.\eT' (1) 

where ~ = E - Ej (to the stoichiometric composition cor­
responds the location of the Fermi level at Il = - T*). 
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In our papers, [8,9) the possibility of a structural tran­
sition is related with the closeness of the chemical po­
tential (i. e., with the deviation from stoichiometry) to 
one of the singularities (1). Such an assumption reflects 
the fact that the appearance of the structural transition 
depends on the minute details of the preparation of the 
samples. Of course, deviations from stoichiometry 
cannot be the only factor responsible for the "fortuity" 
of the structural transition. The role of impurities re­
qUires, of course, an additional investigation. 

Below we first formulate the basic equations of the 
theory of superconductivity in these compounds (more 
exactly, the equations determining the superconducting­
transition temperature) and then investigate the depen­
dence of Te on composition, the applied strain, and mag­
netic field, as well as the interrelation between the su­
per conducting and structural transitions. In conclUSion, 
we shall attempt to formulate an answer to the question, 
repeatedly raised in the literature, whether the high 
Tc's in these compounds are not the result of a new 
mechanism of "enhancement of superconductivity by the 
structural instability" of these systems. Our answer is 
sooner in the negative. 

2. DERIVATION OF THE EQUATIONS FOR THE 
SUPERCONDUCTING-TRANSITION TEMPERATURE 

Below we assume that the nature of the superconduc­
tivity in the compounds under consideration is speCified 
by the usual phonon mechanism of the BCS theory: the 
mutual attraction of the conduction electrons as a re­
sult of the exchange of virtual phonons, the Cooper 
pairs being formed in the Singlet state. 

Let us recall that the usual method of determining 
the transition temperature (see, for example, [U) con­
sists in summing the ladder diagrams of Fig. 1, where 
a dashed line corresponds to the exchange of a phonon 
and in the matrix element is represented by the corre­
sponding D function. In the usual single-band BCS 
model, the matrix element is (leaving out unimportant 
coefficients) proportional to 

T L. I D(p-p')G(p)G(-p)d'p 
n 

d'p 
= T ~ I D (p - p') -;--""""--:-:--:-7;-'-:-----;---;-:---:-; 

'-:: [ie.- (e(p) -J.t))[ -ie.- (e (p) -J.t)] 

-+- ID(p-P')~tJl e(p)-J.t = ID(P-p') du th~th~. 
e{p)-J.t 2T u 2T 1'v. 

In the last transformation the d 3p integration has been 
split into integration over the energy variable, u = c(p) 
- jJ., within the limits of tbe Debye cutoff (-e, e), which 
integration is responsible for the logarithmic intensifi­
cation of the interaction at low temperatures (the Cooper 
effect), and integration over the Fermi surface. The 

x 
FIG. 1. 
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FIG. 2. 

latter integration in the anisotropic case is not trivial. 
The pole of the vertex part determines the supercon­
ducting-transition temperature Te , which is therefore 
found by solving the homogeneous equation of Fig. 2 for 
the quantity ~(p): 

Ie du U~dS , 
~(p)= K(pp')-th- -~(p). 

. . II 2Tr.. PI<' 
(2) 

-0 

The problem of determining Te in an anisotropic super­
conductor was formulated by Pokrovskil(12 ) in such a 
form. In (2) ~(p/) depends only on the position of the 
momentum pi on the Fermi surface. 

Complications in the solution of the analogous prob­
lem for the system we are considering occur in two re­
spects: the appearance of a nontrivial dependence on 
the variable u in the integral over the Fermi surface 
(the fine structure of the electronic density of states) 
and the presence of a large number of branches of the 
energy spectrum. In itself the latter circumstan~e is 
not important (two-band models of a superconductor 
have been studied for diverse reasons by many authors 
(see, for example, 113), but it greatly complicates the 
corresponding equations. 

Let us first investigate the shape of the Fermi sur­
face of the electrons. If the interaction between the 
various chains of atoms is neglected, then the Fermi 
surfaces are plane and lie near the corresponding faces 
of the cube of the reciprocal Brillouin zone. Because of 
the indicated two-fold degeneracy when the position of 
the Fermi level undergoes small oscillations, the Fermi 
surface corresponds to either the electron or the hole 
branch. Allowance for the interaction between the fila­
ments in the main only distorts the shape of the Fermi 
surface near the corresponding face of the Brillouin 
zone. The two branches of the spectrum have the 
form(9) (for the filament along the [001] direction, 0. 
=rr/a-p.) 

( ) [ . ,p.a . p.a ] 
e p =T' sm -2-+sm'-2--2 

[ ( p.a p a)']'" ± (vII,) '+T" sin' -2- - sin' -+- . (3) 

Equation (3) is not applicable near the cube edges, 
because of the fourfold degeneracy (in the absence of 
interaction) of the spectral branches, e. g., for the fila­
ments along the z and x axes. For c - T *, to find the 
corresponding" curvature" and the Fermi surfaces in 
this region (0. =rr/a-p.« rr/a, o,,=rr/a-p,,«rr/a), we 
can use Eq. (10) of ts ): 

e'[v'(Il.'+Il,') +8B'( 1 +cos p,a) 1 
+e4B' (1 +cos p,a) va (11.'+11,') -v'Il.'Il,'=O. 
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It follows from (4) that, in the general case of c- T* 
and vo. - T*, the expression (3) becomes inapplicable 
when vox-Bo:: T*1I2. 

Returning to the problem of the determination of the 
critical temperature Te , let us note, first of all, that 
the diagrammatic equation of Fig. 2 has a complex ma­
trix character, because of the large number (six) of 
spectral branches figuring in it. In the general form, 
we have to deal in this equation with Green functions G 
that are 6x6 matrices. We shall denote the elements of 
the latter by G~~, where the upper pair of indices per­
tain to the "sort" of filament (i. e., i, k= x, y, z), while 
the lower pair correspond to the choice of the twofold­
degenerate representation at the X point. Over the 
larger part of each of the faces of the Brillouin zone 
(say, fop the x filament), only the diagonal terms, ~8' 
of the matrix G~~ are, in accordance with (3) and (4), 
large. 

A further Simplification of the problem is connected 
with the assumption that the vertex of a dashed line in 
Figs. 1 and 2 is diagonal in the index, i, i.e., the scat­
tering of an electron by a virtual phonon does not by it­
self cause the electron to jump from a filament to a 
filament. In this case both incoming lines in Fig. 1 
have coincident indices (i, i), and we can introduce three 
"superconducting-gap" matrices: ~s~~, ~;!~, ~s~~. 

If we neglect the off-diagonal elements of G~\ with re­
spect to the indices (i, k) in the inner integration of the 
equation given by Fig. 2, then the problem of the onset 
of superconductivity turns out to be independent for each 
of the systems of orthogonal filaments. However, al­
lowance for the off-diagonal elements leads, as we shall 
see, to the appearance of coupling coefficients that are 
not too small, as a result of which the superconductivity 
in these compounds assumes a three-dimensional char­
acter. 

The phonon-induced attraction is short-range in na­
ture. Nevertheless, the vertices of a dashed line, which 
correspond to a change in the electron energy when the 
lattice is deformed in one way or another, generally 
speaking depend on the phonon wave vector. In the pre­
vious papers, [8,91 the Hamiltonian for the electrons of 
one filament had the form 

( p.a 0 pya) 
ao=T' cos"T+cos-T ' ( p.a pya) 

eo=T' cos'-Z--cos'-Z- . 

(5) 
For the electron-phonon interaction Veph, we used the 
expression 

(6) 

(the Cu. are the components of the strain tensor and u. 
is the sublattice displacement). 

The Hamiltonian (6) strictly speaking pertains only to 
the electron-phonon interaction at k=O. If the phonon 
wave vector k-rr/a, the vertex has the general form 

(6') 
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(flo is linear in the lattice displacement, and the terms 
with 1'.r would correspond to a representation that is odd 
in the time: see[8]). The right-hand side of the equa­
tion depicted in Fig. 2 for the gap ~;!~ is thus propor­
tional to the following expression: 

T ~Sd3 '~<f'( »A")A")~GA,,( ')G"( ,)A,.)( ') ~ p ~ • q "(el "(~. ~ '" p •• ' -p d ••• ' p . 

• • 
(7) 

Each of the gaps ~.:!~ should, since we have assumed 
Cooper pairing in the singlet state, be symmetric with 
respect to interchange of the band indices a, f3: 

(8) 

Like Eq. (2), the resulting equations are not soluble 
in the general form in the case of arbitrary anisotropy 
of the D functions {(f2(q»). We shall restrict ourselves 
to the approximation in which, as a result of the elec­
tron-phonon exchange, only the electrons located on 
one and the same chain interact. In this case ~;i)(p) 
does not depend on the position of the vector p on the 
Fermi surface. 

Let us consider the filament along the x axis and in­
vestigate first the diagonal (in i, l) terms in the expres­
sion (7). As has been shown, t91 the Green functions 
Gii(p) have (in the notation used int91) the form 

(}"(p) =[ (ien+a) e+v/)iTy-e,-r.j [ (ien+a)'- (v/)i)'-e.'j-', (9) 
/)i=n/a-pi, a=T'(cos' cp+cos' ¢) -!L, ei=T'(cos' cp-cos' ¢)-d, 

(the tetragonal distortion a/e -1 = eL, Cn = Cyy = a/3, 
Czz = - 2a/3, ~,,= - ~y=dla, ~ = 0). After the substitu­
tion of (9) into (7) and simple matrix transformations, 
the diagonal-in (i, l)-part of (7) assumes the following 
form: 

T E S d'p{A (e., p)i+B (en, p)T.+C(e.,p)i-t,} 

x [ (ie.+a) '- (v/),) '-e;'j-'[ (-ie. +a)'- (v/).)'-e;'j-', 

where, as in the BCS theory (see the derivation of (2) 
above), the denominators of the Green functions give 
rise to terms logarithmically dependent on temperature, 
while the expressions A, B, and C have the following 
form: 

A (e., p) = {[a'+e.'+ (v/),) '+e.']a!') _2ae,~!i) } [</.'>+</,'>+</,'> l. 
B (e., p) = {-2ac,a.") + [a'+en'- (v/),)'+e,'j ~.'i)} [</,'>+</,'>-</,')], 

C(en , p) = {a'+e.'- (v/)i)'-e.'h.") [-</.'>+</,'>+</,'> j. (10) 

We see, first of all, that the terms. with r;i) in (8) split 
off from a!il, f3;il. 

The next complicated problem consists in the fact that 
in the expressions (10) the factors (f~) enter in combina­
tions with different signs. Let us recall in this connec­
tion that the quantities fi in (6') are linear in the lattice 
displacements, i. e., the mean values (f~(q» are pro­
portional to the corresponding D functions, and, there­
fore, as is usual in the phonon mechanism, the + sign 
in front of (f~) corresponds to attraction in the Cooper 
effect. In (f~(q», at small phonon wave vectors q, the 
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quantity (f~) 0: d~, (f~) 0: d~, and (f~) is, in general, ab­
sent. An analysis of the behavior of the elastic mod­
uli[9] convinced us that, in any case, ~ is substantially 
less than d1• The experimental facts, [1] which indicate 
an interrelation between the structural and supercon­
ducting transitions, clearly reflect the special role 
played in the phenomenon of superconductivity in these 
compounds by the acoustic phonon branches determining 
the moduli Cll and C12 • On these grounds, we consider 
it possible to retain in (10) only the terms with (f~) and 
in (8) only the first two terms. Since, according to the 
neutron experiments, [14,15] the maximum frequencies of 
the acoustic phonons in the compounds V3Si and Nb3Sn 
do not exceed 200 K, we shall also assume that the cor­
responding Debye cutoff e in the integrals over the en­
ergy variable (see Eq. (7» is small in comparison with 
T *. Of course, such a procedure implicitly contains 
the assumption that the electron-phonon interaction is 
weak, whereas the high Tc's in these compounds point 
rather to the opposite situation. We shall see, however, 
that even under these simplifications from the model 
follow several important assertions that are at least 
qualitatively valid. 

For an arbitrary position of the chemical potential 
~-T* (deviation from stoichiometry), the Fermi sur­
face is determined by the equation ~=£i(P), where £i 

. is one of the electronic branches (3). Its deviation 
from the plane of the Brillouin face (for the filament 
along the x axis) is Ox - T* Iv. 

After the corresponding simplifications in (10) with 
the use of the condition £i(P)"'~, the right-hand side of 
the equation depicted by Fig. 2, or, more exactly, the 
diagonal-in (i, Z}-terms of the expression (7) assume 
the form 

4 e du II' 
R-J-th-

11' 211' 2T 
-9 

The requirement that the radicands be positive deter­
mines the integration domains for (q;, I/i). The coeffi­
cient R contains both the diagram coefficients and the 
interaction (f~); the factor 4/1T2 has been chosen for the 
normalization of the integral over the Fermi surface to 
the area of the face of the reCiprocal Brillouin zone. 

In the general case of ~ - T *, the strains a j = d1 a en­
ter into Eq. (11), determining the transition tempera­
ture Te , only side by side with the scale T*. The situ­
ation changes if the chemical potential is chosen to be 
close to one of the Singularities, (1), in the electronic 
density of states. 2) In accordance with our results, [9] 
the quantity ~ - Te« T *, e bec~mes the characteristic 
scale for the variation of ~ and a. 

In evaluating the integrals in (11), it is convenient to 
introduce under the logarithm X = In (2;€>I1TT) the same 
combination of numerical factors that, for the chosen 
method of truncation, figures in the BCS theory, and re­
write (11) in terms of the matrix j((i). The equation de­
picted by Fig. 2 has the form 
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~ R (Q 

{ ct., } _ _ K(i){ a. } 
~(') - 11' ~(i)' . , 

(12) 

where for K(i), after the computations, we obtain 

. I [ ( ft-\, ) ( fH.'l, )] I [ '( fl-1, ) ( ft+.'l, )] 
P(X) - 2: F ---zr + F ---zr ' 2: f ---zr -F ---zr 

K(i) = 

- F - -F -- , J'(X) - - F - +F - -8GX I [(ft-.'l') (fl+.\,)] I [(ft-.'li) (fl+.'li)] 
2 2T 2T 2 2T U 

(13) 
Here we have used the following notation: 

32T' 
P(X)=X'+2Xln--+C" El 

C)=-ln2~+ Jln' "ch-2 n d,,"" 1.32, 
41 

, (13') 
~ d 1 

F(z)= J nil' th(lzlu)ln 11 --;;;-1 

(G =0.916 is the so-called Catalan constant). The ap­
pearance of the factor 1T -2 justifies to a certain extent 
our truncation procedure-the same as in the BCS the­
ory. It is appropriate here to note at once that if we 
chose a chemical potential ~» T *, then we should, in 
accordance with (11) and (2), have obtained in place of 
(12) and (13) 

(14) 

The coupling constant R', as has already been pointed 
out, [9] differs, of course, from R in (12). Below we 
shall return to the discussion of this question. 

The Eqs. (12) would determine the superconducting­
transition temperature for each filament separately if 
there were no coupling between them. The computation 
of the corresponding coupling coefficients is carried out 
in the Appendix. Forming the column {W} from the three 
columns 

for each of the filaments, we obtain the complete matrix 
equation from which we should determine the tempera­
ture of transition into the superconducting state: 

(15) 

In order not to write out the entire matrix, let us give 
only the component of Eq. (15) for the filament along the 
x axis: 

(16) 

where the coefficients kl1 k 2 0: (T * I a E)1/2 are given by 
the formulas (A. 3, 3') of the Appendix. The remaining 
components of Eq. (15) are obtainable from (16) by 
cyclic permutation. 
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3. DEPENDENCE OF Tc ON COMPOSITION AND 
STRAIN. THE CRITICAL FIELD 

Let us proceed to analyze the obtained equations. 
First of all, let us note that the coupling between the in­
dividual filaments is by no means weak. Indeed, the 
relative order of magnitude of the terms with k1 and k2 
in Eq. (16) in comparison with the dominant terms is 

/ ( 218 32T" ) T" 'f, 
(k"k,) In-+21n-- - (-) . 

nT, e I'!.E (17) 

Below we shall attempt to estimate the quantity T * more 
exactly, but it is already clear from the foregoing that 
(17) has a value of about O.l. 

Let us note the close relationship between the obtained 
expressions in (13) and the dependence, found earlier 
in(9l, of the elastic moduli on temperature and strain. 

, Let us differentiate, for example, the diagonal element 
KH) of the matrix (13) with respect to temperature: 

aK,~') = _ 2 {In Tm" + -.!.. [s ( It-I'!., )+s ( 1t+1'!.,)] +In 641T' }. 
aT T T 2 T T nTm" 

(Here s (x) is a function introduced in(9l.) 
(lS) 

For the filaments affected by the tetragonal transition 
(if Tc < T m) or by external strain, the first three terms 
are exactly proportional to the elastic modulus C s (see 
Eq. (24) in(9l) in the deformed phase, which modulus is, 
generally speaking, small at low temperatures. The 
last term therefore has the meaning of the unrenormal­
ized modulus C., i.e., it is proportional to Cs(T-T*). 

We shall also need below the asymptotic expressions 
for the function F(z), (13'): 

F(z)"" {7~(3)Z'ln" 
In'(4pln) -n'/6+C" 

z<l, 
z~1. 

(19) 

The general equation (16) has, strictly speaking, six 
solutions for the critical temperature of trans ition into 
the super conducting state. Evidently, only the largest 
of these values plays a role. In the first approximation 
the magnitude of the transition temperature already can 
be estimated from Eq. (12). The role of the terms with 
(kh k2 ) in (16) consists in providing corrections ex (T * / 
A E)1/2 to the thus obtained transition temperature. 
These terms are by no means small, which has already 
been indicated above; furthermore, they remove the de­
generacy that we should have in the case of three inde­
pendent filaments, and guarantee th~ requisite symmetry 
of the super conducting gap in the cubic or tetragonal 
phase. 

To obtain physical results, we can further simplify 
Eq. (16). In fact, analyzing the structure of the matrix 
(13), we see that the term Kg) is greater than Iq~) by 
the quantity SGX. Therefore, the compensation for the 
smallness of R/rr2 by the quantity J«l> in (12) occurs, 
first and foremost, for K1~), and it follows from this 
that the order of magnitude of f3!i) in comparison with 
a!i) is either 

A A (') 

~ 1')_ {F (It-Ll')_F( It+Ll')} ~ 
• 2T 2T iBGX 
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or 

i. e., tf.l> is always at least an order of magnitude 
smaller than a!l> • 

Let us first consider Tc in the cubic phase. Let in 
the absence of external influences (strains; magnetic 
fields) the transition temperature Tc(/J.) be known. Equa­
tion (15) 

(15') 

determines the corresponding column {~J at T = Tc(/J.). 
If the matrix K is subjected to some perturbation on ac­
count of, for example, deformations: 

the small change in the temperature is determined by 
the usual orthogonality condition 

(20) 

Using (lS) and the relation 

. aF(x) = -~s(2x), 
ax x 

as well as the equality of all the a(l> in the cubic phase, 
we obtain from (20) and (lS) (/J..$T~) 

~=-~ln-Il 641T') I'!.'{sl~) -~s'(~)} <0, (21) 
T,(It) 3 \ nT, 1" \ T T T 

where in (lS) we have retained only the large logarith­
mic term. For /J.=O(Tc= ~) 

(21') 

The expression for the change in the Martensitic­
transition temperature follows from Eq. (24) (see(9l) 

(22) 

Although there are no quantitative data for dT m/da, it 
is well known that Tc is much less sensitive to strains 
than Tm' 

In the tetragonal phase, or, accordingly, in a de­
formed sample the symmetry of the superconducting 
phase leads to the appearance of an anisotropy in the 
gap. Within the accuracy in which it is possible to ne­
glect tf.l> « O! !i), Eq. (16) constitutes a third-order 
algebraiC system. The simple deter.minant can easily 
be computed in the general form: From the three roots 
of the equation 

~ K(~) - n'jR k,X 
det k,X KlY) - n'jR 

k,X k,X 

k,X II k,X =0 
Ki'{ - n'jR 

(23) 
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should be chosen that which gives the highest Te. We 
assume that the deformation affects the (x, y) filaments 
and, therefore, Kn) =K1r) and differ from KIf) by the 
dependence of the terms with F, (13'), on.6.. 

In accordance with our general idea that the structural 
transition is possible when the position of the chemical 
potential coincides with a singularity in the electronic 
density of states, (1), the effects of the tetragonal 
anisotropy of the superconducting gap should be sought 
in samples that undergo the transition, or that exhibit 
appreciable softening of the elastic modulus C., i. e. , 
when J,L -1!. In this case, since.6. = d1 a is also of the 
order of 1!, the anisotropy of the superconducting gap 
.6.. can become of the order of unity. The most inter­
esting situation arises in that limiting case when the su­
perconductivity is studied in a good (in the indicated 
sense) sample that is highly deformed by applied exter­
nal strains a: the quantity .6. =d1 a» T~. The supercon­
ductivity in this case appears, first and foremost, in the 
z filament, the electronic spectrum of which is not af­
fected by the deformation (the transition temperature T e , 

however, drops slightly (see below)). The magnitude of 
the anisotropy is determined by the ratio 

(24) 

Using the asymptotic form of F(z), (19), for z» 1, 
let us write down for the coefficient i\(.6.) in (24) the ex­
plicit expression 

(24') 

This condition requires strains that are an order of 
magnitude greater than the spontaneous strains that arise 
in the structural transformations occurring in V3Si 
(a::::-2.2xlO-3) and Nb3Sn (a::::6x10-3), since, ingen­
eral, when the large coefficients in k1' (A.3), are taken 
into account, the quantity k1 has a value of several 
tenths. 

Above we mentioned that the corresponding Tc drops. 
Indeed, looking over the roots of Eq. (23), we see that, 
in the absence of deformation, the transition tempera­
ture is determined by the equation 

n'IR=P(X) -F(/1/2T) -k.X, (25) 

whereas in the limit (24') the third term on the right­
hand side of (25) is absent. Combining with (18), we ob­
tain the estimate 

t:;.T, "" ~ In ( 216 ) / In ( 641T' ) , 
T. 2 nT, nT, 

which shows that in a poly crystal or in a sample in which 
the internal strains have not been eliminated, Te can be 
appreciably lower for the given composition. 

Equation (25) allows us to investigate the behavior of 
Te as a function of composition (J,L). For small devia­
tions of J,L, we obtain (r;;; Tel" for J,L =0) 
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(26) 

In the limit of large J,L, using the asymptotic expression 
of F(z), we find 

(27) 

It follows from (26) and (27) that, in contrast to the 
structural transition, the existence of which is limited 
to the region p.- T~, the superconductivity also occurs 
under conditions when J,L is significantly removed from 
the position near the peak in the density of states. Fur­
thermore, because of the substantial logarithms in the 
denominators of both expreSSions, the change in Te is 
relatively small. These results are, of course, in ac­
cord with what is observed experimentally. 

In conclusion of this section, let us derive an equation 
determining the upper critical field Hc2 in the vicinity of 
the transition point. 3) For its derivation, it is neces­
sary to write (7) for the variable in the coordinates: 
.6..(R). In terms of the Fourier components, this ap­
proximation implies the substitution in (7) 

G(p) G(-p) -6(p) 6(q-p) 

and the subsequent expansion in q up to terms of the 
form (qv/Tc)2 inclUSively, [171 where 

q= (-i'V-2eA(x)lc), 

A simple calculation for the component KW adds to 
the matrix (12), (13) the following term: 

-7G~(3) v'qff.'m'T'. (28) 

This coefficient has been derived up to the terms of 
(p./T*, .6./T*), i. e., (28) depends weakly on the details 
of the fine structure of II(£). (The remaining effective 
masses are very large because of the smallness of 
T*/.6.E.) 

We obtain the equation for the Ginzburg-Landau wave 
function >Ir(x) = 1/J(x){i\, i\, 1} immediately in the tetragonal 
phase (i\ < 1) from an orthogonality relation of the type 
(20): 

oK (.) JK (x) 

t:;.T (-~ + 2).'_" ) 1\-
dT aT 

7G~ (3) v' {( -i.!... _ 2eA. ).' 
4n'T' {)z c 

( - 2eA )'} + i.' -i'V--c- ",=0, (29) 

where the sign - denotes a vector in the (x,y) plane. 
The quantity .\ determines the anisotropy of the field: 
H e2J. 0: i\ -1, Hc2t1 0: i\ -2. In the BCS theory we have[171 

If we reduce (29) to the same form, then the term 0: (Te 
- T)/Te has the form (in the cubic phase) 

48n'T.' 48n'T.' 1 {T,' (/1 ) 64"(T' } -----+------ In-+s - +In-- , n (3) v! 7\; (3) v' 2G T, T, nT,' 
(30) 
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Purely qualitatively comparing, for example, Nb with 
Nb3Sn, we see that, owing to the high Tc's and densities 
of states (lower v's and a substantial logarithmic fac­
tor), the critical fields in the A-15 compounds increase 
by at least an order of magnitude irrespective of the ef­
fect of the ordinary impurity mechanism. 

Finally, let us attempt to estimate T*, comparing 
Testardi's data (see[U) for the dependence of Tc on 
strain in the compound V3Si, Tc(a) -~== - ¥ x104a2K, 
with the formula (21), where A =d1 a. Taking d1 == 1 eV,4) 
we obtain In(64yT*/1T~)==7-7.4 and T* between 550 and 
800 K, the estimate being, of course, rather arbitrary, 
in view of the fact that we used formulas with J.1. = O. 

4. CONNECTION OF Tc WITH THE STRUCTURAL 
TRANSITION 

The results of the investigations of As~-xG .. -type al­
loys of the A-15 group of compounds (see[ll), as well as 
the results of the study of the properties of these com­
pounds as a function of the deviation in them from the 
stoichiometric composition (for V3Si see[19]), amount 
qualitatively to the following. Small changes in com­
position (x- 0.1) are capable of freezing the structural 
transition in the system. Usually, the maximum Tc 
then occurs at the limit (with respect to composition) of 
the cubic phase. The changes in Tc are then small and 
vary from 0.1 to 1 K. In the paper by Berthel et al., [19] 

it is reported that at one of the existence boundaries for 
the tetragonal phase of V3Si the quantity Tc decreases 
sharply, with A Tc == O. 3 K. In the literature these facts 
are regarded as confirmation of the existence of some 
new hypothetical mechanism of "superconductivity en­
hancement on account of lattice instability, " the point 
at which the maximum Tc is realized in the cubic phase 
being interpreted as the moment of maximum instability, 
frozen in by the presence of the impurity. 

We shall show in this section that all these effects are 
easily explained in the framework of the phonon mech­
anism of the usual BCS theory in accordance with the 
above-obtained formulas, and are only a consequence of 
the nearness of the two transition points. Moreover, 
the results obtained by Berthel et al. [19] should evidently 
rather be regarded as the first experimental confirma­
tion of the fact that the structural transition in VsSi is, 
as it should be, [20] a first-order transition. 

In order to explain this idea, we schematically show 
two curves in Fig. 3. The first shows T m(J.1.), the struc­
tural-transition temperature as a function of composi­
tion, its broken part having been computed as if no su­
perconductivity occurred in the system. Similarly, the 
dashed part of the second, flatter curve for T c corre­
sponds to Eq. (25) without allowance for tetragonal dis­
tortions. At the point, J.1.*, of their intersection, if the 
structural phase transition is of first order, a sponta­
neous finite strain arises discontinuously and the change 
in Tc is given by the expression (21). 

It remains to show that in our theory the phase transi­
tion is indeed of first order. Before proceeding to this, 
we should have constructed the two curves and found J.1.*. 
However, Tc (J.1.) contains two parameters, T* and e, 
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that, unfortunately, cannot be determined to any degree 
of accuracy in the eXisting experimental situation. 
Therefore, we are obliged to consider two cases: J.1. * / 
~ «1 and J.1. * /~ -1. It is interesting to note that the 
mechanisms making the structural transition a first­
order transition in the two cases are different. 

Let us begin with the case J.1./~« 1. The formulas 
(14), (16), and (26) from[19] described, for small J.1., the 
structural transition as a second-order transition. 
Meanwhile, it is not difficult to see that the group of 
symmetry transformations for the A-15 lattice admits 
of the third-order invariant 

Such invariants of the Landau expansion for the thermo­
dynamic potential indeed arise, but they are connected 
with the d2 terms in the electron-strain interaction, 
terms that, according to our estimates, [9] are appreci­
ably smaller than d1 - Taking them into account, and 
setting ,'}= ~/ d1 «1, we obtain the following expansion 
for the thermodynamic potential near the transition point 
in the tetragonal phase: 

2v(O) {[ Tm' ( fl)] z 6Q=--- In-+s - 6. 
:~nZ T T 

-~s' (J"..) 6.' +~s" (J"..)~}. 
3 T T 12 T T' (31) 

For small,'}, the shift in the temperature as a result of 
a change in the nature of the phase transition is propor­
tional to #; therefore, T m is determined as before by 
the equation 

while the spontaneous strain, asp, is, as can easily be 
verified, equal to 

(32) 

For small J.1./T m 

(32') 

We have, however, already noted[9] that the phase 
transition turns out to be a first-order transition irre­
spective of the above-expounded mechanism if J.1. is suf­
fiCiently large. In particular, this is evident already 
from (31), since the function s"(J.1./T) passes through 
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zero at p./T =xo = 1. 91 and becomes positive. In this 
case we can drop in (31) the term with ~«1, but then 
the expansion (31) is itself already inapplicable. 

The calculation of the thermodynamic potential with 
the aid of the formula (16) from[9] would require numer­
ical computations. Since there are a number of ne­
glected factors in our theory (see below), we restricted 
ourselves to only the T =0 case. In this limit the ther­
modynamic potential can be computed expliCitly: 

(33) 

The quantity I::t. itself as a function of p. is determined 
from the equilibrium condition aoo/al::t. = 0. The form of 
the solution, shown in Fig. 4, indeed shows that, as 
I p.1 decreases, the cubic state discontinuously goes 
over into the tetragonal phase. The value IJ.cr = 1. 32 p.~ 
(p.~ = 1fT~/2y) is determined numerically by the condition 
oO(p., I::t.(p.» =0; the quantity I::t.(p.cr) =2. 27 p.~, I::t.(O) =e p.~. 
In order to find the observedc19l value of I::t. Te from (21), 
all the computations shOuld be carried out at finite tem­
peratures. 

According to (32) and (32'), the sign of the tetragonal 
. strain depends on the combination p.d2, i. e., it can vary 
with composition; we obtain the same result if the terms 
with ~ are included in (33) as small corrections. This 
variation has indeed been observed in Nb3Snl .... Sbr. C21l 

When we spoke about a number of neglected factors, 
we, in particular, had in mind the fact that both above 
and in the earlier paperC9l the interactions with the dis­
placements of the sublattices of the transition-element 
atoms were, for simplicity, neglected. These displace­
ments and the strain terms with d1 transform according 
to the same representation. Cal We have not studied how 
the neglected terms affect the obtained result. 

The accuracy with which the composition of the alloy 
Nb3Snl_rBr (B = Sb, C21] Alc22l ) is controlled clearly does 
not exceed 1%. If we assume that, as compared with the 
Sn atom with respect to the number of electrons in the 
unfilled shell, Sb or Al simply adds or removes one con­
duction electron, then the change, 0 p., in the Fermi 
level is given by 

where for Nb3Sn an estimateC9 ] gives v(O) '" 6. 7 (eV _at)"l. 
In this case x-1% corresponds to 

10-' 
I\~ ---eV"'4K. 

4·6.7 

InVieland'spaper,C21J x "'0.15, i.e., op.-60K; in Vie­
land and Wicklund's work, C22l the existence boundary for 
the tetragonal transition corresponds to x",0.075, i.e., 
op.- 30 K. 

In conclusion, let us consider the question: Under 
which conditions can we expect the highest Te in a given 
superconductor. If the material is capable of undergoing 
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FIG. 4. 

a low-temperature structural tranSition, then ignoring 
the lowering of Te as a result of the spontaneous defor­
mation arising in the Martensitic transition (see Fig. 3), 
the formula of the preceding section for T c' and the 
ideas of our earlier paper, C9l according to which the 
coupling constant R (which is proportional to Asff C9l) is 
maximal because of the phonon softening in the same re­
gion, we have that the highest To's correspond to prox­
imity to one of the peaks in the density of states (2). 
The internal strains in the crystal playa negative role. 

The dimensionless coupling constants in these mate­
rials are by no means small, 5) e - T *, and into the 
softening of the elastic moduli and into the interaction 
responsible for the electron Cooper pairing enter close 
quantities. From this point of view, the closeness of 
Te and T m is not surpriSing, although the situation is 
possible in which T m < Te , as, for example, in Nb3Al. Cll 
The closeness of Te and T m could be a consequence of 
the specific properties of the one-dimensional model, as 
has earlier been pointed out. cal The case in which the 
controlling transition parameter is connected with the 
electrons requires a special investigation. 

The foregOing comments pertain to the variation of 
the chemical composition (p.) near stoichiometry within 
limits - T*. If, as in Eq. (14), p.» T*, then the con­
stant R' already differs significantly from R as a result 
of the "parquet" effects connected with the one-dimen­
sionality of the filaments. Cal This behavior does not lend 
itself to a simple quantitative analysis. 

Finally, let us once more repeat that in the investi­
gated model the variatlOn of composition amounts to the 
"pouring" of electrons into the hard energy zone. This 
is the prinCipal approximation of the theory, and the 
role of impurities requires a speci.al investigation. 

APPENDIX 

To compute the coefficients coupling the super con­
ducting gaps in the various filaments, we need the off­
diagonal-in the filament indices-elements of the 
Green function. These elements are large only in the 
vicinities of the edges or vertices of the reciprocal-unit­
cell cube, where the electron spectrum in the absence 
of interaction is respectively fourfold or sixfold degen­
erate. The corners of the cube make a small contribu­
tion. Therefore, let us conSider, for example, the cube 
edge at which the electronic terms of the filaments along 
the x and y axes jOin. The det II Gr/ II (see Eq. (4» was 
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computed earlierc9l in a small neighborhood of this edge. 
For the determination of the off-diagonal minors of the 
matrix 6, it is sufficient to use the form of Gr/: 

\

;,,,+f.L i{ixv B, -Bz I 
'-1 _ - i6xi.' ie" +f.L Bz - Hz 

Go - H' B" . • . 
- z z len + IL lVul/ 

-B; -B; -il!6" ie,,+f.L 

(A. I) 

(Only the quantities I BzlZ =2B Z(1 +cOSPzll) enter into the 
answer below.) In the indicated region all the terms in 
the matrix G;/ that have a structure - BZa:: T* contain 
additional small factors, owing to the small <),. and (\. 
Furthermore, in accordance with (4), the dominant con­
tribution to the integrals (7) from the off-diagonal terms 
is connected with the regions B/v- 11l,,1 » Illyl or Illyl 
-B/v» 11l,,1. 

The determinant of the fourth-order matrix Gc/ for 
Il- T * has the form 

where Cl and Cz are the roots of Eq. (4). Let us pro­
ceed to the computation of the minors of the matrix in­
verse to (A. I) for Ily» Il", for example. Since the in­
tegration in (7) is performed along the Fermi surface 
(let its equation be Cl - Il =0), we obtain the Green func­
tion 6('" y) in this region in the form (ic n - T« Il) 

(,"'" _ iB;uo, {~I+iV6x f.L+iV6.} 
, - (i'n-u) (£,-e,) «v6,)'+4IB,I') f.L-iv<'lx f.L-iv6x . 

(A. 2) 

The velocity I v I figuring in the integral :P dS/1 v I is, ac­
cording to (4), equal to 

which leads to a logarithmic integration over the region 
B 3JZ /v« vlly« B. It is convenient to write the matrix in 
(A. 2) in the form 

~t U+Tx) +iv6.( "[-,-it'~). 

As a result, it is easy to separate out the logarithmic 
contribution to the coupling coefficients for the equation 
depicted by Fig. 2 (i. e., the expression (7» if we write 
the equation as follows: 

(A. 3) 

where 

k, = In (!:....c,) (~) 'I, , 
j.E hE 

(T' )(T')'/' k, = -In .'!.E c, hE (A. 3') 

Here lncl and Inc2 are not small, but the estimation of 
them requires a numerical integration. Similar com­
putations lead to the following expressions connecting 
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the super conducting gaps in the x and z directions: 

t)In191 the controlling parameter of the transition is assumed to 
be the tetragonal distortion. 

2)Below f.t is measured from thispoint. 
3)A similar problem has been consideredlSI in the Labbe-Friedel 

modelfor systems of three weakly-coupled filaments. Above 
we have shown that the filaments are strongly coupled. An 
anisotropy in HC2 (seellSI) could arise only in the case of 
severe uniaxial distortions .. 

4)In191 there is an arithmetical error in the sstimation of dl . 
Together with the estimate from the x-ray data of liB I with the 
aid of Eq. (26) ofl91 we find d l to lie within the limits 1-1. 5 
eY. 

5)For 9-200 K, Te -20, and T* -600 K in (25), we have P(X) 
-27 and R - 0.37. 
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