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The dependence of the structural-transformation temperature T, on external magnetic field strength H is 
investigated in a system that is unstable with respect to the doubling of the period because of the specific 
shape of its one-electron spectrum (E(P) = -E(p+Q) near the Fermi surface). The contribution of the 
singlet and triplet electron-hole correlations in the presence of an excess electron concentration is taken 
into account in the determination of the dependence T,(H). It is found that in a certain concentration 
range a magnetic field raises the phase-transition temperature and, in particular, can induce a phase 
transition in a system that, in the absence of a field, is stable at all temperatures. The results obtained in 
the present paper for a structural transformation are extended to the case of a transition of the system 
into an antiferromagnetic state for chromium-type substances. It is proposed to use the theory to explain 
the behavior of A -15-type compounds in an external magnetic field. 

PACS numbers: 75.30.Jy, 64.70.Kb 

1. We investigate below the influence of a constant, 
homogeneous magnetic field H on the critical tempera­
ture T. of a metal-dielectric phase transition if the 
metal, because of the specific shape of its one-electron 
spectrum, is unstable with respect to the generation of 
spin- and charge-density waves. The obtained results 

. are qualitatively valid for quasi-one-dimensional sys­
tems. 

We shall consider the role of only the spin effects. 
As has been demonstrated by Abrikosov, [1] the orbital 
effects are important in the ultraquantum case, when 
the Landau-level spacing is comparable to the Fermi 
energy f,F, and we are interested in values of the field 
H of the order of T.. To be sure, the orbital effects in 
fields H of the order of Ts can turn out to be important 
because of the phenomenon of magnetic breakdown be­
tween electron and hole "pockets." These pockets are 
formed in the dielectric phase when the various parts 
of the Fermi surface of the original metallic phase that 
are responsible for the instability of the metal combine 
sufficiently badly. A similar situation has been con­
sidered by Gordyunin. [2J We shall not take this effect 
into account, assuming that the shape of the Fermi sur­
face of the original metal is such that the pockets are 
not formed during the phase transition and that the sys­
tem goes over at once into the dielectric state. 

It is well known[31 that the metal-dielectric phase 
transition is, generally speaking, accompanied by the 
appearance of a two-component order parameter: 

(1) 

where u is a vector composed of the Pauli matrices. 
The formation of a singlet parameter ~s produces a 
charge-density wave (CDW) and structural distortions, 
while with a triplet parameter ~t are connected spin­
density waves (SDW) and antiferromagnetic properties. 
It has previously been shown that the coexistence of SDW 
and CDW gives rise to ferromagnetism. [3,41 In these pa­
pers it was found in the computation of the paramagnetic 
susceptibility of the dielectric phase (the excitonic-in-
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sulator phase) that, although during the phase transition 
in zero magnetic field (H = 0) there first arises only that 
parameter (~. or ~t) to which corresponds the larger 
coupling constant, both components of .& coexist already 
in an arbitrarily weak field H. Therefore, in computing 
the dependence T.(H), it is necessary to simultaneously 
allow for both types of pairing: Singlet and triplet. 

2. We shall consider the influence of a magnetic field 
on a structural-transition temperature, using as an ex­
ample a metal that is unstable with respect to the dou­
bling of the period. The electronic spectrum of such a 
metal near the Fermi level possesses the property: 
f,(p) = - r,(p +Q), where Q is half the reciprocal-lattice 
vector. This equality is exactly fulfilled with the en­
ergy r,( p) = f,F - JJ., where the quantity JJ. characterizes 
how much the filling of the electronic band differs from 
half. We shall denote the corresponding "excess" num­
ber of electrons by N. The total Hamiltonian of the sys­
tem can be written in the form: 

(2) 

A 

Here Jg'o is the Hamiltonian of the noninteracting elec-
trons and phonons: 

(3) 
p,a 

where a",(p) is the annihilation operator for an electron 
in a state with spin CI'/2(CI' = ± 1) and quasi momentum p, 
while b(p) is the phonon-annihilation operator. The 
Hamiltonian of the Coulomb interelectron interactioll 
has the form: 

~ ~ 2ne' ~ ~ 
Jg',,= "-'!.Ii' p (q) p ( -q) , p (q) = .E a. + (p-q)a. (p); (4) 

q p,. 

p(q) is the operator of the q-th Fourier component of the 
electron density. In (4) we have neglected momentum 
transfers exceeding 2Q. Finally, let us represent in 
the vicinity of the momenta ± Q (q « Q) the operator of 
interaction of the electrons with the phonon mode that is 
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unstable at these momenta in the form 

ic •• = .E {b+ (Q-q) +b(q-Q)}{gp (Q-q) +g'p'(Q+q)}+c.c. (5) 

In formula (5) we have allowed for umklapp processes, 
The amplitudes of the normal and umklapp processes 
are assumed to be equal, since they coincide in the limit 
as q - 0, In the single-band approximation the constant 
g is purely imaginary, because of the fact that in the 
monatomic lattice of the metal an ionic displacement 
caused by a phonon with momentum ±Q creates an anti­
symmetric component of the potential. For this choice 
of phases the Coulomb interaction, 41Te2 j q2, turns out 
to be real. In all the formulas (3)-(5) the summation 
over the quasimomenta is performed only over the non­
equivalent points of the first Brillouin zone. Therefore, 
for example, in the formula (5) the complex conjugate 
terms should be discarded at q = O. 

In an external magnetic field, to the Hamiltonian (2) 
should again be added the Zeeman term mH· (1, where 
m is the Bohr magneton. 

3. In accordance with the results of our previous 
paper, [4] let us introduce for the description of the 
phase transition of a metal into the dielectric state tem­
perature Green functions in the form of matrices in the 
spin indices (a, (3=± 1): 

6(p)=(Ga;(p)}=(-<T,a.(p, ,)a,+(p, OJ}, 
6(p±Q, p)=(G.,(p±Q, p)}=(-<T,a.(p±Q, 't)a,+(p, OJ)}. (6) 

Let us go over to the Fourier components of these func­
tions at the frequencies Wn =1TT(2n ± 1). Then, using the 
Hamiltonian (2) with allowance for the external magnetic 
field H, we obtain (just as int3,4]) that in the Hartree­
Fock approximation 

[iw-e(p) +f.l+mHa]d(p) +t.+6(p+Q, p) =1, 

t.6(p) +[iw-e(p+Q)+f.l+mHa]d(p+Q, p) =0. 
(7) 

Here as the energy reference point, we have chosen the 
point where E:(p) = E:F -p.. The quantity A in the formulas 
(7) is determined from the self-consistency conditions: 

- \"I { 4g' -
!J.=T k.J nw(Q) Sp[RegG(p+Q,p)] 

P.-

--SpG(p+Q,p)+-aSp[aG(p+Q,p)] , g, - g, - } 
2 2 (8) 

where the trace is computed in the spin variables, while 
T is the absolute temperature in the energy units. The 
constant gl determines the effective magnitude of the 
Coulomb interaction (in the high-density approximation 
gl"" 41Te2j Q2). 

The Eqs. (7) have been written with allowance for the 
equilibrium conditions for the displacements of the lat­
tice atoms. Let us recall that (as has been shown ear­
lier[3]) the possibility of a Bose condensation of the 
phonons will be automatically taken into account in the 
derivation of the Eqs. (7) for the electronic Green func­
tions if we introduce into these equations the Hartree 
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diagram containing a loop of the anomalous Green func­
tions G(p±Q,p) that is connected with other electroniC 
lines of the Do functions of the bare phonon. Therefore, 
the equilibrium equations for the atomic displacements 
need not be written out separately. In this case, if nec­
essary, the equilibrium density of the phonon Bose con­
densate (as well as the displacement of the atoms) is 
determined by the same loop diagram: 

<bQ++b-Q)=-2Do(Q) 1._oRe{ T ,EgG(p+Q,p) }, 
ct,II:l,P 

Do(Q) =-2w(Q) [W'+(02(Q) ]-'. 

It is precisely this formula that is equivalent to the 
equation for equilibrium of the lattice. 

The simultaneous solution of Eqs. (7) and (8) is pos­
sible for different choices of the phases of the matrix 
elements of ~ (the phases of the elements of the matrix 
G(p+Q,p) coincide with the phases of the elements of 
the matrix ~). The phases are chosen in the following 
manner. Since the metal is assumed to be initially un­
stable against a structural transformation (i. e., the 
electron-phonon interaction is assumed to be the con­
trolling interaction, as a result of which the frequency 
of the soft phonon mode vanishes at the phase transition 
point), the phase of the singlet order parameter ~. co­
incides with the phase of g, since otherwise (for real 
~s) the contribution of the electron-phonon interaction 
drops out from Eqs. (8). As to the phase of ~t, it is 
chosen on the basis of the results of our previous pa­
pers, [3,4] where it is shown that in a weak magnetic 
field H the triplet parameter ~t. directed along Hand 
COinciding in phase with ~s, arises in the excitonic-in­
sulator state with CDW. 

Having chosen the phases of ~ by the expounded meth­
od, we obtain from (8) (for H parallel to the z axis) 

(9) 

where the Singlet, gsc, and the triplet, gh coupling con­
stants are determined by the formulas 

g.=8!gl'jnoo(Q)-g" g,=g,. (10) 

The relation between the constants gs and gt for a real 
metal can be roughly estimated, using the approxima­
tion of nearly free electrons moving in the periodic field 
of the ions. It is easy to obtain that in this approxima­
tion: 

00' (Q) = ~2n" 4lte' g,,,,,Qz' 

Here M is the mass of an ion, e is its charge, n. is the 
ion density, and w(Q) is the plasma frequency of the 
ions. Substituting these expressions into the formulas 
(10), we obtaings ",3gt • Notice that if in the formula 
(5) we exclude the umklapp processes, then we arrive 
at the "jellium" model, for which g s = gt. Thus, the 
presence of the lattice, because of the coherence effect 
in the disposition of the iOns, changes the relationship 
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between the triplet and singlet constants in favor of the 
latter constant, and the structural phase transition with 
CDW turns out to be more preferable than the transition 
withSDW. 

Now let us solve Eqs. (7) for C(p +Q, p) and substitute 
the obtained expression into (9). Then, going over, in 
the usual manner from summation over p to integration 
over the energy & in the vicinity of &F, we obtain the 
equations for the determination of the parameters ~ 
and ~t: 

26,ln(T,./T)+6.{l(6+. 1t+)+I(6_. 1'-)] 
+6,[1(6+. 1t+)-1(6-. It-} l~O. 

26,ln(T,,/T)+6,[1(6+. 1t+}+I(6_. It-)] 
-6,[1(6+. 1t+}-1(6_. It-}]=O. 

Here 

-
1(6, It) = J de{[n(-E-It)-n(E-It) jE-'-[n(-e} -n(e) je-'}. 

E=(e'+6')'\ 6",=6,±6,. 1t±=It±mH. 
2/g;N(0) =In (2,,(e • .fnT,,). i=s. t. 1=1.78 ...• 

(11) 

(12) 

while n(x) is the Fermi distribution function and N(O) is 
the density of states near the Fermi energy in the metal 
per spin. The Eqs. (11) should be supplemented by the 
. condition for the conservation of the total number of 
electrons: 

-
2n=NIN(0} = J de[n (E+-It+) +n (-E+-It+) 

• 
(13) 

The Eqs. (11) and (13) completely determine the phase 
diagram of a system Simultaneously having a singlet, 
~s, and triplet, ~h dielectric ordering of the electrons 
in the presence of an external magnetiC field. 

4. Let us now find the dependence of the critical tem­
perature Ts of the structural transition on the external 
magnetic field. For this purpose, it is sufficient to 
solve the linearized-in ~s and ~t-equations (11) and 
(13) for T. Then we obtain at once from (13) that /J. =n, 
and the Eqs. (11) get transformed into the form 

a6,+x6,=0. x6.+(a-In 6'}6t =O; (14) 

a=In(T,./T} + (1++L}/2; x=(h-L}/2, 6'=T"/T,,, 
1",=1(0, It",}, 1t",=n±mH. (15) 

The compatibility condition for the system (14) deter­
mines the baSic equation 

a(a-In 6') =x' (16) 

for the determination of the dependence, Ts(H), of the 
phase-transition temperature on the field H. From the 
roots of Eq. (16) we should choose that which will ap­
pear earlier on the side of the metallic phase. Making 
this chOice, we obtain in place of Eq. (16) that 

a=1n 6- (In' 6+x') "'. In 6>0. (17) 

Before proceeding with the investigation of Eq. (17), 
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let us reduce the functions II., (15), to a form convenient 
for the subsequent computations. For this purpose, it 
is necessary to substitute into the integrals 1(0, /J.), (12), 
the expression for the Fermi distribution function in the 
form of the series 

n(x)= E(iCtl~-X)-' 
~ 

and integrate over the energy &. As a result, we find 

1",=Re ['V (4-) ~'V (++1 n~;n)], 
din r(z) 

'V (z)=--d-= lim [Ink-z-t-(zH)-t-. .. -(z+k)-'], 
Z "-+0:> 

where w(z) is the bigamma function and r(z) is the 
gamma function. 

(18) 

Let us now proceed to the solution of Eq. (17) for 
Ts(H) in the following limiting cases: a) weak magnetic 
field H or low concentration, n, of the excess carriers; 
b) low temperature Ts; c) on the diagonal mH=n; d) 
equal coupling constants (Tso= Tto). 

A. Weak field (mH«27rT~) or low concentration 
(n «27rTs ) 

It can easily be seen from the formulas (18) that the 
functions II. do not change under the substitution n ± mH 
-mH±n. Consequently, according to (17), (15), the 
structural-phase-transition temperature depends in 
equal measure on the magnetic field H and the concen­
tration n. Therefore, it is sufficient to investigate the 
case of a weak field H at fixed n, the formulas for the 
low -concentration case being analogous and obtainable 
with the aid of the substitution n - mHo 

In order to find the change in the phase-transition 
temperature when a weak magnetic field is switched on, 
it is necessary to expand the coefficients in Eq. (17) in 
powers of mH/27rTs up to the quadratic terms. Using 
the formulas (15) and (18), we obtain from (17) the equa­
tion 

Too [ Inr +I(0,n)=ln6- In'6+(Im'V')' 

( mH )']'" 1 ,,( mH )' x -- --Re'V--
2nT. 2 2nT. ' (19) 

where w!n}=dnw/dzn at z=i+in/27rTs• The values of Ts 
in zero field should be substituted into the right-hand 
side of this equation. These Ts values are known from 
the paper[Sl by Sarma, who computed the H dependence 
of Tc for a superconductor; a similar equation «19) for 
H=O) was obtained for the excitonic insulator by Ko­
paev. [6] The plot of the function Ts(n) for H=O is shown 
inFigs. 1, 2, and 3 (the curves in the (n, Ts) plane). 
Incidentally, it follows from the symmetry of Eq. (17) 
under the substitution mH - n that the dependence Ts(H) 
for n = 0 has a similar shape (the curves in the (mH, Ts) 
plane in the figures). 

Expanding now the left-hand side of Eq. (19) near the 
Ts line for H= 0 up to terms linear in Ts(H) - Ts(O), we 
easily find that the change in the structural-transition 
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FIG.!. 

temperature in weak magnetic fields H is proportional 
to the square of the field (an exception is the gs =gt 
case): 

T.(H)-T.(O) 

=~[ I + __ n_Im '1" ]-t[RC '1'''+ (lm '1")'] (~)'. 
2 2rrT.(O) lnl) 21tT.(O) 

(20) 
It follows from this formula that in the region of low 
concentrations (and high Ts) Ts decreases when the field 
is switched on, i. e., the metallic phase stabilizes. As 
n increases, the influence of the magnetic field on Ts 
decreases and, at some sufficiently high concentration, 
the effect changes sign and the metallic phase becomes 
destabilized when the magnetic field is switched on. 
The closer the values of the singlet, gs' and triplet, go 
coupling constants are to each other, the sooner this 
occurs. We can easily verify all this if we use the ex­
pressions (18) for the bigamma function. In fact, in the 
limit as n - 0, we shall have Re >It" < 0 and 1m >It' - 0, 
while as n increases Re >It" decreases in absolute value, 
while (1m >It,)2 increases. As has been shown, the de­
rivatives of the bigamma function can easily be ex­
pressed in terms of the derivatives of the same order 
of the function Ts(n) for H = 0 (see[4]). 

B. Low temperatures (21fTs « In ±mHI) 

In the low-temperature limit, to determine the re­
gion of fields H and concentrations n in which the struc­
turally distorted dielectric phase survives, it is con­
venient to use the asymptotic form of the bigamma func­
tion at large values of its argument: w(z)",lnz +O(l/z). 
Then from (15) and (18) we have 

a"'ln __ 2_1t_T.::..... _ 
1In'-m'H'I'" ' 

1 I n-mH I x",-ln -- , 
2 n+mH 

(21) 

where y is defined in (12). Substituting these expres­
sions into .the formula (17), we obtain an equation for 
the phase-transition lines in the (mH, n) plane (see Figs. 

FIG. 2. 

1.0 n 
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FIG. 3. 

1-3) for different relations between the coupling con­
stants gs and gt. If the triplet coupling constant is equal 
to zero (Tto = 0), then the phase transition lines at the 
temperature T= 0 form a family of hyperbolas (Fig. 1): 

I n'-m'H' I =n'T./!41'. (22) 

For equal coupling constants (Ina =0), the dielectric­
phase boundaries are described by the straight lines 
(Fig. 3): 

n=mH±nT •• !21· (23) 

A simple expression is also obtained for arbitrary val­
ues of the constants in the limit of very strong fields 
and very high concentrations: 

n=mH±nT,,/21, (24) 

i. e., in strong magnetic fields the dielectriC phase 
survives at zero temperature in a band of finite width 
(0:: Tto) near the diagonal in the (n, mIl) plane, or, for a 
given concentration, the phase transition occurs only in 
a magnetic-field range determined by the formula (24). 

C. Asymptotic value of Ts(H) on the diagonal n =mH 

In this case, using the asymptotic expansion for the 
bigamma function in the strong-field limit, we can easily 
show that 

T.=(T •• T,,)'h (25) 

for mH=n- oo • 

Thus, if both the Singlet, gs, and triplet, gh cou­
pling constants are greater than zero, then, irrespec­
tive of the value of the excess-carrier concentration n, 
i. e., for any location of the Fermi level in the metal, 
the metal will, in a sufficiently strong magnetic field, 
surely go over into the dielectric state at a finite tem­
perature. This circumstance is not difficult to under­
stand if we take into account the fact that an external 
magnetic field leads to the separation of the Fermi sur­
faces of electrons with different spin directions. There­
fore, for any value of n in some magnetic field H the 
Fermi level of the electrons in the metal for one of the 
spin directions will without fail pass through that part 
of the spectrum where the resonance condition e(p) 
= - e(p +Q) is fulfilled. 

D. Equal coupling constants (TtO = Tso) 

With the aid of the formulas (17), (15), and (18), it is 
easy to verify that for Tto = Tso the equation for the de-
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termination of the phase-transition temperature Ts in 
an arbitrary magnetic field coincides with the same 
equation for Ts in zero field when n is replaced by n 
-mH, 1. e., for equal coupling constants the external 
magnetic field simply shifts the T.(n) curve towards the 
region of higher concentrations. 

In Figs. 1-3 we present the results of numerical 
computations of the entire T. surface as a function of n 
and mH (for different values of T.ofTto), each variable 
being normalized to 1fT.of'Y. In these figures the space 
region bounded by the surface and -the coordinate planes 
(including the coordinate origin) belongs to the excitonic­
insulator phase and the remaining region belongs to the 
normal metal. 

5. Let us briefly discuss the results obtained. We 
have verified that the presence in the system of the 
triplet instability, together with the singlet instability, 
changes essentially the behavior of a structurally un­
stable metal in a magnetic field, although in zero field 
the possibility of triplet pairing in no way influences Ts. 
For the concentration n = 0, i. e., when the dielectric 
gap arising upon the doubling of the period exactly 
covers the entire Fermi surface, the presence of a 
finite triplet coupling constant gt also does not influence 
the value of Ts , irrespective of the intensity of the mag-

. netic field. This follows directly from the symmetry, 
noted at the beginning of Sec. 4, of the equations under 
the substitution n: mHo The role of the triplet insta­
bility comes to light as the number, n, of excess elec­
trons increases. Physically, the influence of the trip­
let instability manifests itself in the generation in an ex­
ternal magnetic field H for n~ 0 in the dielectric phase 
of SDW (and ~) against a background of CDW (and A.). 
The values of the dielectric gaps for opposite spin di­
rections then turn out to be equal (As + At and As - At). 
Because of this, there occurs an overflow of part of the 
excess carriers from one spin subband into the other, 
and, therefore, the condition for dielectric pairing for 
electrons with one of the two spin directions slackens 
and Ts increases. The degree of independence of the 
equations for the gaps with different spin directions in­
creases as TtO approaches T sO (i. e., as gt approaches 
gs)' In the ~imit when gs =gt, the equations for A. + At 
and As - At become independent (this can easily be veri­
fied by transforming the Eqs. (11)). This clearly facili­
tates the "overflow" process. Therefore, the greatest 
effect on the growth of T s in a magnetic field appears in 
the limit as T to - T sO' 

Williamson, Ting, and Fung, [7] on placing a VsSi sam­
pIe in a magnetic field, observed a reduction in the 
structural-transformation temperature that is propor­
tional to the square of the field intensity. In accor­
dance with our theory (formula (20», such a reduction 
should be expected if n is sufficiently small and gs >gt. 
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One could attempt to explain the results of this experi­
ment on the basis of the phenomenon of magnetic break­
down, whose effect on T. has been considered by Gor­
dyunin, [2] but, since the electronic spectrum of the A-
15-type compounds is assumed to be quasi-one-dimen­
sional, the orbital effects in these materials should be 
quenched. 

All the formulas obtained by us for the structural­
transition temperature in a magnetic field remain valid 
when we make the substitutions Tso - Tto and Ts - Tt 

(Tto > Tso) in them, 1. e., in the case of an antiferromag­
netic transformation. A triplet gap At and SDW then 
arise in the system at the Neel temperature Tt • If now 
such an antiferromagnet is placed in an external, suf­
fiCiently-strong magnetic field, then, first, its Neel 
temperature will change in accordance with the formulas 
(20) and (25) (in which the indices s and t have been in­
terchanged); second, there will appear in it CDW and a 
singlet gap As' Consequently, structural distortions 
(magnetostriction) will appear at moderate H in the sys­
tem. In particular, when antiferromagnetic chromium 
is placed in an external magnetic field, one of its mag­
netic sublattices is shifted relative to the other in the 
[111] direction, I.e., the chemical unit cell of bcc 
chromium should double in a field H. 

Now it is necessary to say a few words about the ap­
plicability of the obtained results. On the face of it, it 
may appear that the effect discussed by us can be cor­
rectly analyzed in the weak-coupling model only when 
the constants gs and gt are very close to each other, be­
cause of the exponential dependences of the tempera­
tures T.o and T tO on them. However, because of the 
square-root dependence of the critical temperature T. 
on T sO and TtO, (25), the conditions on the relation be­
tween the constants g. and gt are not so rigid. ThUS, if 
Tto-10-4T.o, then, according to (25), T.-10-2Tso, i.e., 
the effect is about 1%. 

In conclUSion, the authors wish to express their grat­
itude to Yu. V. Kopaev for a useful discussion of the 
present paper. 
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