
relaxation times in the liquid crystal phase. Each of 
these facts is necessary although the form in which they 
are taken into account for calculations can be made 
more precise. One may hope that in the framework of 
the concepts given here the kinetic phenomena in liquid 
crystals can be connected with the sizes and shape of 
molecules in as far as this can allow the single mole
cule approximation used here. 

IlThe values of the stress tensor of a suspension of ellip
soids given in our papertl3 ! are erroneously understated by 
the amount 2j.!q1Ylk which must be added to the appropriate ex
pressions. This reduces to the fact that the value of w in the 
definition (4.9) (seeU3 !) must be increased by unity. The re
maining expressions then remain valid. The numerical 
values of the quantities wand V in Figs. 1 and 3 must be 
increased by unity. In Eqs. (7.5), in the equation that fol
lows, and in (9.3) one should read 2.5 instead of 1. 5. 

2)ln a similar manner we can establish the form of the rota
tional diffusion equation for a particle of arbitrary shape, the 
oreintation of which is determined by two mutually perpen
dicular unit vectors e and c 

The antisymmetric angular velocity tensor 0'8 and the sym
metric diffusion tensor Dkl are here functions of the vectors 
e and c and of the tensor Sjk' 
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We construct a theory of the ponderomotive forces at the surface of a superconductor of arbitrary 
dimensions, which is valid in the framework of the applicability of the London equations or the Ginzburg
Landau equations. The formalism obtained is used to describe a number of observable effects: the effect 
of magnetic forces on the dispersion law of the bending oscillations of a plate of arbitrary thickness in a 
parallel magnetic field, the appearance of an electrical quadrupole moment in a superconducting sphere in 
a uniform magnetic field, and so on. The presence of a potential difference between the equator and the 
poles of such a sphere in a magnetic field is experimentally confirmed. We propose, in connection with the 
problem of the calculation of the magnetic forces at the surface of a thin plate of a type-I superconductor, 
a consistent perturbation theory for the solution of the Ginzburg-Landau equations under the stated 
conditions. 

PACS numbers: 74.30.Gn, 74.70.Gj 

One of the fundamental properties of superconductors 
is their capacity to expel from their volume an external 
magnetic field with a field strength less than the critical 
one (the Meissner effect). This fact leads to many con
sequences which can be experimentally verified. In 

particular, the Meissner effect is accompanied by the 
appearance of well defined magnetic forces at the sur
face of the superconductor. We are dealing with a pres
sure from the magnetic field on the surface of the super
conductor. which for bulk superconductors and weak 
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magnetic fields is given by the well known phenomeno
logical relation ([11, p. 216) 

P=-llo'/8n, 

where Ho(r) is the local value of the magnetic field at 
the surface of the sample. 

(1) 

Another effect, which is less well known, but is or
ganically connected with the action of the pressure (1), 
turns out to be the appearance at the surface of the su
perconductor of a well defined charge density. The 
point is that the pressure (1) is in fact applied to the 
electron gas, which is the carrier of the superconduct
ing properties of the metal. For that reason the initial 
magnetic forces lead only to a deformation of the den
sity of the electron component of the superconductor. 
This deformation destroys the electro-neutrality of the 
metal, and this is equivalent to the appearance of sur
face charges which compensate the action of the mag
netic forces on the electrons. As a result, the pres
sure (1) starts to act upon the lattice of the metal via 
the field of the charges. Electrical fields induced by 
the magnetic field, which in magneto-mechanical effects 
are a necessary intermediary between the electron and 
the lattice effects of the problem, can be observed also 
independently. Such a possibility follows, for example, 
from Bock and Klein's experimentsC21 in which the ap
pearance of a potential difference between the poles and 
the equator of a bulk superconducting sphere in a uni
form magnetic field was detected and was proportional 
to the square of the magnetic field. 

Magneto-mechanical effects must occur for supercon
ductors of any dimensions. However, when the dimen
sions of the sample are reduced the phenomenological 
relations which determine the amplitude of the magnetic 
pressures ultimately cease to be valid. Under such 
conditions it is necessary to use for the calculation of 
the magnetic forces equations that retain their meaning 
for finite-size superconductors. 

The aim of the present paper is the construction of a 
theory of magneto-mechanical effects at the surface of 
a superconductor which is valid for superconductors of 
any size. In the first part of the paper we use the Lon
don definition of the magnetic forces and calculate on 
this basis some concrete magneto-mechanical effects. 
Later we discuss the problem of the magnetic forces at 
the surface of a superconductor in the framework of the 
Ginzburg-Landau theory. 

LONDON DEFINITION OF THE MAGNETIC FORCES 

We first of all consider the possible consequences of 
the London definition of the magnetic pressures on the 
surface of a superconductor. Supplementing the Max
well equations with the connection between the super
conducting current is and the magnetic field H 

(4n6'/e)rot j.+H=O, 6'=me'/4nn.e' (2) 

({j is the penetration depth for the magnetic field into the 
bulk superconductor, m and e are the electron mass and 
charge, c is the velocity of light in vacuo, and ns the 
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denSity of superconducting electrons) and postulating 
the equation1) 

4n6' aj, 
----=E 

e' iJt (2a) 

(E is the electric field) London[31 obtained a closed set 
of equations describing the electrodynamiC properties 
of local superconductors. 

As one of the consequences of these electrodynamiCS 
one can find an explicit expression for the momentum 
flux tensor of the field and of the super conducting elec
trons T fk and hence also the volume force denSity f 
acting per unit volume of the superconductor: 

(2b) 

Here T fk and Sik are the Maxwell and the so-called Lon
don stress tensors. It turns out that under stationary 
conditions 8Tjk/8xk =0, i. e., there are no volume 
forces in such an electrodynamical scheme. To make 
things clear we can state that in this case the Lorentz 
volume force which acts on a moving charged fluid is 
exactly cancelled by the Bernoulli pressure. As to the 
boundaries of the metal with vacuum, by definition the 
tensor T ~ is continuous on it, but Sik has a discontinu
ity. Because of this discontinuity there are surface 
forces at the superconductor-vacuum boundary, 

P,=Su«O) n.=- (mI2n,e')j.'(0) , (2c) 

where n is the normal to the metal surface. 

Yet another way to obtain the tensor Tfk of (2b) is of 
interest for what follows. It is well known from field 
theory that if the equation of motion (in this case the 
London Eq. (2» is obtained through the variation of a 
functional of the form 

F =: Fo + S A (q, ::,) dr, A=_1_(H' + 6'lrotHI'), 
8n 

(2d) 

the momentum flux tensor T ik corresponding to this 
"equation of motion" is given by the expression (see[41) 

aT" =0. 
ax. (2e) 

One checks easily that for the actual functional (2d) the 
tensor (2e) has the form (2b). 

For a more consistent study of the problem of the dis
tribution of the forces in the volume of a superconductor 
it is sufficient to use London's Eq. (2), supplementing 
the theory by the equation of motion of a charged fluid 
in an electromagnetic field 

aj, 1 e'n, e [. X HJ 
-+-(j.V)j.=-E+- J. . at n,e m em 

(3) 

Using (2) Eq. (3) takes the form 

4n6' !1-..-E=-~Vj.', 
e' at 2n,e' (3a) 
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i. e., it differs from (2a) by the term with Vj~. 

In the given non-linear variant of the theory, which 
was also discussed by London (seets] , p. 56) and con
firmed by further microscopic calculations, [5] there 
acts upon the density of superconducting electrons a 
volume force which is equal to the Bernoulli pressure, 
well known in hydrodynamics: 

(3b) 

As a result, to satisfy the condition aj.! at = 0 one must 
introduce in the problem a longitudinal volume electric 
field E, i. e., destroy the local electro-neutrality of the 
superconductor. However, this field E, determined 
from the condition eE/m - !vv~ =0 does not affect the 
magnetic field distribution inside the superconductor as 
mvS/PF« 1 (vs is the superfluid velOCity and PF the 
Fermi momentum). 

The appearance of the volume forces (3b) in this vari
ant of the theory is, as one can easily verify, accom
panied by the vanishing of the surface force such as (2a) 
due to the discontinuity of the momentum flux tensor. 
Indeed, the tensor T ik corresponding to the equation of 
motion (3), 

T,It·~=TiJ<M+TiRE+Sil<. Sih=mj!j!.lnse:! (3c) 

(T f" and Ti~ are the Maxwell stress tensors for the 
magnetic and electric fields) is continuous at the metal
vacuum boundary, i. e., 

The integral action of the forces Ii of (3b) is equiva
lent to the presence at the surface of the superconductor 
of an effective magnetic pressure PH which is equal to 

(3d) 

where the integration is over a coordinate into the su
per conducting phase up to the point where Vv ~ vanishes. 
If at the upper limit of the integral in (3d) the quantity 
Vs also vanishes, the definitions (3d) and (2c) coincide. 
In the cases of practical interest such a coincidence al
ways occurs. 

The more consistent system of definitions (2), (3a) to 
(3d), without touching upon the results referring to the 
magnetic field distribution over the volume of the su
perconducting phase and without changing the average 
value of the magnetic field pressure at the surface of 
the superconductor, therefore changes the volume dis
tribution of the magnetic forces qualitatively due to the 
Meissner effect as compared to the variant (2a) to (2c). 
There exists a sufficient number of interesting prob
lemsfor which the distribution of the magnetic forces 
over the volume of the superconductor is not of interest 
as a matter of prinCiple. In what follows we discuss 
just such problems. 

For a bulk superconductor the results (2c) and (3d) 
written in terms of H are the same as (1). If, however, 
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the size of the superconductor is small (comparable to 
the penetratlOn depth 0 of the given superconductor) 
there arise, of course, deviations from the phenomeno
logical definitions. It is convenient to trace these devia
tions using concrete examples. 

1. We consider a super conducting plate of thickness 
2d in a magnetic field Ho parallel to its surface. The 
plate executes bending oscillations with a low frequency 
wand amplitude ~, while the wavevector q of the oscil
lations is parallel to Ho, Ha II q. Under such conditions 
the magnetic forces affect the dispersion law for the 
bending oscillations of the plate. This effect increases 
particularly fast in the limit d» 0, q 0« 1 when the 
presence of the superconducting properties of the plate 
can be taken into account via the boundary condition for 
the magnetic field, which corresponds to the field not 
penetrating into the superconductor 

Ho=O, (4) 

where n is the normal to the surface of the curved plate. 

In actual fact, the bending oscillations of the plate 
lead, apart from the deformation of the magnetic field 
lines of force, which is effectively taken into account 
through the boundary condition (4), to the appearance 
near the surface of the superconductor to electric fields 
with a strength (tll, p. 228) 

E= [V X Holle, (4a) 

where V is the velOCity of the plate motion. Below we 
discuss the role of this electric field. 

When the shape of the surface is periodically per
turbed, 

the initial magnetic field strength Ho ceases to satisfy 
the boundary condition (4) as there appears a component 
HJ. normal to the surface of the plate: 

H.l =-H,ii,£/iJx. (5) 

To eliminate the magnetic flux through the surface of 
the superconductor it is necessary to introduce an aux
iliary magnetic field h(x, t) with boundary value hJ. with 
the opposite sign of (5): 

h=vrp, ~rp=o, 

~ I =llo~, <pl~ -+0. 
iJz. iJx 

(6) 

As a result the total magnetic field along the surface of 
the bent superconductor turns out to be equal to 

ll,,=llo[Hq£(x, t) I. (7) 

It is somewhat larger than the average field Ho above 
the convex relief of the surface and somewhat smaller 
above the concave one. 

We noted above that there exists yet another perturba-
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tion of electromagnetic origin, which is connected with 
the occurrence of the electric fields (4a). Estimates 
show that the magnetic field accompanying the genera
tion of the electric field (4a) has an amplitude h1 - wVIol 
c. This field is less than the extra fields (6) and (7) in 
as far as the ratio of the sound speed in the solid to the 
light speed in vacuo is small. The magnetic pressure, 
normal to the surface of the plate, is, up to terms lin
ear in~, equal to 

PH=T'kMn.I±d""-(H,'j8n) [1±2gs(x, t) J. (8) 

We can split the action of the pressures (8) on the plate 
as a whole into two parts. The main, symmetric, part 
of the pressures that are directed opposite to each other, 
exerts a compressive action on the plate: 

(8a) 

and by virtue of its relative smallness does not appreci
ably affect the properties of the plate. The other part 
of the pressures (8), 

P,,=Pn(+d)-PH(-d)=H,'g;(x, t)/2n, (8b) 

bends the plate and hence affects the dispersion law for 
the bending oscillations of the plate. 

Substituting (8b) into the equation of motion of a plate 
or membrane we find the corresponding dispersion laws: 

pdffi' = Ed' g' + H2~' g, 
12(1- cr') " 

(9) 

P is the density of the material of the plate, and E, a are 
the Young modulus and the Poisson coefficient; 

pdffi'=Tq'+H,'g/2n, (9a) 

T is the tension in the membrane. Substituting into (9) 
E _1011 g cm-2 s-2, d -10-2 cm, a-lO-I, q -1 cm-1 we 
find that the magnetic contribution H~/21T in the disper
sion law (9) is of the same order as the elastic one for 
fields Ho-I02 Oe. Such field strengths are for many 
superconductors appreciably less than the critical field 
He· 

2. One understands easily that when the thickness of 
the film decreases to values d;;; Ii when it becomes incor
rect to neglect the penetration of the magnetic field into 
the volume of the film, the effect of the magnetic field 
on the oscillations of the membrane, covered by the su
per conducting film, decreases. For a quantitative de
scription of the function PH (d) it is necessary to "join" 
the magnetic field distribution inside the superconduc
tor, determined by the London equation V2h = Ii -2h, divh 
=0, with the vacuum solution (6). As a result 

(10) 

However, it is not possible to carry out the calcula
tion of the pressures in this case in terms of h" since 
the quantity h is continuous at the metal-vacuum bound
ary. Writing down the appropriate super conducting cur-
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rents in the film and using the London definition of the 
pressure (2c), (3d)2) we find for PH(d) an expression 
which generalizes the phenomenological result (8): 

(11) 

The changes in the dispersion laws (9) and (9a) then re
duce to the substitution 

.!!l.... ..... H,' "(sh"(d 
2n 2n "( sh "(d + g ch "(d 

If, however, we are dealing with a composite film, con
Sisting of an elastic substrate with parameters 2do, Po, 

To, and a superconducting film of thickness 2ds and den
sity Ps (we neglect the tension of this film), using (11) 
we then get for the dispersion law of such a membrane 

( d + d) ' T' H,' "( sh "(d 
p" p •• ffi = ,g + - g . 

2n ph yd + g ch "(d 
(12) 

It is interesting to note that the deviations from the 
phenomenological values for the pressures P u of (8a) 
and Ptt of (8b) arise at different regions of film thick
ness. According to (8a) and (11) the pressure p .. is 
equal to 

(11 a) 

i. e., it starts to depend on d when 

(13) 

As far as the pressure P tt is concerned, according to 
(11) the deviations from (8b) must arise in the region 

th "(d<g6. (13a) 

Using the inequality qli« 1, which is satisfied with a 
large margin for the bending oscillations of a plate, the 
requirement (13a) for the thickness of the plate turns 
out to be more rigid than (13). 

3. We calculate also the electric quadrupole moment 
of a super conducting sphere in a uniform magnetic field. 
The original definitions for the component Dzz of the 
quadrupole moment of the magnetic field distribution 
near the field are 

D,,= S p(3cos'O-1)r'dV, (14) 

6a sh(r/6) ( r 6) H,=3H,---- cth--- cosO 
r' sh(a/c5) c5 r ' 

H,= 3H, Ila sh(r/Il) [cth~-~(1+-.C.)] sinO 
2 r' sh(a/Il) Il r Il' ' 

H.=O. 

Here p is the charge density in the volume of the super
conductor, dV an element of volume of the superconduc
tor, a the radius of the sphere, and the definitions (14) 
are written in a spherical system of coordinates with 
the origin at the center of the sphere and the polar axis 
along the direction of the unperturbed magnetic field. 

In the limit a» Ii the distribution of the pressures PH 
on the surface of the sphere is 
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9H' 3H' 
PH =-' Sin'eE5-' [P.-p,(COSe)] 

32n 16n ' 
(15) 

p~(X) are the Legendre polynomials. 

The presence of the pressures PH at the surface of the 
sphere leads to a shift of the electron density relative 
to the ion framework of the superconductor, as a result 
of which there appear surface charges on the surface of 
the superconductor. In the incompressible electron fluid 
approximation we are dealing with a shift of electrons 
from the equatorial region of the sphere to its poles. 
The equilibrium surface charge density distribution is 
determined from the condition that the work done by the 
magnetic pressure when producing the charges is bal
anced by the Coulomb energy which arises. USing the 
auxiliary concept of the shift HB) of the boundary of the 
electron denSity relative to the surface of the sphere 
we write the work done Q by the magnetic pressure when 
the charges are separated in the form (ds is a surface 
area element of the sphere) 

Q = JpH (en(e)ds=-pH o.2na's,/5, 

[ ) ] PH' = ~ Ho' PH=PH ' po-Po (cos e , 16 n ' 

He) =a;,p, (cos a), S s(a)ds=o, (16) 

On the other hand, the Coulomb energy of the surface 
charges which arise is analogous to the Coulomb energy 
which turns up in the calculation of the natural oscilla
tions of an incompressible charged drop of nuclear mat
ter (see, e. g. ,(61) if we understand by the surface charge 
denSity the expression 

0(9) =enoHa) ~enoas,p,(cos e), (17) 

no is the ion volume density. 

USing (17) and the equations given in Davydov's book[61 
we have for the Coulomb energy Ve in terms of no and ~ 
the following expression: 

V,='/,na'e'no's,'/5. (18) 

Comparing Q and Ve we find 

(19) 

The surface charges on a superconducting sphere in a 
magnetic field are thus determined by Eq. (17) with ~ 
from (19). 

Once we have 11(8) we can easily evaluate Dzz from 
(16). In the limit a» 6 

D"0=3,,a'PH O/5noe. (20) 

In the case of an arbitrary radius of the super conducting 
sphere ao« a :::; 6 (ao is the interatomic distance) the ex
pression for Dzz looks as follows: 

997 

D.,=D.:rp(a/6) , 

{ 1, .x>1 
rp(.x)=.x-'[cth.x(cth.x-.x)-sh-'.x]= , 

x /9, x..;:L 
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(21) 

The appearance of the charges (17) and (19) on the sur
face of a sphere in a magnetic field can be put in corre
spondence with the observed occurrence of a potential 
difference between the equator and the pole of a cylin
drical superconductor in a transverse magnetic field. [2] 

According to Bock and Klein this difference is propor
tional to HZ and oscillates with twice the frequency of 
the change in the magnetic field. The doubling of the 
frequency of the potential difference is connected with 
the fact that during one period of the change in the mag
netic field the pressure PH reaches its maximum twice. 

MAGNETIC FORCES AND THE GINZBURG-LANDAU 
THEORY 

1. To determine the forces in the framework of the 
Ginzburg-Landau equations (GL equations in what fol
lows) which arise as the result of the variation of the 
functional F [7] 

(f(r) is the magnitude of the order parameter, A(r) the 
vector potential, x the parameter of the GL theory, and 
Eq. (22) is written in the usual dimensionless units), it 
is natural to use Eq. (2e) for T1k 

aA (]A 

ax, a (aA/ox,) . 
(23) 

By definition, the tensor Tfk in (23) satisfies everywhere 
in the volume of the superconductor the equation aTfk/ 
aXk =0 for the coordinate-dependent quantities/(r) and 
A(r), which satisfy the GL equations. The situation 
which occurs when we use the definitions (2a) to (2c) in 
the London variant of the theory is thus duplicated also 
in the G L theory. 

The non-vanishing component T!z (z is the coordinate 
directed into the super conducting phase) in the one-di
mensional case turns out to equal 

1 1 of' aA' 
T,,'=-(1-A')f+-f'-- (-) - (-) =const. 

2 x' az az (24) 

Expression (24) is exactly equal to the well known first 
integral of the GL equations, whence we can conclude 
that the existence of that integral is closely connected 
with satisfying the condition aTfk/aXk =0 in the one-di
mensional case. 

Defining (by analogy with (2c» the pressure at the 
metal-vacuum boundary as the difference between the 
values of the momentum flux in the superconductor and 
in vacuo, and using the boundary conditions 1'(0) =0 and 
A '(0) =H, we find the following result for PH: 

P II=(1-Ao')fo'-/o'/2, fo5>/(O) , Ao""A(O). (25) 

Using (24), where const=i for the case of a bulk super
conductor, we can rewrite (25) as follows: 

(25') 

The magnetic part of this pressure in dimensionless 
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units is the same as expression (1). As to the constant 
t, its appearance must not cause any surprise, since 
the magnetic pressure is defined accurate to a constant 
that is independent of H ([1], p. 224). 

2. The results (22) to (25) need some commentary. 
The microscopic derivation of the GL equations[B] shows 
that to obtain them from the general Gor'kov equations 
one can neglect terms - t mv ~ as compared to terms 
- PFvs (vs is the superfluid velocity and PF the Fermi mo
mentum). In other words, the accuracy of the GL equa
tions is sufficient for the determination of the distribu
tion of the magnetic field inside the superconductor and 
of the order parameter, but insufficient (in its existing 
form) to describe effects leading to the appearance of a 
local longitudinal electric field inside the superconduc
tor of the kind of the Bernoulli potential (3b). For that 
reason the conclusion reached above about the absence 
of ponderomotive forces inside the superconductor when 
we describe its properties by the GL equations is most 
likely a consequence" of the approximation and is not re
tained when the theory is made more exact, as occurs, 
in fact, in the London approximation. Nonetheless the 
expression for the effective pressure at the surface of 
the superconductor, which is an integral characteristic 
of the as yet unknown volume distribution of the forces, 
should, as in the London approximation, not depend on 
the details of the distribution of the forces over the vol
ume of the superconductor. One can therefore use the 
result (25) for the calculation of actual effects which de
pend only on the total magnitude of the magnetic pres
sure at the metal surface. 

One should state that the mentioned inaccuracy of the 
GL equations is not unique. In fact, the coefficients of 
the expansion in powers of the parameter f2 in the free 
energy (22) are well defined functions of the coordinates, 
and this leads to an additional source for the existence 
of volume forces. The cause for this dependence is the 
observed effect of the change in the volume of the super
conductor when it goes over from the normal into the 
superconducting state (see, e. g., Shoenberg's book[9]). 
Such a change in the volume in the transition region at 
the ns -boundary of the intermediate state must be ac
complished by the appropriate volume forces. However, 
numerically this effect is very small (the relative change 
in the volume is 10-7 [9]). 

3. USing the formalism expounded above with the 
reservations listed we can make the results which fol
low from the London definition appreciably more exact. 
We conSider, for instance, the problem of the symmet
ric part p .. of the pressures for a thin type-I super con
ducting plate of thickness 2d < 1/x, x« 1 in a parallel 
magnetic field. The GL equations then become one-di
mensional and, hence, the expression for TZi/: retains 
the form (24). However, the constant, which is now 
equal to the momentum flUX, is not equal to t. We must 
therefore use Eq. (25), and not (25'), as the definition 
of the pressure at the surface of the plate. USing the 
explicit form of the vector potential in the plate prob
lem[7J: 

A(z)~Hosh/oz/loch/od, x-+o, 
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where the dependence of fo on Ho and d is given by the 
relationsl 

, (I '_i) ~ Ho'(1-(sh 2/0d)/2fod) 
10 0 2 ch' lod ' (26) 

and using (25) we find an expression for the pressures 
p .. at the surface of a thin plate: 

(27) 

Comparing (27) with (lla) one easily notes the changes 
arising in the determination of P". Apart from the ap
pearance of fo in the argument of the hyperbolic tangent: 
tanh2 (d/6)-tanh2 {fod/6), which we could expect in the 
case of thin plates, the stretching part of the pressures 
which for a bulk superconductor had the form t, begins 
to depend on the magnetic field. As a result the ex
pression (27) contains the termf~(1 - tf~) which is com
pletely absent in the definition (lla). As Ho - 0 we have 
f~(1- tf~)- t. 

Turning to the determination of the bending part of 
the pressures for plates performing oscillations in a 
parallel magnetic field we can arrive at the conclusion 
that the effective increase in the penetration depth, 6 
- 6/fo, ariSing under the conditions fo« 1, noticeably 
widens the region of plate thicknesses for which the 
quantity PH(d) begins to depend on d. The corresponding 
inequality which replaces (13a) is 

th (fod/b) <q6/fo. (28) 

It is clear that the possibility for an effective increase 
of the penetration depth for the magnetic field into the 
volume of a superconductor is, because of the fact that 
fo - 0 is small, a basic distinguishing feature of the the
ory of magneto-mechanical effects in the framework of 
the GL equations as compared to the analogous consid
eration in the London variant of the theory. 

The author is grateful to V. L. Ginzburg for a number 
of critical remarks about the problems touched upon in 
the present paper, and also to A. F. Andreev, Yu. N. 
Ovchinnikov, and L. P. Pitaevski'i for discussions of 
the results of the paper. 

APPENDIX 

The solution of the set of Ginzburg-Landau equations 
for a thin type-I super conducting plate in a parallel 
magnetic field 

r~x'[ (A'-1)f+f']' A"~/2A, 

t' I ±d~O, A'I±d"C'H 

will be looked for (see[6]) in the following form 

Ao~H,h loz/Io ch fod, f(z) ~/o+!Jl, !Jl«./o. 

The quantity rp is then according to[7] defined by the 
equation 

!Jl" ~x2[f03_fo+ (3fo'-1) !Jl+Ao'/ol. !Jl±: =0. 
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(A1) 

(A2) 

(A3) 
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In actual fact, however, the equation for qJ must in the 
general case of arbitrary magnetic fields contain also 
a term A~qJ. The absence of this term in (A3) does not 
lead to errors in the relation between 10 and Ho in the 
zeroth approximation in xd« 1, but starts to affect the 
results in the following approximations. In this connec
tion there arises the necessity of a more consistent 
consideration of the higher approximations in x in the 
problem of a thin plate in a parallel magnetic field. 

We write/(z) andA(z) as series 

1=/0+><'1.+><'1,+""", A=Ao(z)+><'A,+ .. " (A4) 

substitute (A4) into (Al) and collect terms of the same 
order of smallness 

1,"=(A,'-1)lo+!," /,'I~,=O; 

A," = 1,'A,+2f,Aof" At'l .,=0, 

It =2A,I,A,+ (A.'+3Io'-1) f" I,' I ±,=O, ... 

(A5) 

(A6) 

An interesting peculiarity of the set of approximations 
which we have written down is the method of determin
ing the constants which arise during the solution of the 
equations for II in each of the approximations. The 
zeroth boundary conditions substituted for arbitrary I~ 
and not for the function I; itself lead to the fact that the 
corresponding integration constants CI of the equations 
for II can not be determined in the same approximation. 
One finds the values of CI from satisfying the boundary 
condition for 1:.1 =0 in the next approximation. 

Bearing in mind what we have said we give the solu
tion of the set (A5): 

A.=H. sh f,zl/. ch fod, 

( sh' f z z' ) 
II (z) =ctz'+~ 4/.: - "4 + c" 

ct=Io(/0'-1) 12, ~=Ho'ilo ch' I,d, 

/0'(/.'-1) H'l 1- Csh 2j,d)/2/od] 
2 ch' lod 

(A5a) 

The last relation which determines 10 in terms of H and 
d and which is the same as Eq. (26) of the main text is 
here obtained from the requirement that IH± d) =0. 

As to the quantity C1 it remains as yet unknown. To 
find it we must solve the set (A6), using (A5a) and re
quir ing that the condition I ~ (± d) = 0 is satisfied. As a 
result we find 

AI (z) =AI (z) _ oAI (z) I sh toz , 
oz ,../och/od 

A.= J A,(t)sh/o(z-t)/.(t)dt, 

(A7) 
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d 

j,'(d)= S {2j,A o(z)A.{z) +[Ao'(z) +3j,'-1]j. (z)}dz=O. (AS) 

The integrations in (AS) are elementary, but Eq. (AS) 
when written out expliCitly turns out to be rather cum
bersome for the determination of the constant Cl' For 
that reason the explicit expression for Cl has a translu
cent form only in the limit lod < 1 

I,d' 1-0.7Ho'd'-' I"Ho'/o'd' 
c·=-s- 1-'I,Ho'd:'+'I"Ho'fo'd'" (A9) 

In the region/od- 0 the combination H~d2/3 -1 in the 
denominator is proportional to I~. As a result expres
sion (A9) diverges as 1/10 as/o-O. This means that 
the solution of the GL equations obtained here has a 
meaning only for finite values of 10 as long as 10 > x 2/l" 

l)A consequence of the Maxwell equations and Eq. (2) is the 
equation 

4,,6' aj, 
---- - E = grad <1>. 

cZ at 

where 4> is an arbitrary scalar function. London's postulate 
consists in the assumption that this arbitrary function van
ishes. 

2)We noted above that the definitions (2c) and (3d) COincide in 
the present case since the superconducting current for a 
plate in a parallel magnetic field vanishes in the middle of 
the plate. 

3)Equation (26) is valid in the limit ~ - O. In the more general 
case ><d< 1 the analysis['1] that allows us to determine the 
>< -dependence of fo contains some inaccuracies. A self
consistent scheme of calculating the function foe ~) is given 
in the Appendix. 
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