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We consider in the framework of a semi-classical theory the interaction of a system of atoms with a 
radiation field. We show that taking the non-resonance term into account leads to a new effect: the 
appearance of stochastic trajectories while there are no random parameters in the system. The size of the 
stochastic region (the stochastic layer) is determined by the dimensionless interaction constant A. When 
11.< I the size of the stochastic layer is of the order of 327T exp( -7TV21 A). When A;::; lone gets complete 
stochastization of the motion. From the estimates obtained it follows that when A;::; I, the time to destroy 
coherence due to stochastic instability can be several times less than the time for spontaneous emission, 
and this may thereby restrict the limiting coherence of the system. 

PACS numbers: 42.50.+q, 32.l0.Vc 

§1. INTRODUCTION 

The interaction of two-level atoms with a radiation 
field is one of the basic models for the study of the 
atom + field system. Notwithstanding the simplified 
character of the model many physical processes are de­
scribed within its framework (transformation of the 
radiation, resonance fluorescence, superradiation, and 
so on). A theoretical analysis of the model has up to 
now not been complete, and in the course of time one 
has detected in it more and more new physical proper­
ties. 

From the time of the pioneering paper by Dicke[lJ 
which predicted the superradiant state of the system, 
the ground state of the atom + field systemC2J was found 
to be unstable when 

A- (16nplt'/liro) '/'>1, (1) 

where 11. is the dimensionless constant for the interac­
tion between the atom and the field, p the density of the 
atoms, JJ. the matrix element of the dipole moment of 
the atom, and w the frequency of the atomic transition, 
which is the same as the frequency of the field (reso­
nance condition). Quite recently Hepp and Lieb, [3J in a 
study of the thermodynamic properties of the system in 
the framework of exactly the same model, have discov­
ered in it a second-order phase transition when condi­
tion (1.1) is satisfied and at temperatures below the 
critical one. In the region of the ordered phase there 
appears a coherent state of the atoms[4J characterizing 
the formation of "order from disorder." A new surpris­
ing property of the two-level atoms + field system which 
was described in this paper was the reverse effect of the 
formation of "disorder from order." In other words, 
the system in the coherent (superradiant) state is being 
stochasticized. 

We dwell in detail on this effect. When we describe 
the interaction of the atoms with the field under reso­
nance conditions we neglect the non-resonance terms 
(the so-called rotating field approximation). The basic 
results for the spectrum and the dynamics of the sys­
tem were obtained just in this approximationC2,5-8J (see 
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also the review article[9J). The energy of the atoms is 
periodically (and, under well defined conditions, aperi­
odically) changed into field energy and vice versa, char­
acterizing a bound state of the atoms and the field. The 
neglect of the non-resonance terms is so weakly based 
because of the formal difficulties which occur, that the 
generally accepted use of the truncated Hamiltonian of 
the system has changed into a sort of symbol of faith. 
We shall show below that the perturbation due to the 
non-resonance term leads to a breaking of the bound 
state and that this breaking is stochastic in character, 
and we determine the region in which this breaking oc­
curs. 

The stochastic instability of the motion occurs in a 
purely dynamic system (i. e., without there being any 
random parameters or forces present) as the result of 
the existence of a local instability of trajectories in 
phase space [10 ,11 J: the distance between initially arbi­
trarily close points in phase space increases exponen­
tially with time. Such a behavior of the trajectories of 
the system leads to a decoupling of the time correlations 
of the fast variables (phases) and to the formation of an 
equilibrium distribution of the variables of the system 
(differences in populations, number of field photons) in 
the region where the breaking occurs, the so-called 
stochastic layer. 

When 11. « 1 the above-mentioned result can be ob­
tained analytically (§3). The width of the stochastic 
layer is small and lies in the region of the integrals of 
motion of the system corresponding to a regime close to 
where the energy is completely transformed from the 
atoms to the field and vice versa. When 11. increases 
the width of the stochastic layer increases. A study of 
the exact equations of motion for 11. ~ 1 is made by using 
an electronic computer and we give the corresponding 
numerical data in §4. It turns out that a value 11. - 1 is, 
just as in problems about the spectrum and about the 
phase transition, the critical one: when 11.;;;: 1 the dimen­
sionless width of the stochastic layer is equal to unity. 
In the system the angular-momentum integral is broken 
and the system performs a statistical motion on an en­
ergy surface. In the Conclusion (§5) we discuss in con-
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nection with the results obtained problems about the oc­
currence of stochastic instabilities in quantum systems 
and possible conditions for the realization of the ob­
tained effect. 

§2. SELF·CONSISTENT EQUATIONS OF MOTION 

We consider a system of N two-level atoms which in­
teract with a resonant field E in a volume V and which 
are in a coherent state. We use a semi-classical model 
to describe this system[6J: the field is assumed to be a 
classical object and the atoms quantum objects. The 
state of the i-th atom is described by a wavefunction 
l/!l = all/! (1) + bll/! (2), which is a superposition of the two 
basic states of the atom l/! (1) and l/! (2) • We introduce the 
difference in populations and the dipole moment of the 
atom: 

(2.1) 

where jJ. is the matrix element of the dipole moment. 
We define for a system of N atoms the densities of these 
quantities: 

1 N 

n=}j I:n" (2.2) 

If the field is nearly uniform (X» V 1/3) one can de­
scribe the system of atoms as a whole by means of the 
quantities n and m. The equations of motion have the 
form 

E+Cll'E=4nCll'/-lpm, 

lii+Cll'm = - 2/-lCll En Ii = 2/-l Em 
Ii' IiCll' 

(2.3) 

where p =N/V is the density of the atoms. The differ­
ence between the set (2.3) and the one obtained by 
Jaynes and Cummings[6J lies in the fact that N* 1 and 
that the cooperation numberUJ r which in the present 
case is given by the expression 

r=n'+m'+m'/Cll', (2.4) 

is also different from unity. The quantity r is an exact 
integral of motion of the set (2.3). Moreover, Eqs. 
(2.3) have the energy integral which we write in dimen­
sionless form: 

C=e'/Cll'+e'+n-Aem, e=(4nliCllp)-'I'E. (2.5) 

Here A is the dimensionless coupling constant given by 
(1. 1). 

It is convenient to introduce action-angle variables: 

e= (I.lCll),,' cos <p" e=- (CllI,) 'j, sin <p" 

m = (I ml Cll) 'I. cos <pm, m =- (CllI m )'1. sin <pm. 
(2.6) 

We can then write the set (2.3) in the following canonical 
form 
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H=Cll'C=I.Cll+Cll'(r'-Im/Cll) 'I, -~ACll (I,Im)'I'(cos1jl+cos <p), 
2 

aH 1 , 
1 •. = --a - = --CllA(I.Im) I. (sin 1jl+sinqJ), 

<p. 2 

CP. = aH = Cll-~ CllA( 1m ) '" (cos 1jl+cos <p), 
aI, 4 I. (2.7) 

Jm=2n~ =-CllnA(l,lm) 'I. (sin 1jl-sin <p), a <pm 

¢m=-2n aH =Cll+~CllAn(~)'" (cos 1jl+cos <p) , 
aIm 2 1m 

n'=r'-Im/Cll, 1jl""<p.-qJm, <P""<j).+<Pm. 

We denote the number of photons per atom by Y =le/w 
and rewrite (2. 7) in the form 

C=y+n - +A[y(1-n') ]"'(COS1jJ+8 cos <p), 

Cll 
Ii = 2 A[y(1-n') J'" (sin 1jl-e sin <p), 

Cll {( 1-n' ) 'I, (Y) '''} 1jJ=--.\ -- +2n -- (cos1jJ+ecos<p), 
4 y 'i-n' 

(2.8) 

Cll 
y = - ?"A[y(1-n') p'(sin ¢+e sin <p), 

Cll {( i-n' )'" (Y )"'} ¢=2Cll- 4 A -y- -2n 1-n' (cos1j;+ecos<p), 

where we have artificially introduced a parameter e 
which takes on values 0 or 1 and have put r = 1. 

The meaning of these operations consists in the fol­
lowing. It is clear from Eqs. (2.3) and (2.4) that we 
can introduce the following quantities, which are nor­
malized by r, 

fj=ylr, ii=nlr, iii=mlr, 7h=mlr, 

p=pr, A=Air. 

Therefore, for the normalized variables, allowance 
for r* 1 reduces solely to replacing A by A, and the 
form of the equations is retained. We shall omit the bar 
in the set (2.8) and in what follows everywhere. When 
e = 1 the set (2.8) is exactly equivalent to the set (2.7). 
The resonance approximation for these equations is con­
nected with neglecting terms containing cos<p which is 
equivalent to e = O. In the latter case one gets a closed 
set of three equations for n, l/!, and y which has an addi­
tional integral of motion 

P=-1/2A[y(1-n') 1'" cos 1jJ=const(e=O). (2.9) 

The usual argument on which the dropping of the non­
resonance term in (2.7) and (2.8) is based is connected 
with the fact that either A « 1 or else the term cos<p is 
a high-frequency one. In actual fact this is not always 
true. When e = 0 the motion of the system is along a 
closed trajectory which lies on the constant energy sur­
face C = const. in phase space (see Fig. 1, where e 
= arc cosn). Each trajectory is determined by the two 
integrals of motion C and P and corresponds to the nuta­
tion of the energy spin of the atoms. Among the family 
of all trajectories there is one special trajectory (sep­
aratrix) for which C = 1, P= O. It passes through the 
points n =± 1, n = 0 and describes the aperiodic regime 
for emission or absorption of the field by the atoms. It 
is well known that any arbitrarily small perturbations 
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FIG. 1. Constant energy surface C=1 in the y, 6, 1j>-phase 
space: 1) P> 0, 2) P< 0, 3) p=o separatrix. 

lead to very strong distortions of the trajectories which 
lie in the vicinity of the separatrix. This distortion is 
stochastic in character, i. e., regular motions of the 
system under the influence of the perturbation change 
in the vicinity of the separatrix into random mo­
tionsnQ-12] (see also the review article[13]). The ap­
pearance of stochasticity in the set (2.7) or (2.8) leads, 
as we shall show in what follows, to important physical 
consequences. 

§3. STOCHASTIC DISTORTION OF THE 
TRAJECTORIES FOR THE CASE OF WEAK COUPLING 
(A« 1) 

When A « 1 we can study analytically the effect of the 
non-resonance term on the nature of the motion of the 
system. We introduce for the unperturbed motion, using 
the integrals P of (2.9) and C of (2.8), the quantity 

~=C-P=n+y, (3.1) 

which is also an integral of motion. One can directly 
check that the following equations are valid: 

(3.2) 

where we have used (3. 1) to make in P the substitution: 

P(n, ¢; 8) =P(n, ¢; y=8-n) =_1/2A[ (8-n) (1-n') l'" cos 1jJ. (3.3) 

Therefore, P(n, l/J, iJ) is the Hamiltonian in the space of 
the variables nand l/J. 

We use (3.2) and (2.8) to write the perturbed equations 
in the form 

ap 
'Ii=ro-+M a¢ , 

. ap , 
'I'=-ro Tn + Ll1jJ, 

M=-'/,wA[ (~-n) (1-n')]'" sin cp, 

1 {[ 1-n' ]'1. [~-n]'I'} 
Ll,p = - '4 roA ~ -n + 2n 1-n' cos cp, 

(3.4) 

The perturbing terms in (3.4) can lead either to a change 
in the form of the integral of motion P or to its com­
plete breaking. 

It is further convenient to change to the variables n 
and n. To do this we consider the expression 

(3.5) 

In the unperturbed case it follows from (2.8) that 
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sin'¢=4Ii'/w'N(~-n) (i-n'). (3.6) 

Substituting (2.9) and (3.6) into (3.5) we get 

., i 
fjJ=- ~ +8w'N(~-n)(i-n'). (3.7) 

We can easily directly verify that the equations of motion 
can be written in the following Hamiltonian form: 

d. afjJ 
-n=-. 
dt an 

(3.8) 

Using the integral of motion [J' we can easily integrate 
the set (3.8) and the solution for n(t) has the formes] 

n=n,+(n,-n,)sn'['/,w,\l'n3-n, (t+t,); q], 

q=[ (n,-n,)/(n,-n,) J''', 
(3.9) 

where q is the parameter of the Jacobian elliptic func­
tion, and nl < nz < ns the roots of the equation 

(i-n') (8-n) -8i1'/ro'N=O. (3.10) 

We find thus in the unperturbed case from (3.6) and 
(3.9) the functions n(t), n(t), and l/J(t) for different values 
of the integrals of motion fjJ and iJ. 

We turn to a determination of the equation which de­
scribes the change in the integral P under the influence 
of a perturbation. We have from (3.3), using the canon­
ical nature of the variables n and l/J, the exact relation 

8P ap ap' ap ap ap . 
P=-li+-,p+-----'~=-M+-Ll¢+-~ 

an a¢ a~ an a¢ aiJ' 

After substituting the derivatives of P and the definition 
~'=C -P (C=O) we get from this the required equation: 

P='/,wN(1+2n8 -3n')sin (¢+cp)/[ 1-P/2(8 -n) J. (3.11) 

As the right-hand side is considered to be a perturbation 
we can use in it for n, l/J, and qJ the unperturbed expres­
sions. In particular, qJ"" 2wt. Of most importance for 
us will be the region of trajectories close to the separa­
trix (P =0, ~ =C = 1). According to (3.9) the unper­
turbed motion in the vicinity of the separatrix has the 
following form: n(t) changes almost from -1 to + 1 and 
it stays a very long time near the turning point n = + 1 
which is of a hyperbOlic type, since the period of the 
oscillations tends to 00 as one approaches the separatrix. 
Furthermore, we have from (3. 10) for the character­
istic roots as fjJ - 0 

n,""-1 +2fjJ/w'A'=-1 +P'/ N, 
n',3"" 1+ (8 -1)/2+[ (~-1)'/4+2P'/N]"'. 

(3.12) 

Approaching the separatrix means also II - 1 - 0, and 
for sufficiently small values of g -1 we have nz.s"" 1 
+ 21/2 P / A. Hence it follows that the denominator in 
(3. 11) is - 1 as the maXimum deviation of it from 1 is 
not more than - A« 1. We find from (3.12) that the ex­
pression 1 + 2n iJ - 3~ "" - 4 during a small time interval 
of the order of the period of the small oscillations 21T / wo. 
when the system is sufficiently far from the singular 
point n = + 1. On the other hand, in the vicinity of the 
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singular pOint the quantity 1 + 2n 0 - 3rt- is very small 
(- piA) during a very long time interval 27T/W(P) where 
w(P) is the non-linear frequency of the oscillations of 
the system. 

Using (2.8) we can thus write instead of (3.11) 

P""/,wNA(t) sin 0, e~2w+O(A), (3. 13) 

where A(t) is a function in the form of pulses that follow 
periodically with a period 27T/W(P) and with a height-l 
and a width -27T/WO. The quantity Wo determines the 
frequency of the small oscillations of the atoms + field 
system and when (~-1 according to (3.7) Wo = wA/..j2. 
Using this feature of A(t) we change from the set (3.13) 
to equations for discrete transformations 

Pm +I ""P",+!1P, 

~w w w ~(~) 
0,,,+, "" 6m + --- "" Om + 4rc --- 4rc ------ 'J.1', 

W(pm+,) w(p,.) w'(P",) dP", 

wN 
!1P=-2-S A(t)sinOdt, (3.14) 

where Pm and em are the values of p(t) and e(t) immedi­
ately preceding the action of the m-th pulse of the func­
tion A(t). 

The set (3.14) has been well studied (see, e. g., (31) 

and the nature of its solution is determined by the mag­
nitude of the parameter 

K = 411w I dw (P) I !1P 
w'(P) dP . 

(3.15) 

When K« 1 which means that the change in phase in 
(3. 14) with time due to the perturbation is small, the 
system performs conditionally periodic oscillations 
around the unperturbed trajectory-the so-called phase 
oscillations. On the other hand, when K» 1 the motion 
of the system is stochastic and is characterized by the 
time for the decoupling of the phase correlations tc: 

R(l) =<exp i[ 6(1,) -6(I,+t) ])a: exp (-tit,). (3. 16) 

It has been shown earlierU2J that when K» 1 the time tc 
is given by the relation 

t,=1/w (P) In K. (3.17) 

The region where the transition from a regular dynamic 
motion to a stochastic one takes place can be found from 
the condition 

K(P,C)-1. (3.18) 

Equation (3.18) defines a curve Po =Po(Co) such that for 
P lying in the region 

O<IPI<IPo(Co) I, (3.19) 

there occurs a stochastic instability of the trajectories. 
We call the region (3.19) the stochastic layer. It fol­
lows from (3.13) that the stochasticity of the phases e 
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leads also to stochastic changes in the quantity P. This 
means that in the region (3.19) the integral of motion is 
stochastically broken. The time tD for such a breaking 
is defined as the time for the diffusion of P. 

Using the fact that the change e:..p is small we can 
write down the Fokker-Planck equation for the distribu­
tion functionj'(P, t): 

!.!..= -~ «I'lP)f) +~~ «(!1P)')f) (T=wt), 
(IT ap 2 ap' (3.20) 

where the averaging of e:..p is over e in the time interval 
t c « t« tD. We have in order of magnitude 

(3.21) 

Since there is no percolation at the boundaries of the re­
gion (3.19) the equilibrium j'(P) is constant and this also 
determines the distribution in P in the stochastic layer. 

We evaluate the parameter K on whose magnitude the 
nature of energy transfer in the atoms + field system de­
pends. According to (3.13) and (3.14) we consider the 
change in the integral P during one step of the transfor­
mation: 

1 S . !1P """"2 wi\.' A (t) Sill (2wt+60 ) dt. (3.22) 

We have already noted that the characteristic frequency 
for the change in A(t) is equal to Wo = wAN2« w. The 
integral (3.22) is therefore exponentially small: 

- (1Il'2a) max!1P-41'211Aexp ----;;;:- , (3.23) 

where the constant a-I and where we have used the fact 
that A(t)-l over a time interval -7T/WO. 

The simplest way to obtain the expression for w(P) is 
from the solution (3.9) the frequency of which for q'2 = 1 
- q2 « 1 and C '" 1 equals 

11 / 8l'2A w(P)""-=wA In--. 
l'2 .. P 

(3.24) 

Substituting (3.23) and (3.24) into (3.15) we get 

(3.25) 

Hence, putting K(Po, Co'" 1) = 1 we get the boundary of the 
stochastic layer for Co = 1: 

Po=3211exp (-1Il'2aIA). (3.26) 

Finally, we can use (3.17) to write down the rate of 
decay of the nutational motion in the stochastic layer: 

(P<p.). (3.27) 

For small values of A the width of the stochastic layer 
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FIG. 2, Unperturbed trajectories for different values of A (C 
=1, P=-O,I): 1) 11.=0.2; 2) 11.=0.4; 3) 11.=1.0; 4) 11.=3.0. 

is - Po and exponentially small. Thus, for A = O. 4 the 
quantity P o-10-3 to 10-4• It follows from Eq. (3.7) that 
such values of P can be reached only in the case when 
the difference in populations takes the value n = + 1 with 
an accuracy of 10-3 to 10-4 • As this means that there is 
practically a complete transfer of the energy from the 
atoms to the field and vice versa one can reach the con­
clusion that just such a regime is liable to stochastic 
disruption. It is accompanied by the broadening of all 
dynamic lines of the spectrum of the vibrations of the 
system by a magnitude Yc' To use Eq. (3.27) to esti­
mate the line widths is not at all simple as it is neces­
sary to average in it over the various values of K. How­
ever, due to the presence of logarithms it is clear that 
the quantity Yc/w is not too small. We find in the next 
section from a numerical analysis from A = 0.4 that y / 
w- 10-2. From this it follows that it is just the stochas­
tic instability which in a well-defined region of param­
eters restricts the limiting degree of coherence of the 
system. 

One should also note that there may be also a broad­
ening of the spectrum outside the stochastic layer which 
is not of a stochastic, but of a dynamic type (this prob­
lem will be discussed in detail in §4). When A increases 
the width of the stochastic layer increases and one may 
expect that its relative width will for A - 1 also be - 1. 
A proof of this statement can, however, only be given 
numerically (§4). 

§4. NUMERICAL ANALYSIS OF THE EQUATIONS 
OF MOTION 

We performed a numerical computed analYSis of the 
set (2.8). For convenience we introduced a dimension­
less time l' = wt. In the general case the set (2.8) has a 
single integral the energy C and the region of motion in 
phase space is a three-dimensional volume bounded by a 
closed surface. When e = 0 there is an additional inte­
gral P of (1. 9) and the motion is over a two-dimensional 
closed surface C = const. The quantities C and P de­
termine a two-parameter family of trajectories which 
are closed curves on the surface (see Fig. 1). These 
curves correspond to the nutation of the energy spin of 
the atoms. We give in Fig. 2 the projections onto the 
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(n, zp) plane of trajectories with different values of the 
interaction constant A. When A increases the angles of 
the trajectories become sharper. 

When A « 1 and qJ = 21' the perturbation from the non­
resonance term cosqJ reduces to the action of a periodiC 
force on a non-linear system. Far from the separatrix 
the motion retains under the perturbation its condition­
ally periodic character[12] and is determined by a new 
integral P. This motion can be represented by trajec­
tories wound on a toroidal tube, the axis of which is the 
unperturbed trajectory. The diameter of the tube is de­
termined by the width of the non-linear resonance be­
tween the system and the external force. The prOjection 
of such a trajectory on the (n, zp) plane is a continuously 
filled layer. This corresponds to an everywhere dense 
covering of the toroidal tube by trajectories. An exam­
ple of such a layer is given in Fig. 3. It has a rather 
well-defined width tl.n which corresponds to the appear­
ance of subharmonics near the frequency of the coherent 
nutation w(P). The magnitude of w(P) is equal to the 
frequency for the exchange of energy between the atoms 
and the field. Due to the perturbation, this process is 
modulated by a periodic "ripple" with a modulation am­
plitude tl.n. 

When P decreases the trajectories approach the sep­
aratrix1 ) and in some neighborhood of the separatrix fall 
into the stochastic layer. We have already noted that 
there occurs in such a layer a local instability of tra­
jectories in phase space: the distance between two close 
trajectories increases exponentially with time. This 
property of the trajectories can be put as the basis for 
the observation of the stochastic instability in the nu­
merical analysis. (10] We define the distance between 
two trajectories by the expression 

o 

. '. 

FIG. 3. Points of the perturbed trajectory 11.=0.4, C=I, P 
= 0.04. The solid curve is the unperturbed trajectory. 
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FIG. 4. The time-depen­
dence of the distance be­
tween initially close tra­
jectories. C= 1, A= O. 4, 
P=10-5• 

D = [ (n,-n,),+(y,-y,)' +{ "'~~"', }+{ 1j)~~Ij),} t, (4.1) 

where the brackets { ••• } indicate the fractional part of 
the argument. The characteristic time for the mixing 
of the trajectories in phase space is defined as the quan­
tity which is the reciprocal of the growth rate Ye of the 
local instability, i. e., 

(4.2) 

The numerical analysis of the set (2.8) confirms the 
results of §3 that for A« 1 and sufficiently small P the 
motion becomes stochastic. The boundary of the sto­
chastic layer corresponds to the estimate from Eq. 
(3.26). An example of the exponential increase of D 
with time is given in Fig. 4. For small values of A the 
quantity logD fluctuates strongly with time and on aver­
age increases linearly until D becomes - 1. It follows 
from Fig. 4 that Y./ w- 10-2 • 

When A increases the stochasticity region of the mo­
tion increases steeply and when A> 1 it covers the whole 
phase space (see Figs. 5 and 6). The growth rate Ye 

then increases trongly (Fig. '7): for A =0.9, y/w"" 0.1; 
forA=3, y./w""0.35. 

From the physical point of view the appearance of 
stochasticity means the following. The perturbation 
breaks the integral P. The energy spin performs not 
only nutational oscillations, but also precesses. This 
leads to random changes in sign of P. As a result of 
such a motion the coherence of the energy transfer pro­
cess from the atoms to the field and vice versa is de­
stroyed. The correlation function of the dipole moment 

.' . " Ie 

. .', __ joL:':--+-_-J...l.o"'" --''---Jo.L.o:--'--'--g..Jo"':"o ~L--,~.J-o-:-o --'-lJ-, .... o~o ...:...._,.Jrg;. 

FIG. 5. Stochastic trajectory for C=l, A=O.9, P=10-5• 
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FIG. 6. Stochastic trajectory for C=l, A=1.S, P=10-5• 

which determines the susceptibility has a width Ye which 
is equivalent to a broadening of the line of the transition. 
The number of field photons y also changes stochastical­
ly with time, almost uniformly filling the allowed region 
of phase space (Fig, 8). The set of Eqs. (2.8) thus con­
tains in it a source of stochasticity without any external 
or other additional factors. Critical for the system is 
a value of the interaction constant A -1, as for A> 1 
there is no regular motion of the system (except, per­
haps, for small islands of stability which do not show up 
in the numerical analysis). In other words, a coherent 
nutation process is principally impossible for A > 1. 

§5. CONCLUSION 

It follows from our results that in the exact model for 
the interaction of two-level atoms with a resonance radi­
ation field the motion of the system can be of two na­
tures, depending on the parameters: regular periodic 
or stochastic. The regions of the one or the other kind 
of motion are determined by the magnitude of the inter­
action constant A. The value A - 1 turns out to be the 
critical one and leads to an anomalously large region of 
stochasticity. We give characteristic estimates for A. 
For A = 10 JJ. m, JJ. = 10-18 esu the value of A - 1 corre­
sponds to a density p - 4 x Hr1 cm-3 • For rotational 
transitions of molecules A - 250 JJ. m and JJ. = 3 X 10-18 esu 
(for instance in the HF gas) we have A -1 for p- Hfo 
cm-3• This means that the critical value of A can be 
reached only at rather high pressures. 

19.0 0 , 

o so TOO TSO zoo ZSOT 

FIG. 7. Time-dependence of the distance between initially 
close trajectories. C=l, P=10-5, and 1) A=O.9, 2) A=3. 
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FIG. 8. Stochastic trajectory in the n,y-plane. C=l, A=1.8, 
p= 10-5• The straight line depicts the unperturbed trajectory. 

In the experiments by Skribanowitz et ale [14] when ob­
serving superradiance in the HF gas stochasticity ef­
fects could not manifest themselves in view of the very 
low pressure. Notwithstanding the fact that the criterion 
A ~ 1 corresponds to extremal conditions for optical sys­
tems, the effect discovered here has a fundamental val­
ue as one is dealing with the appearance of stochasticity 
in quantum systems. Although the problem at the pres­
ent remains unexplained, the model considered is yet 
another example (see also[1S]) in which the stochasticity 
destroys the energy spectrum of a quantum system. In­
deed, quantization of the truncated Hamiltonian of the 
system without the non-resonance term leads to a two­
parameter energy spectrum (with respect to the number 
of integrals of motion). [9] The stochastic instability 
breaks one of them (P) and the energy spectrum be­
comes not only a one-parameter one, but also, apparent-
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ly, a quasi-random one, as in[1S]. This shows that the 
analysis of the interaction of radiation with matter under 
conditions where there is a strong coupling must as a 
matter of principle take into account the unremovable 
statistical nature of the motion which in quantum optics 
so far has not been considered. 

l)We chose for all perturbed trajectories an initial phase <Po 
= ~1T and initial values no, Yo, 1/10 pertaining to the unperturbed 
trajectory which is determined by the quantity P which is in­
dicated in the legends to the figures. 
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