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It is shown that the long-range part of the interatomic interaction is significantly altered in a strong 
electromagnetic field. Instead of the Van der Waals law the asymptotic potential is described by a dipole­
dipole R -3 law. The impact line broadening and line shift in a strong nonresonant field are calculated. 
The possibility of formation of bound states of two atoms in a strong light field is discussed. 

PACS numbers: 34.20.Fi 

1. The effect of a strong electromagnetic field on the 
characteristics of inelastic atomic and molecular colli­
sions has been investigated in a number of recent pa­
pers. tl-3l The main effect studied in these papers is 
that the energy of the strong field photon cancels the 
resonance defect of the colliding systems. As a result 
the inelastic transition probabilities are Significantly 
enhanced. 

In the present paper we wish to point out that a strong 
light field changes also the interaction of colliding atoms 
at large distances. This affects the characteristics of 
the elastic scattering and, consequently, the collision 
width and shift of spectral lines, which can be verified 
most simply by the following example. Let two differ­
ent atoms in the s -state collide in a nonresonant, lin­
early polarized electromagnetic field iff of frequency w. 
Dipole moments O!A(W)itOcoswt and O!B(W)iffocoswt are 
then induced in the atoms, where O!A,B are the atomic 
polarizibilities (it is assumed that the atoms are sepa­
rated from each other by a distance R, much smaller 
than the wavelength of light). The long-range part of 
the atomic interaction, averaged over a period of the 
field, is obviously 

(1) 

where (J is the angle between the vectors iff 0 and R. 
Without a field the atomic interaction is caused by Van 
der Waals forces, i. e., Us = caR-6. The interaction (1), 
thus, becomes dominant ifR>(c6/O!AO!Biff~)1/2. 

We assume that atom A is in the ground state, and 
atom B is excited. For an estimate one can take O!A 
-10 a. u., O!B -102 a. u., and the constant Cs can be es­
timated by the Slater-Kirkwood equationt4l ; Cs -102 a.u. 
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In fields 00 -10-2 a. u. the interaction (1) exceeds the 
Van der Waals one at R > 10 a. u. 

2. The modified interaction is quite important at sig­
nificantly lower fields if the field frequency is close to 
the resonance frequency of one of the atoms (atomA, 
for example). We treat this problem in detail. Let the 
field be in resonance with the transition between the 
ground and first excited states of atom A. This atom 
can be then described by a density matrix for a two­
level system, including spontaneous transitions into the 
ground state. The relation between the duration of 
atomic flight through the light beam T and the excited­
state lifetime l/y is an important factor in this case. In 
real situations the intensity distribution of the field over 
the cross section of the beam has a characteristic di­
menSion, therefore the duration of field involvement is 
of the order of the time of flight through the beam. For 
thermal velocities in a beam of diameter - 0.1-1 cm the 
condition yT» 1 can always be assumed to be satisfied. 
This implies that the two-level system is described only 
by the induced solution of the equations of motion for the 
density matrix. As is well-known, this solution is (see, 
for example, tSl) 

V e-i"(,,. , 
P"=--2 (pu-p,,).--+ 2 e-'.; 

8 "(" (2) 

Here v =0od~, d~ is the transition dipole moment, Yt2 
is the luminescence line width of atom A, and e is the 
field frequency, measured from the line center of the 
atomic transition woo 

Generally speaking, yand Y12 in Eq. (2) can differ ap­
preciably from each other, since y contains, besides 
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radiative damping, contributions of inelastic collisions, 
while 1'12 contains contributions of elastic collisions as 
well. In what follows we consider the range of pres­
sures in which the contributions to I' and 1'12 by colli­
sions of A atoms with each other can be neglected. 
These collisions between identical atoms are described 
by a dipole-dipole mechanism even in the absence of a 
light field. In this case the smallness criterion of the 
collision width as compared to the radiative one is of 
the well-known form NA1..S« 1, where NA is the density 
of gas A, and 217)( is the transition wavelength. For the 
visible region this condition restricts the density of gas 
A to 1015 cm-s• For higher densities 1'12 depends on V, 
and Eq. (2) with a constant r12 is no longer valid (in this 
connection see Lisitsa and Yakovlenkotal ). 

The average dipole moment of atom A in the presence 
of a field is expressed in terms of the nondiagonal ele­
ment of the denSity matrix: 

(3) 

As far as atom B is concerned the field is nonresonant, 
therefore its dipole moment is determined, as usual, by 
the polarizability dB = llB00 coswt. We thus obtain for 
the time-averaged atomic interaction the dipole-dipole 
law: 

() ( ) (V) aB e V' 
U,=c, V R-' 1-3 cos' e, c, =- "-L '+ V' ' 

2 e-, '" 112-h 
(4) 

It follows from (3) and (4) that the quantity I dA I, and 
consequently also the interaction energy, reaches a 
maximum value at frequencies 

The constant Cs in the extremum points at V2» Yh2 is 
linear in the field, unlike (1), and is of the order of 
cs(V)- llBd~60. At exact resonance (e=O), cs(V) van­
ishes as a consequence of the adiabatic atomic interac­
tion with the field in the range of anomalous dispersion. 

In the presence of an electromagnetic field the Van 
der Waals part of the interaction is also changed. As 
is well-known, it is obtained as a result of including the 
change of the wave function of first order in the dipole­
dipole interaction. The distinctive feature of this case 
consists of the fact that the resonant field singles out 
only two levels of atom A. The derivation in the Appen­
dix leads to the physically clear result: 

u.=c.(V)R-', 

c.(V)= ~ l{dA'dB'-3R-'(dA'R)(d"R)}tn.'ml·(~+t -~), 
~ (i)mn (i) tllmn-tJ) (5) 

i. e., U6 consists of two parts corresponding to two 
levels of atom B with their populations and Van der 
Waals constants. Unlike the dipole-dipole constant 
cs(V), the quantity ca(V) does not depend so critically on 
the field and on the frequency deviation from resonance. 
In order of magnitude the quantity ca is approximately 
equal to the Van der Waals constant without a field. 
Another difference is that ca is independent of the angle 
9 between the vectors (50 and R. 
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3. We calculate now the collision line broadening and 
line shift of atom B due to the adiabatic loss of phase 
syndronism caused by the interactions (4) and (5). In 
the linear trajectory approximation R =r +vt the total 
phase shift 1/ is determined by the equation 

3n c, 2c, 
1](r, v) =-----sin'1jlcos2q>, 

B vr' vr' 
(6) 

where l/! is the angle between the relative velocity of the 
atoms v and the direction of the field 60, cp is the azi­
muthal angle in the plane perpendicular to v, and r is 
the impact parameter. 

The cross section a" determining the line shift Aw 

=NAva", where NA is the density of atoms A, equals 
(see, for example, Cal) 

1 S s- S' [ 2c, ] ( 3nc, ) an = 2 sin 1] rdr dq> sin ,pd,p=-2n. rdr, dxl. -;:;;(1~.x') sin BvT' 

(7) 
(the integration with respect to l/! in (7) corresponds to 
averaging over the relative-velocity directions of the 
atoms). As seen from (6) and (7), there exists a char­
acteristic value of the constant Cs (and, consequently, 
of the field V and its frequency e), at which the contri­
butions of both terms to the phase 1/ are equal. We in­
troduce a parameter A defined by the equation 

(8) 

and express the asymptotic value of a" in its terms. In 
the weak-field region (I A I « 1) we obtain 

a"(V) = 1- sin(2n/S) r'c/,)"". 
a"(O) 3n 

(9) 

In the opposite limiting case 

a"(V) r('/,)cos (n/S) 1",1-'. 
a"(O) 2l'2r('/,) cos (2n/S) 

(10) 

The Van der Waals line shift is negative in the ab­
sence of a field (see Eqs. 5 and 6). The dipole-dipole 
interaction in a strong electromagnetic field gives a 
shift of opposite sign. Therefore, the total collision 
line shift decreases in absolute value with increaSing 
field and tends to zero as l/V in the strong-field limit 
when the field frequency is tuned in such a manner that 
it is always near the critical values1) e = emu. The char­
acteristic value of the field corresponding to A -1 is ap­
proximately 10-4 a. u. For a flux density 108 W / cm2, 

atom velocity -104 cm/sec, and pressure 10-2 Torr the 
line shift due to the dipole-dipole interaction is of the 
order of 102 Hz. 

The following results are obtained for the cross sec­
tion a ' of the collision line broadening: 

a'(V)/a' (0) =1 + sin(2n/S) PC/,)",', 1",1<1, 
3n 

a'(V)/a'(O)= 4n P('I,)sin~ 1",1, 1",1»1. 
3 S 

(11) 

For the same pressure, flux density, and atom velocity 
values as given above the field-dependent part of the 
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collision width is of the same order of magnitude as the 
shift, and is approximately 300 Hz. 

4. The discussion above refers to the overwhelming 
majority of atoms whose kinetic energy is of the order 
of the thermal energy. A small fraction of atoms with 
kinetic energy of relative motion ;S I Us I can form a 
bound molecular complex AB*. We have in mind the 
range of binding energies E in which bound states are 
mostly formed by the dipole-dipole part of the full in­
teraction. Naturally, bound states are possible even 
without a field, OWing to the Van der Waals forces. The 
corresponding levels are deeper in energy, i. e., they 
occur at higher values of lEI (E<O). 

The E value separating these two regions can be found 
by calculating the density of bound levels v(E) in the 
quasiclassical approximation (for this it is necessary 
that the total number of levels be large): 

v (E) = ~ J dR{E-c R-' (1-3 cos' 8) +c W'-AR-"}'" (12) 
2S2n)2' 6 , 

where p. is the reduced mass of atoms A and B. The 
integration is performed over the region of R in which 
the radicand is positive. To remove the divergence of 
the integral as R - 0, we have included in (12) a term 
describing repulsion at small distances in the traditional 
form AR-12 (A -106 a. u.). As follows from (4), the sign 
of C3 depends on the sign of the frequency deviation from 
resonance e. Therefore, dipole-dipole attraction occurs 
in the angular region 90 < 9< 1T - 90 for e > 0, and in the re­
giOns 0 < 9 < 90, 1T - 90 < 9 < 1T for e < 0, where 90 = arccos(l/ 
/3). An analysis of (12) shows that at low energies I E I 
«cV4cs« c:/SA -1/3 the last two terms under the square 
root sign can be neglected (in this case the region R 
- I c3/EllIS provides the main contribution to the inte­
gral). 

Thus, at lEI «c~/4cs, the bound states are of dipole­
dipole origin, and the density of levels (for any sign of 
e) is given by: 

1'6 
v(E)= -1l'''lc,IIEI-'''. 

27 
(13) 

A factor ~ was introduced in (12) and (13) to take into 
account the twofold level degeneracy with respect to the 
sign of the momentum z-projection. Requiring that the 
number of levels described by Eq. (13) be large, we ar­
rive at the condition p.3/2C~C61/2» 1. This inequality im­
plies that at the extremal frequencies the flux density 
should be much higher than 108 W / cm2 for p. - 20 proton 
masses. It is Significant that the position and number 
of the bound-state energy levels depend on the light field 
intensity, i. e., unusual nonlinear optical effects are 
generated. 

The formation of bound AB * complexes should be 
manifested in the structure of the absorption spectrum 
of a weak signal that is resonant with the transitions of 
atom B. Satellites of molecular complexes should ap­
pear against the background of the absorption lines con­
tour, this being the analog of vibrational-rotational 
structure of molecules. Unlike ordinary molecules, the 
AB* system considered here is characterized by a low 
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binding energy and by a large equilibrium internuclear 
distance. As a consequence the coupling between the 
nuclear and electronic degrees of freedom is weak. 
Therefore, the transition dipole moment in the absorp­
tion coefficient K(w) can be assumed to be independent 
of the molecular quantum numbers: 

Here a and b number the upper and lower electronic 
terms, p. and v are the quantum numbers with respect 
to the nuclear degrees of freedom for the terms a and b, 
respectively, (p.I v) is the overlap integral of the nuclear 
wave functions, and NaIL and NbV are the number of atoms 
in states (a p.) and (bv). The summation in (14) extends 
over both the discrete and continuous spectrum. The 
presence of the ll-function in (14) presupposes that the 
intervals of molecular structure are large in compari­
son with the width of the electroniC term (an estimate 
is given below). 

It is easily realized that three groups of terms can be 
distinguished in the contour K(w): 1) transitions be­
tween continuum states of both electronic terms; 2) be­
tween discrete states; 3) between discrete and contin­
uum states. The basic features of the first type of 
transitions were considered above. Qualitative con­
clusions may be drawn concerning the two other groups: 
group 2) contributes a structure of ll-shape peaks to the 
spectrum, and group 3) provides step-like singularities. 

We estimate now the term molecular-structure pa­
rameters that determine the scales of the indicated 
singularities of the spectrum. The level density (13) 
corresponds in the sense of its E dependence to a one­
dimensional potential well. Numbering all levels down­
ward in succession, i. e., without account of the quan­
tum number of the z-projection of the angular momen­
tum, it follows from (13) that 

E"=3'(n+q)'/SIl'C,', O<q<1, n=O, 1,2, ... (15) 

This equation gives the relative arrangement of molecu­
lar structure terms in the quasiclassical approximation. 
The characteristic frequency determining the intervals 
between molecular satellites of the electronic transition 
is of the order of 102 p.-3(aB dl&'o)-2 and amounts (at the 
p. and a B values used above) to -108 Hz for a flux den­
sity -109 W /cm2• Thus, the strong-field-dependent di­
pole-dipole interaction provides a structure located 
much closer to the line center than the usual Van der 
Waals interaction (-1011 Hz). 

It should be pointed out, however, that experimental 
detection of this structure is, obviously, rather difficult 
due to the small number of AB* pairs. Their density 
NAB equals NoNANB/NT , where NA and NB are the den­
sities of the atoms A and B, NT = (p.kT/21T1i 2)3/2, Tis 
the temperature, and No is the total number of states 
with negative energy: No = f v(E)dE. For T - 300 K, NA 
-1014 cm-3, and No -102 the relative number of pairs 
NAB/NB is only 10-10• 
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APPENDIX 

We start from the Schr&iiilger equation for two inter­
acting atoIIls A and B in a linearly polarized field g 

='5'0 coswt. The Hamiltoniamof this system is 

(A.1) 

Here Hl,B are the Hamiltonians of atoms A and B, and 
U is their interaction energy, which in the following is 
assumed to be 

(A.2) 

The total wave function is represented in the form of a 
series in the wave functions of the individual atoms, in­
cluding the interaction of atoms with the field: 

'I' = ~ C •• 1jl.q> •• (A. 3) 
.,ft 

The Greek indices (a) denote states of atom A, and the 
Latin (n) states of atom B. 

Since atom A is at resonance with the field, it follows 
that by separating the two resonating levels we find the 
explicit form of the wave functions 1f",(a=±): 

(A. 4) 

where 1fl,a are the eigenfunctions of the zeroth Hamilto­
nian H~, and the coefficients al,a take into account the 
interaction with the field (see, for example, t71). The 
wave functions CPn of atom B are found by taking into ac­
count the first order correction in the field 6 and are 
given, for example, int7l • To take into account sponta­
neous transitions in atom A we assume that a correction 
describing spontaneous radiation is included in the field 
t, and that the coefficients al,a contain, respectively, 
random phases. By definition the density matrix Pi; is 
an average of the products of coefficients' in expansion 
(A. 4) over the random phases, i. e., Pij = (a"ta j ). In this 
case the normalization I alia + I aalz = 1 is retained in the 
approximation given. 

Substituting expansion (A. 3) into the Schr&iinger equa, 
tion, we obtain an equation for the coefficients Cn",' We 
give, for example, the equation for Cn+ (the equation for 
Cn_ is similar) 

( {) P') {~ V.mU,m ,.Olm. } C I -+-,C.+=- a,·tLsi..J ,', COS Olt+K,c, .+ at 2", .. ttlm • -Ol 
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+£ Cm+e(·~'(a,·a,U,.,'m+a,.a,U •• ,.m) .. 
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(A. 5) 

Here Vnm =d~o. There are two types of terms in this 
equation: the first term in the curly brackets does not 
contain,the high frequency - wo, and therefore gives the 
dipole-clipole interaction (4) when averaged over the 
high-frequency vibrations and the random phases, since 
«ataa coswt» = <Pta coswt)w' The two remaining terms in 
(A. 5) contain fast oscillations and lead to the Van .der 
Waals interaction. To obtain the explicit formol this 
interaction we proceed as follows. We represent the 
solution of Eq. (A. 5) as a sum of a slowly varying part 
Cn+ and a quickly oscillating correction IiCn+ of frequen­
cy w. Corrections of the type 

(A.~) 

to the second and third term appear then in the equation 
,for Cn+' In calculating the oscillating parts all terms 
not explicitly containing rapidly oscillating exponents 
should be neglected. As a result we find 

(A. 7) 

The symbol - denotes that only terms giving dominant 
contributions to the average (A. 6) were included in cal­
culating IiCn•• Substituting (A. 7) and (A. 6) in the equa­
tion for Cn• and averaging with respect to fast oscilla­
tions and random phases with accOUI).t of the normaliza­
tion I allZ + I azl Z = 1, we arrive at the Van der Waals in­
teraction (5). 

l)We point out that the dynamic Stark shift, not considered 
here, equals - QB \&3/4 and is independent of pressure. 
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