
probability of the inelastic scattering than in the case 
of a steplike potential,9) as seen, for example, from 
formula (38). The effect then decreases exponential­
ly with increasing frequency and in real cases it can 
be noted only at w - 103 sec-l, corresponding to small 
changes of the energy. Therefore the experimental ob­
servation of the inelastic interaction of UCN with such 
potentials is much more complicated. Nonetheless, the 
effect of heating of the UCN when reflected from an 
oscillating (as a result of current pulsations) magnetic 
wall must be taken into account when designing mag­
netic traps. As follows from the foregoing, the most 
dangerous here are the low frequencies. 

In concluSion, the authors are sincerely grateful to 
Yu. G. Abo v , B. G. Erozolimskii, V. K. Ignatovich, 
L. A. Kirzhnits, P. A. Krupchitskii, O. A. Langer, 
V. M. Lobashev, V. I. Lushchikov, V. G. Nosov, 
M. I. Padgoretskii, A. V. Stepanov, A. V. Strelkov, 
and I. M. Frank for interest in the work and for stim­
ulating discussions. 

1)Such a barrier can be realized, for example, by placing a 
ferromagnetic foil in an alternating magnetic field parallel to 
the surface of the foil. 

2)A particular case of such a potential, namely a rectangular 
potential threshold, was discussed by us earlier in an analy­
sis of the heating of ueN by reflection from a weakly oscil­
lating wall of a trap. [11 A more general dependence of Uo on 
x can be produced for example, with the aid of a magnetic 
field from specially arranged current-carrying conductors. [21 

3)Vladimirskil has shown[21 that such a potential can be real­
ized in actual constructions of magnetic traps. 

4)For this purpose, for example, we can register the absorp­
tion of the UeN in a thin foil that perturbs weakly the wave 

function of the neutron. In order for the registration effi­
ciency to be independent of the UeN momentum, the foil ma­
terial must have a near-zero coherent neutron scattering 
length. 

5)Inasmuch as in all the examples considered above the mo­
mentum distribution of the ueN that are acted upon by the 
nonstationary potential is subsequently independent of the 
time, it is possible to use for these measurements, for' ex­
ample, the method of spatial separation of ueN beams mov­
ing with different momentum components perpendicular to 
an equipotential plane and having equal but nonzero momen­
tum components in this plane. It is convenient to direct the 
primary UeN beam at a grazing angle with the equipotential 
plane. 

6)We use here the customary units. Accordingly, Po is re­
placed by the UeN velocity Vo =po/m, and z is multiplied by 
(Ii /m)t/2. 

7)For example, interference filters. 
8)Therefore, in particular, the major role may be assumed by 

effects connected with the non-ideal character of the barrier 
(finite height and width) and the specific features of its real 
structure (in the case of a magnetic barrier, for example, 
by the character of the behavior of the magnetic field near the 
barrier). 

9 )This is natural, for the effective time of interaction of the 
UeN with the wall increases in this case. 
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A canonical description of multiquantum resonance 
interactions of radiation with matter 

V. S. Butylkin, Yu. G. Khronopulo, and E. I. Yakubovich 
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It is shown that the response of matter in multiphoton resonance interactions with light involving an 
arbitrary number of energy levels can be described by the Neumann equation with a certain effective 
Hamiltonian r in the right-hand side, and with off-diagonal matrix elements that do not vanish for 
resonant transitions. The explicit form of this effective Hamiltonian is found. The polarization of the 
matter can be determined, with allowance for the effects of saturation and the Stark shifts of the levels, 
with the aid of r and a generalized dipole moment D that depends on the amplitUdes and phases of the 
interacting fields. As a result, the description of complex resonance interactions of matter with strong 
fields, including coherent processes, is much simplified. The following matters are treated as examples: 
induced transition probabilities for an arbitrary number of resonances, the stationary nonlinear 
susceptibility of a molecule in incoherent and coherent multiphoton processes, and the nonlinear dielectric 
constant that arises in q -photon scattering of an ultrashort pulse. 

PACS numbers: 42.6S.-k 

.E nj(i)j=(t)mn +v., 
i 

(1) Among the multitude of nonlinear optical phenomena 
observed in recent years, one can distinguish a large 
group of resonance processes that take place when con­
ditions of the following type are satisfied: where w"'" are the resonance frequencies of the matter, 
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Wi are the frequencies of the interacting fields, Vs are 
the deviations from the resonance frequencies (they are 
much smaller than wi and w...,), and L,jnj =qs is the or­
der of the s -th resonance. In addition to one-photon in­
teractions, multiphoton absorption and emission, as 
well as Raman processes of various orders and reso­
nance parametric (i. e., phase dependent) interactions 
of the fields that take place when several conditions of 
the type of (1) are satisfied for a single tranSition, are 
also to be included among the resonance processes. 
Even more complicated processes involving resonances 
of various orders with several transitions in the matter 
have been observed. [1 J 

It frequently turns out to be practically impossible to 
describe resonance interactions by the methods of tradi­
tional radiation theory. The difficulties with the theory 
of resonance interactions are due to the necessity of 
taking the following circumstances into account (often 
simultaneously): a) the fields produced by lasers are 
sometimes so strong· as considerably to alter the rela­
tive populations of the energy states of a quantum sys­
tem, even in the case of high-order resonances; b) the 
interaction time may be very short (_10-12 sec), so that 
the nonstationary aspect of the response of the matter 
must be taken into account; and c) parametric (i. e., 
phase dependent) resonance interactions of the fields 
are possible because of the coherence of the radiation, 
and this adds the further problem of investigating the ef­
fect of the phases of the fields on the dynamics of the 
resonance interaction. The problem of describing a 
one-photon resonance was to a considerable extent 
solved by the introduction of the two-level-molecule 
model. [2J It was shown in[3J that all the important fac­
tors that determine the response of the matter in the 
case of a two-photon resonance can be taken into account 
in abridged equations derived by averaging[4J from Neu­
mann's equations for the density matrices. After that 
similar equations were obtained for processes in which 
first-, second-, and third-order resonances are simul­
taneously active. [5,6J These same equatiOns were later 
derived by other authors. [7-10J It is noteworthy that in 
all the enumerated situations the abridged equations 
have the same form as the equations for a two-level sys­
tem, the difference being that the coefficients contain 
parameters representing characteristics of all the states 
of the molecule and the amplitudes of the fields acting 
on it. 

The above circumstance led the authors to the con­
clusion that a general approach to the description of res­
onance interactions of arbitrary order taking place be­
tween any number of energy levels of the material me­
dium should be possible. We shall see that the response 
of the matter can be obtained with the aid of the "slow" 
part of the density matrix, U. The variation of u is de­
scribed by a time-averaged equation that coincides with 
Neumann's equation and contains a certain effective 
Hamiltonian on the right-hand Side, whose off-diagonal 
elements vanish except for resonance transitions. This 
substantially simplifies the problem of complex reso­
nance interactions of a field with matter; in the case of 
given fields, at least, this problem becomes quite anal­
ogous to the problem of one-photon resonance interac-
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tions with the same number of levels as partiCipate in 
the multiphoton processes. It will be shown that the 
polarization of the matter can be obtained in the form 
Sp(1)u), where 1) is a generalized dipole moment that 
depends on the fields taking part in the multiphoton pro­
cesses and is simply related to the effective Hamilto­
nian. 

The theory makes it possible to take into account all 
the physical factors that determine the response of the 
matter for both incoherent and coherent (parametric) 
multiphoton processes: population saturation, the dy­
namic stark shift, and the difference in the linear po­
larizabilities of the levels, as well as the interference 
of the probability amplitudes for transitions between 
the levels due to different resonances. We shall con­
sider the following as examples: 1) induced transition 
probabilities resulting from an arbitrary number of res­
onances; 2) the nonlinear susceptibility of the molecules 
in the case of q-photon incoherent interaction with fields 
whose energies exceed the energy necessary to saturate 
the populations and to produce a Stark shift equal to the 
line width; 3) the behavior of the nonlinear dielectric 
constant Enl of the matter under q-photon absorption and 
scattering of ultrashort pulses; and 4) the classification 
of resonance parametric interactions with respect to 
the presence of phase locking of the generated waves. 

1. AVERAGED MOTION OF A QUANTUM SYSTEM 
UNDER AN ARBITRARY NUMBER OF 
MUL TIQUANTUM RESONANCE PROCESSES 

1. Let us consider a quantum system (a molecule) 
acted on by the electromagnetic field 

E= L,1i(Olj,t)exp(iOl;f), 
i 

(2) 

in which the ~(wi' t) are slowly varying functions of time 
as compared with the corresponding exp(iwjt) functiOns, 
and some of the frequencies Wi satisfy the resonance 
conditions (1). 

In the absence of relaxation, the behavior of the sys­
tem is described by the Neumann equation 

(3) 

in which (] is the density matrix and V is the Hamilto­
nian of the system in the interaction representation: 

(4) 

the V<,,!,1 (t) being slowly varying functions of time. We 
shall discuss the phenomenological introduction of re­
laxation later. 

The possibility of simplifying the set of matrix equa­
tions (3) is due to the fact that they contain small pa­
rameters. To extract these parameters it is sufficient 
to introduce the dimensionless time t' = wmnt. Then the 
ratios ~~) /liw..., of the amplitudes of the interaction en­
ergy to the transition energies appear on the right in 
Eq. (3); these ratios are much smaller than unity even 
in fields that can be achieved either by focusing the light 
from a Q-switched laser or in picosecond pulses from 
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mode-locked lasers (radiant flux density of the order of 
1011 W / cmZ). Most of the observed nonlinear optical 
phenomena take place at much lower radiation intensi­
ties. 

The fact that the VM) /nwmn are small gives reason to 
believe that the density matrix should not only contain 
fast oscillations with characteristic times of the order 
of 2rr/w j and 2rr/wmn, but should also exhibit slow varia­
tions with a characteristic time determined by the mole­
cule-field interaction energy. It is well known that 
separating the "fast" and "slow" variations in equations 
having small parameters can result in simpler equa­
tions. One of the mathematical methods commonly used 
to do this is the averaging method. (4) We shall apply 
this method directly to the set of equations (3) without 
reducing it to the standard form. C4l 

Let us find the equations for the variations of the 
slow part of the denSity matrix. In accordance with the 
averaging method we express (J as the sum of the slow 
(U) and fast «(j) parts: 

(j=u+~=rt + 2: ~"l', 
q 

(5) 

where (j(q) is determined with the aid of the equation ~ 
= -in-l[V, O'(q-l)]. The behavior of the slow part of the 

, denSity matrix is given in the p-th approximation by the 
equation 

~=-ili-'< lV, (U+6"'+ ... +o'P') D. (6) 

The angle brackets indicate averaging over a time that 
is much longer than the characteristic times 2rr/ wmn and 
2rr/wj of the fast variations but much shorter than the 
"interaction times" n/I V mn I and the times in which the 
slow amplitudes V~ (f) change significantly. In averag­
ing and calculating O'(q), all the slowly varying functions 
of time (V~, Umn, and exp(ivst)) must be taken out from 
under the integral sign. As usual, it must be assumed 
that there was no field present at the initial time fo, 

i. e., that v~d (to) =0. 

Let us consider the q-th term on the right in Eq. (6). 
As will be shown below, this term differs from zero in 
the presence of q-th order resonances. On substituting 
0' (q-l) into (6), it can be seen without difficulty that the 
latter consists of ~ terms, which can be divided into 
groups in which U stands respectively in the first, sec­
ond, ••• , m-th place. It can be shown that the group of 
terms of the commutator [V, i7(q-l)] in which u stands in 
the m-th place vanishes unless m =1 or m =q +1. For 
this it is sufficient to note that they can be expressed as 
the average of a derivative with respect to the fast time: 
«d/ii)( ... » =0. That this assertion is correct for 
small q can be easily seen directly from (6) and the ex­
pression for U(q-l); then it follows for the (q +l)-th term 
in (6) by induction. 

Thus, in each term of (6), only those members in 
which u stands in the first or the last place differ from 
zero. Making use of the fact that the average of a total 
derivative with respect to the fast time vanishes, we 
can finally write the equation for u in the form 

(7) 
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in which 

y= Ir"=<v>++< (J Vdt)V)+ ... 
q=t 

+ (+) p_t < (J ( '" (J (J V dt) V dt) ... ) V dt) V). (8) 

Here the symbol - above the integral signs means that 
the integration is to be taken over the fast time (i. e. , 
that all the slowly varying functions of time are to be 
treated as constants) and the fast varying part of the re­
sult of the integration is to be excluded. Thus, the mo­
tion of the slow part of the density matrix in the case of 
an arbitrary number of resonances of arbitrary orders 
is described by an equation having the canonical form 
(7) with the averaged Hamiltonian (8). 

We note that Eq. (7) remains valid in the absence of 
low-order resonances (for example, if there is no one­
photon resonance, then (V) = 0). In fact, the derivation 
of Eqs. (7) and (8) is based on the assumption that at 
least some of the matrix elements umn are larger than 
any of the O'mn. This condition always obtains for some 
of the diagonal elements unn (which describe the popula­
tions of the levels) because of the condition Spu = 1. 

2. Let us examine the matrix elements of the aver­
aged Hamiltonian. It is easy to see from Eqs. (4) and 
(8) that the off-diagonal matrix elements of the term 
y(q) of the Hamiltonian r vanish except for transitions 
for which the conditions for a q-th order resonance are 
satisfied. For example, the quantities rf~) for two 
levels 1 and 2 between which such a resonance takes 
place can be expressed in terms of the slow amplitudes 
of the interaction energy between the system and the 
electromagnetic field V~ (see Eq. (4»: 

(9) 

in which vf~) coincides with (Kq)12-the composite ma­
trix element obtained on calculating the probabilities for 
a transition between levels 1 and 2 induced by the q­
photon process, using ordinary perturbation theory 
methods. CU,lZ) The generalization to the case in which 
there are resonances of order lower than q in addition 
to the q-th order resonance consists, in accordance with 
Eq. (8), in excluding terms having resonance denomina­
tors from vf~). In the dipole approximation, vf~) can be 
written in the form 

• 
V12 =-X{q) i (OJ , c., "II ( ) (10) 

where x~~) is the q-th order polarizability tensor. (1211) 

It is not difficult to see from Eq. (8) that in case 
there are several q-th order resonances for the 1-2 
transition we have 

",pc" ~ c •• , (') 
.II 12 = ~ Uta exp l,vst , (11) 

in which s numbers the q-th order resonances and Vs is 
the frequency difference corresponding to the s -th res­
onance. 

Unlike the Off-diagonal elements, the diagonal ele­
ments y~~ =v~~ for even q differ from zero not only for 
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the levels that take part in the resonance interactions, 
but in general for all the levels. The energy r~~ is ob­
viously that of the quadratic Stark shift of the m -th level 
under the action of the high-frequency field, while the 
frequencies 

~ E [x:.m (Wj)_x;.n (W;)](§;. (w,) (§;,(w;) (12) 
G,' 
i>O 

are those of the Stark shifts of the m -n transitions; here 
",;;;,m is the linear polarizability tensor for a molecule in 
the m -th energy state. It follows from Eq. (12) that the 
change in the frequency of the transition due to the ac­
tion of the electromagnetic field can be expressed in 
terms of macroscopic quantities-the refractive indices 
n::i, of the molecules in the m -th energy state (n::i, = (1 
+ 47TNiimm",;;;,m)1/2, where N"iTmm is the number density of 
the molecules in that state). We emphasize that rela­
tion (12) between the 51mn and the polarizabilities obtains 
for both resonance and nonresonance interactions be­
tween the field and the molecule. 

In concluding this subsection we note that small addi­
tions to the quadratic Stark shift arise not only from the 
susceptibilities responsible for the incoherent multi­
photon processes, but also from those responsible for 
the coherent ones. For example, Imr~~ contains a 
term proportional to the susceptibility Xabc' which is 
associated with the parametric addition of frequencies 
in a nonlinear transparent medium. 

3. Some remarks are in order concerning the limits 
of applicability of Eq. (7) with the averaged Hamilto­
nian (8). 

The results obtained above by the averaging method 
are valid provided no new resonances arise on account 
of changes in the frequencies of the material system due 
to the action of the external fields. C13] In other words, 
not only the given frequency differences Vq , but also the 
nonlinear frequency differences arising from the inter­
action with the field, must be small as compared with 
all the linear combinations of field frequencies with res­
onant frequencies of the molecule (excluding combina­
tions that were taken into account in the resonance con­
ditions (1)2». The Stark shift frequencies (12) are ob­
viously nonlinear deviations. Thus, Eq. (7) is valid pro­
vided the condition 

(13) 

where lJ *n j when s, r =m, n, is satisfied in addition to 
the condition V1~) /liwmn « 1. We note that condition (13) 
is actually the same as the condition v1~) /liwmn « 1 when 
'[,ljwJ-wsT-wmn• 

4. Now let us discuss the phenomenological introduc­
tion of relaxation into Eq. (7). In solving problems of 
quantum radiophysics one ordinarily introduces a re­
laxation operator of the form 

(fo) .. " = (14) 
E (OmmW ... -O .. W •m) n=m 

into Eq. (3). It was shown inca•5] that taking relaxation 
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into account in the initial equations (3) in this manner 
leads to the appearance of small additions T! to the line 
widths in the abridged second-approximation equations 
for the density matrix. The relative magnitude of these 
additions is - (V mk/IiWmn )2« 1, and they can be neglected. 
A correction to the transition probabilities Wmk between 
the levels also arises on account of the interaction be­
tween the matter and the field (2) in the tails of the ab­
sorption lines. Ca] This correction is negligibly small 
provided the frequency difference from all the "nonreso­
nance" transitions is much larger than the correspond­
ing line width. In this situation we can obviously take 
the relaxation into account by introducing the relaxation 
operator (14) at once into Eq. (7). 

2. MOLECULAR POLARIZATION IN RESONANCE 
PROCESSES; THE GENERALIZED DIPOLE MOMENT 

In accordance with (5), the polarization arising in 
resonance interactions of a molecule with an electro­
magnetic field is given by 

P= E !p(wJ)exp(iw;t)=Sp{d(cr+o)}, (15) 

where d is the dipole moment operator in the interaction 
representation. The term Sp{d"iT} represents the polar­
ization component at the frequencies wmn = wa - va of the 
resonance transitions. The spectral components P(wJ) 

at frequencies wi involved in multiphoton resonance 
processes are due to the second term in (15), which is 
proportional to u. The rapidly varying part of the den­
sity matrix is related to the slowly varying part 11, so 
the entire polarization (15) can obviously be expressed 
in terms of 11. Then the proportionality constant, which 
has the dimensions of a dipole moment, will depend on 
the fields taking part in the multiphoton process. 

Now let us find this "generalized dipole moment" op­
erator and show that its off-diagonal matrix elements, 
like those of the Hamiltonian (8) for the averaged mo­
tion, vanish except for resonance transitions, and that 
its diagonal matrix elements are connected by the con­
dition '[,ljWi =0. To do this we first find the amplitude 
of the spectral component of the polarization at one of 
the frequencies Wi that occur in the q-th order reso­
nance condition (q > 1; we first consider the nondegen­
erate case): 

!PI,) (w;) =Sp<d exp( -iw;t) 0<,/-1». (16) 

Multiplying (16) by -c.t*(w) and adding the resulting 
equation to its complex conjugate, we obtain 

!P<')(wj)II"(wj)+c.c.=(P<') (w;)E(w;) >=-Sp <V(J'o<,-t». (17) 

Now by substituting the expression for U(q-1) into Eq. 
(17) and making use of the property of differentiation 
with respect to the fast time as we did in deriving the 
averaged Hamiltonian (7), we can show that the polar­
ization at the frequency of any of the fields taking part 
in a q-photon process is related as follows to r(q): 

<P<"(Wj)E(ffi;) >=-sp{r<')cr}=- ( E r~'~cr"m + c.c. + Er~~(jmm). 
m>" 

(18) 
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Accordingly, we obtain the following expression for the 
total polarization p<q) : 

• 
(P(q'E) = L, !Il(q'(Wj)(I'(w;)=-qSp{:f'(q,cr}. (19) 

;=-q 

Now we can obviously introduce the generalized dipole 
moment operator 

D(q, = L,$)(" (wj)exp iw;t, 

I 

(20) 

whose amplitude matrix determines the polarization 
amplitudes 

(21) 

and can be expressed as follows in terms of the aver­
aged Hamiltonian3): 

(22) 

In view of the fact that r ~~ = {r~,:n*, the condition 
1l~~(Wj)={1l~~(-Wj)}* is satisfied. Equation (22) admits 
of a simple physical treatment: the averaged interac­
tion energy for any of the fields taking part in a q -pho­
ton interaction with the m-n transition is analogous to 
the interaction energy of a field with a two-level system 
having the dipole moment 1l~~, the quantity r~ being 

, the same for all the fields. 

In view of the additivity of :f', both for resonances of 
different orders (see Eq. (8)) and for several resonances 
of the same order (see Eq. (11)), it follows from Eqs. 
(18) and (15) that the generalized dipole moment for the 
case of an arbitrary number of resonances has the form 

D",n= L,$)~;:' (wj)exp(iwjt)= L, $)mn(Wj)exp(iw;t), (23) 
q.,1 

where the index s is included to take account of the pos­
sibility that there may be several q-th order resonances. 
Correspondingly, the total polarization is given by 

P = 1: P(q,=sp ($lcr). (24) 

It is not difficult to show that all the amplitudes 
lj3(q)(wJ) (and hence all the polarizations p) consist of 
two parts: a resonance part lj3<q)res(w j ), associated with 
the q-th order resonance condition, and a nonresonance 
part lj3<q)nonres(w j ), which may differ from zero even when 
there are no resonances. In fact, it was shown in Sec. 
1 that the off-diagonal matrix elements iP~~ vanish ex­
cept in the presence of q-th order resonances; hence 
the first two terms in (18) determine the resonance part 
of the polarization: 

!Il(q'res(Wj)= 1: $)~~ (W;)crnm• (25) 
m"'. 

Formulas (10) and (22) enable us to express the 1l~(Wj) 
in terms of the components of the q-th order polariz­
ability tensor: 

All the formulas obtained above are valid when there is 
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no degeneracy. Using Eq. (19), it is not difficult to 
show that for an nrfold degenerate resonance of fre­
quency Wj we have 

(27) 

and consequently, 

(28) 

The third term on the right in Eq. (18), which is pro­
portional to r mm' may differ from zero if the field con­
tains frequency components whose frequencies Wj satisfy 
the condition I j ljwJ =0. Hence it is the nonresonance 
part of the polarization that corresponds to this term; 
its amplitudes can be written in the form 

(29) 

the projections 1l~~) being expressible in terms of the 
diagonal components of the polarizability tensors, 
x~~ ••• aq' with the aid of Eq. (26) with m =n and IIq =0. 4) 

As examples let us consider the lj3(q)nonres with q = 1, 
2, and 3. There is obviously no nonresonance polariza­
tion in the first order. When q =2, the nonresonance 
polarization is determined by the linear susceptibility: 

The part of the polarization p(3)nonres that is quadratic 
in the field coinCides with the corresponding component 
of the polarization as calculated with second-order per­
turbation theory (see Sec. 13 int14l) provided terms hav­
ing resonance denominators are excluded from the sus­
ceptibility tensor Xabc: 

{!Il(3,DOnreS( w.=w.+w,)}. = .E ($)~~ (w.) }.cr •• 
n 

= 1: cr.nY.:b: (w" w) (lb (w,) (I, (w,) = .E x.,,, (~" w.) (lb (w,) (I, (w.). (30) 
n,b,e b,C 

As is known, it is the polarization (30) that is respon­
sible for three-frequency nonresonance parametric in­
teractions such as frequency adding and doubling in non­
linear transparent media. 

Thus, Eq. (24) describes the response of matter both 
to multiphoton resonance interactions, and to nonreso­
nance interactions of the frequency components of the 
field (2). Since (j satisfies Eq. (13), the resonance part 
of (24) contains terms proportional to products of field 
components that take part in different multiphoton pro­
cesses, including processes of different orders. This 
part of the polarization depends on the phase relations 
between the ~(Wj) and is due to their resonance para­
metric interactions. 

3. THE GENERALIZED TWO-LEVEL SYSTEM 

Interactions in which resonances of different orders 
take place for just one transition play an important part 
both in clarifying the basic laws governing resonance in­
teractions of radiation with matter and in practical ap­
plications. If the populations of the levels that are not 

Butylkin et al. 901 



involved in the resonance transition can be neglected, 
then, with the relaxation operator (14) and the quadratic 
Stark shift (12) taken into account, Eq. (7) takes the 
form 

dcj (_' 'Q) _ i Vp dt + T -l 0 = Ii' 1], 

d1] TI-Tl, 4 _. 
-+--= --Im(or). 
dt 't h 

(31a) 

(31b) 

Here the subscripts 1 and 2 have been dropped from the 
quantities 0'12' T12 , 012' and 1"12; 7]=0'11-0'22 is the dif­
ference between the populations of the resonance levels; 
and T is the time constant for relaxation of TJ to its 
equilibrium value '110. 

Thus, it turns out to be possible to generalize the 
equations for a two-level system to the case of multi­
photon resonance interactions. Hence we shall call 
Eqs. (3la) and (3lb) the equations of the generalized 
two-level system. 5) [15) 

As in the case of an ordinary two-level system, the 
populations all and (122 satisfy the normalization condi­
tion 

Sp o=sp cj=UII+cj,,=1. (32) 

This follows from the form of expression (5) for the den­
sity matrix since all the terms of the rapidly varying 
part a=i:. a(·) of the density matrix satisfy the condition 
Sp a(·) =0. 

When the conditions for the applicability of the equa­
tions of the generalized two-level system are satisfied 
it is convenient to use the following expression for the 
polarization amplitudes in terms of the variables a and 
7] in place of Eqs. (25) and (29): 

$(ffi;) =$nome~ffii) +$,e'(ffii) ='/2 (~II (ffii) +~" (ffiil 
+ [~II (ffi,) -~22 (ffii) ]1]}+~" (ffi;)cr. (33) 

In the case of a quasistationary interaction6) the popula­
tion difference satisfies the balance equation 

(34) 

in which Wind is the probability for an induced transition 
between levels land 2: 

Wind =21 vi 'Th-'[ 1 + (v-Q) 'T']-'. (35) 

It is easy to see from Eq. (34) that the time constant 
for changes in the population difference under the action 
of the fields-the "induced relaxation time"-is given by 

where the total probabilities for transitions between 
these levels are 

(36) 

Using Eqs. (35) and (36), we can find the condition for 
the interaction to be quasistationary; when T» T, this 
condition has the form 
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4Ivl'T'h-'<1+(v-Q)'T'. (37) 

In the case of a quasistationary interaction, the state 
of the molecule affects the polarization amplitudes only 
via the population difference: 

,res(ffi)=h-'TV~';) i+(v-Q)T 
J ffiJ 1] 1+ (v-Q)'T' (38) 

(here 1l*(Wj) =1l21 (w j) =1li2(wj», We note that the am­
plitudes and phases of the interacting fields may turn 
out to be such that the following conditions are satisfied; 

v=e;" 1:v")=O, . 
~(ffi,) =e;" 1: ~"') (ffi,) =0 

.' 
(see Eqs. (11) and (28». It is easy to see from Eq. (35) 
that in such cases Wind =0 and the level populations as­
sume their equilibrium values: TJ = 1/0 (also see (31». 
Then the resonance polarization also vanishes, while 
the nonresonance polarization has the same form as in 
the absence of resonance. Since field energy is not ab­
sorbed by the matter in such situations, we may say that 
we have para.metric brightening of the matter. When v 
=0, transfer of energy from some frequencies to others 
can take place only as a result of the presence of non­
resonance susceptibility. 

The possibility of establishing equilibrium populations 
at definite nonvanishing field strengths in certain para­
metric resonance processes was pointed out in[7,16-18). 
Here we have become convinced that parametriC bright­
ening of matter is a common characteristic of all such 
processes. 

4. STATIONARY SUSCEPTIBILITY AND POPULATION 
DIFFERENCE FOR A RESONANCE TRANSITION 
UNDER INCOHERENT INTERACTIONS 

By incoherent interactions of light with matter we 
mean those that take place when one 6f the resonance 
conditions (1) is satisfied: one- and many-photon ab­
sorption (emission) and Raman processes (in the latter, 
some of the frequencies occurring in (1) will have dif­
ferent signs). The theory developed above makes it 

. very simple to find the population difference between 
the resonance levels and the susceptibility of the matter 
for resonances of any order in fields that are strong 
enough to saturate the populations and to shift the ab­
sorption line substantially. If the fields act on the 
molecule for a time longer than Tlnd> the stationary 
populations 

TI,t =1],{1 +4'tTh-' I v I '[ 1 + (v-Q) 'T'j-'}-'. (39) 

will be established. For incoherent interactions, 1'1at 
depends only on the field intensities Ii = I c.! (w j) 12: 

(39a) 

Here we have introduced the saturation intensity Ioat 
= Ii 21. (47"T Ix ~:) 12)-1/. and the dimensionless frequency 
mismatch 11 = vT. The constant 
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determines the Stark shift of the transition frequency 
under the action of the field Q:(w). 

Now let us introduce the nonlinear susceptibility of 
the generalized two-level system at frequency wJ by 
means of the relation 

(40) 

This susceptibility consists of resonance and nonreso­
nance parts (in accordance with Eq. (33)). 

Using Eqs. (39a), (33), and (40), we can easily find 
the stationary susceptibility for a resonance of arbi­
trary order q. Let us write down its diagonal compo­
nent for polarization of the field Q:(wj ): 

where 

. and {)=2T/T. The imaginary part of expreSSion (41) de­
termines the absorption (emission) of energy by the 
matter from (into) the field component Q:(wj ), while the 
real part determines the refractive index of the matter 
for this field component. 

To each of the physical factors that affect the re­
sponse of the susceptibility to variations of the fields 
there correspond specific terms in (41). The term 
KjIJ{) in the square brackets describes the effect on the 
susceptibility of the redistribution of populations be­
tween two levels 1 and 2 whose linear polarizabilities 
x}} and x ~~ differ from one another. The presence of 
the products Kl II as terms added to .6. leads to a change 
in the susceptibility resulting from the Stark shift of 
the center of the resonance line. Finally, the quantity 

in the curly brackets in (41) is responsible for the sat­
uration of XJJ(wJ) associated with saturation of the pop­
ulations in a q-photon process. 

5. THE REAL PART OF THE NONLINEAR 
SUSCEPTIBILITY ARISING UNDER THE ACTION OF 
LIGHT PU LSES 

Investigation of the real part of the nonlinear suscep­
tibility of matter ariSing under the action of light pulses 
is of interest in connection with the observed self-focus­
ing of picosecond pulses in gases, [19,20] where the con­
tributions to the nonlinear dielectric constant f:nl from 
the Kerr effect and electrostriction are negligibly small. 

Here we consider the ratio of the contributions to the 
nonlinear dielectric constant from the excitation of the 
matter and the dynamic stark effect for various reso-
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nance processes that take place in the action of an ultra­
short pulse on matter. It is usually assumed[20] that in 
such a case it is always the Stark effect that makes the 
main contribution to the magnitude and sign of f:nl. Us­
ing the equations of the generalized two-level system, 
we can show that this assumption is not always correct 
for all processes. 

Let us consider an ultrashort pulse whose length tp 
satisfies the conditions 

The last of these conditions means that the field fre­
quency differs from the frequency at the center of the 
Stark-shifted line by less than the frequency width of 
the pulse. In this case the equation for a and TJ can be 
solved by iteration. Using Eqs. (33) and (40), we ob­
tain 

(43) 

From this it follows that in the case of one-photon ab­
sorption (l =j, nJ = 1) it is not the Stark effect that plays 
the prinCipal part in forming f:nl> but the excitation of 
the matter (the term K J I). In induced Raman scatter­
ing (n j = 1) the sign of f:nl at the pumping frequency is 
also determined by the excitation of the matter provided 
less than half of the absorbed pumping energy goes into 
the Stokes component; at the frequency of the latter, 
however, the sign of f:nl is determined in this case by 
the Stark effect. It is interesting that in another two­
photon process-degenerate two-photon absorption (n j 

= 2)-these two factors cancel one another out and the 
sign of f:nl depends only on the frequency mismatch .6.. 
In third- and higher-order resonances, the stark effect 
always makes the main contribution to f:nl. 

6. FEATURES OF THE RESPONSE OF MATTER IN 
PARAMETRIC RESONANCE INTERACTIONS 

Parametric resonance interactions (PRI) are now al­
ready finding application in the construction of frequen­
cy-tunable sources of coherent light in the relatively 
unaccessible regions of the infrared and ultravio-
let. [21,22] The most promising PRI from this pOint of 
view are those in which phase locking of the generated 
waves is possible. This enables one to achieve effiCient 
generation even when there are considerable frequency 
differences between the waves. [23] A classification of 
PRI from the pOint of view of the possible occurrence of 
this phenomenon would therefore be of interest. 

In order to obtain such a classification let us consider 
the susceptibility X~~S(Wj) responsible for the PRI. We 
express X~~S(Wj) in terms of the real wave amplitudes 
A, and the slow phases cP I defined by the equation 

(1(00,) =A, exp( -ik,z-q>,). (44) 

Using Eqs. (38), (11), (9), and (26), we can write 
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X exp {i L. (n/") + n.'·) (<p,+k,z) }A7/-' II A,m,; (45) 
l l~ 

From this it follows that the parametric resonance pro­
cesses can be divided into three groups as regards their 
relationship to the field component ~(w). The first 
group consists of the processes for which there is at 
least one of the resonances (1) that does not involve the 
frequency Wj (i. e., for which nJS) =0), while among the 
resonances that do involve W J there is at least one that 
is not degenerate in this frequency (i. e., for which n}s') 
= 1). Then when the amplitude Aj is small enough, 
X~~S(Wj) will be proportional tOA j l and will tend to in­
finity as Aj - 0 with the other field amplitudes remaining 
finite. Hence at the entrance face (or at t=O) the phase 
f{J j must suddenly assume a value such that the deriva­
tive f{J~, which is proportional to ReXjj(w j ), will vanish, 
i. e., the phase of the weak field will be locked. The 
phase will obviously ·remain locked until the intensity 
grows to such an extent that I j =A~. Hence the spatial 
(or temporal) scale of the changes in the phase f{J j will 
not be determined by the deviations of the wave vectors 
of the interacting fields, but by the rate of growth of A j 
characteristic of the given process. 

The second group consists of the processes for which 
the lowest value that nJS} +nJs'} can assume is two. In 
this case x,j"(wJ ) is independent of AJ when the latter is 
small, and the variation of the phase will be determined 
by both the resonance and nonresonance parts of the 
susceptibility. The phase may become locked in a re­
gion in which ReXjj(w)~O provided there is a resonance 
that does not involve the frequency w, (nl S ) =0) and the 
other frequency components of the field are strong 
enough. 

The third group consists of the processes for which 
the lowest value that can be assumed by nJS} +nJs'} is 
greater than two. Since 

lim Xj~es (Wj) =0, 
Ar+O 

in this case, there will be no phase locking, the behavior 
of the phase being determined by the nonresonance part 
of the susceptibility. 

!)To avoid errors the following must be borne in mind: The 
frequency wJ must be taken with the same sign in the expres­
sion for the polarizability and in vl~) as it has in the resonance 
condition (1). 

2)Of course it is sufficient that this condition be satisfied for 
combinations of no more than qmu frequencies, where qmu. is 
the highest of the orders of the resonances (1) that are pres­
ent in the linear approximation. 

3)It must be pOinted out that the frequency wJ occurs with the 
same sign in the quantity'.ll:.:i(wJ ) as determined by Eq. (22) 
as it has in the resonance condition J-t W J = w..... Thus, if 
wt - w2 = w2t , then '.ll~t(w t) is the amplitude for exp(iwtt) , and 
'.ll~t(- w2), that for exp(- iw2t). 

4 )We call that the resonance terms must be excluded from the 
expressions for the x :7 ....... 
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5)When there are several resonant transitions, one can, with 
the aid of Eqs. (7), (8), and (14), easily write down the equa­
tions for a generalized n-Ievel system, where n is the num­
ber of levels taking part in resonance interactions with the 
field. 

6}We are considering the situation, which is the one most fre­
quently encountered in experiments, in which either there is 
only one resonance, or all the deviations from the corre­
sponding resonance frequency are the same (II. = II). 
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