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Nonstationary phenomena arising from the interaction between ultraco1d neutrons (UCN) and a time­
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1. INTRODUCTION 

Ultracold neutrons (UeN), owing to their extremely 
low energy E (510-7 eV), serve as a unique object for 
experimental investigations of nonstationary quantum­
mechanical effects. In this connection, particular in­
terest attaches to the case of the interaction of UeN 
with a nonstationary force field that varies Significantly 
within a time 

T~ti!E-1O-8 sec. (1 ) 

It is precisely in this case that one observes most pro­
nounced manifestations of the specific properties of the 
solution of the nonstationary Schrlidinger equation, 
properties connected with the energy-time uncertainty 
relations. We are dealing here with a large group of 
phenomena that have not been investigated at all, and 
it appears that an experimental observation of these 
phenomena is presently possible only with the aid of 
ueN. 

Of definite interest is also the interaction of ueN with 
an oscillating potential. Owing to the possibility of spa­
tially separating the fluxes of neutrons with different 
momenta, experimental observation of this phenomenon 
with ueN is even simpler than with charged particles 
(say, electrons). A study of the interaction of ueN with 
an oscillating potential is also important from the point 
of view of applications, since the walls of the traps used 
for UeN, especially magnetic traps, practically always 
oscillate weakly and this leads to "heating" and addi­
tional losses of the UeN. 

The present paper is devoted to an examination of 
quantum-mechanical effects arising when UeN interact 
with a nonstationary field. 

2. PASSAGE OF UCN THROUGH A TIME-DEPENDENT 
RECTANGULAR POTENTIAL BARRIER 

One possible nonstationary action on UeN is to pass 
them through a time-dependent rectangular potential 
barrier. ll Such a barrier acts only on the particle-mo­
mentum component normal to its surface, and to de­
scribe the particle motion it sufficies to consider the 
one-dimensional Schrlidinger equation, which in this 
case takes the form 
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. J1jJ 1 J'1jJ 
!at"=-Z- ax' + U(x)/(t)1P. 

U(x) =Uo8(e-JxJ) 

(2) 

(2') 

(we are using units with particle mass m = n = 1; 9(x) = 0 
at x<O and 9(x)=1 at x<O). 

We consider first the ideal case of instantaneous van­
ishing of an infinitely high barrier 

Uo~oo, e~O (but Uoe2~oo), /(t)=6(-t). (3) 

Assume that a plane wave with momentum Po is inci­
dent on the barrier. Then, apart from a normalization 
constant, we have 

at t<O, 

(4) 

and from the condition lPt(X, 0) = '112(x, 0) it follows that 
~ 

A (p) = (2rt) -'" S dx e-ipx W, (x, 0) 

( :rt)'" 1 (11) =.- [6(p-Po)-6(p-i-po)]---,-" P ----- • 
2 (2n)'! p-p, p+p, 

(5) 

where the symbol P means that the integral is taken in 
the sense of the principal value. Hence, taking into ac­
count the following chain of equations 

1 S~ dp ( , , p't ) -,P --exp !PX-!-
2m _, p-po 2 

1 ( p 't) ~ dp' (P"t ) =-;-BXP iPcX-i+ [yexp -iT sin[p'(x-p,t)] 

1 (' ip,'t ) x-SP
" S~, (' p"t) , =-;;-cxp tpoX--2- dy dp exp ~!2 cosp y 

" 0 

1 (' ,po't) (X-pot) 
= "2 cxp 'PoX-!""2" F (2t) 'I. • 

') !/z Z 

F (z) = (..::.) (I-i) S e'" dy, 
:t o. 

we obtain 

(6) 

(7) 

lj1, == + exp ( -i P;'t) {[ l-F (z_) le'Po"-[ 1-F(z+) Jr'·"}. (8) 

z,,= ~(x±Pot). (9) 
l'2t 
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An analysis of this expression can be easily carried out 
by taking into account the relations 

( 2 )'h F(-z)=-F(z), F(z)---+ - (l-i)z, 
:_0 1t 

F( ) 1 + 1+i h' 
z ---+ -(-)-,,- e • 

z .... oo 2rt Jz 

(10) 

Particular interest attaches to the behavior of 1/Ja in the 
region Pot I x I ~1, or in the customary units (vo = Pol m) 

vot/lxl ~1, (11) 

in which 1/Ja is essentially nonstationary. The condition 
vot < x determines the classically unattainable region. 
If P~t» 1 (meaning in ordinary units t» Ii I E), then in 
the classically unattainable region l1/Jal a is close to zero. 
On the other hand, if 

Po2t~1, (12) 

i. e., quantum-mechanical effects should be Significant, 
then in the region (11) we have 

It is easily seen therefore that the better the condition 
(12) is satisfied, the wider the relative range of times 
in which l1/Ja la differs from zero in the classically un­
attainable region. 

The results yield also a criterion for the applicability 
of the model of "instantaneous vanishing of an infinite­
ly high barrier" considered by us. Namely, beside the 
obvious conditions Uo fa» 1, and EPo« 1, the barrier 
vanishing time TO should satisfy the requirement TO 

«Poa, which in the customary units agrees with (1). 

We consider now the case of the vanishing of two 
parallel barriers separated by a distance 2a, i. e., the 
case when U(x) takes in place of (2') the form 

U(x) =Uo{8(e-lx-al) +8(e-lx+a I)} (14) 

(and the conditions (3) are satisfied). Accordingly, the 
wave function at t<O is chosen to be 

T ABLE I. Values of 1 l/! (x, t) 12 as functions of t (in units of 
(x -a)/v) at a = 5 x 10-4 cm and at different x - a and velocities 
v=poim. 

t. 
x-a 

0.50 
0.60 
0.70 
0.80 
0.90 
1.00 
1.50 
2.00 
2.50 
3.00 
3:50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
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I x-.-2·10-· em \ 
t" 

m m .m x=a '~Isecl v~3;ec I v~'sec 
2.1 0.7 0.4 0.70 
4.8 1.7 1.1 0.80 

10.7 4.2 2.6 0.85 
23.8 11.2 7.4 0.90 
51.2 34.2 26.4 0.95 

106.1 111.4 116.5 1.00 
721.2 563.8 475.4 I. 20 
568.2 476.7 536.0 1.40 
549.0 487.8 530.5 1.60 
562.0 455.6 485.1 1.80 
581.0 529,7 526.6 2.00 
549.1 469.6 506.6 2.20 
550.9 481.4 536.4 2.40 
511.2 495.6 522.B 2.60 
473.6 70B.7 551.2 2.80 
179.3 138.5 148.5 3.00 
66.4 28.3 IO.B 3.20 
30.2 8.8 3.4 3.40 
11.0 3.1 1,1 3.60 

\ 

x-a=5·10~4 em 

v~l~ I v~3~ I v~5~ I sec sec sec 

4.8 1.3 1.1 
12.6 3.3 3.1 
20.8 5.7 6.0 
35.7 10.7 13.7 
61.8 21.9 37.2 

106.4 49.4 116.2 
561.9 687.0 434.9 
486.0 560.4 528.9 
609.1 565.0 478.4 
522.7 528.2 494.1 
489:7 467:6 499:9 
396,6 511.5 524.9 
401.3 552.5 475.8 
607.4 529.3 444.9 
435.8 431.4 645.5 
164.1 502.1 135.9 
58.2 87.7 14.7 
19.6 23.4 5,6 
6,3 6.0 2.2 
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FIG. 1. Dependence of the square of the modulus of the wave 
function of UCN on the time t after the vanishing of the bar­
riers at x = 3a = 1. 5 '10-3 cm, ii = 3 m/ sec. a) Calculation by 
formulas (17) (solid curve), and (19) (dashed), b) result of 
averaging curve a over the velocities and the thickness of the 
detector (the latter is 3 x 10-5 cm): 1) tl.v/ii= 0.01; 2) tl.v/ij 
= 0.03; 3) tl.v/ii= 0.06; 4) result of a similar averaging under 
the assumption of classical motion of the UCN (solid curve 
tl.v/ii = 0.01, dashed tl.v/ ii = 0.03, dash-dot tl.v/ii = 0.06). 

(15) 

with poa = 1Tno, where no is an integer. In this case we 
have in place of (5) and (8) 

A (p) = (2:rta)-"'e'nn,{ sin(p-po)a _ sin (p+po)a }, (16) 
p-po P+Po 

At a».J2i, this expression coincides with 1/Ja for one 
barrier (with x replaced by x - a at x > 0 and x replaced 
by x+a at x<O). In particular, at z __ »l we have 

1 +i Pot'" [ . (x-a)'] 
1jJ, = 2(na)'/ (x-a)'-po'l' exp '-2-t- . 

In the general case the analysis of (17) is similar to 
that described above. 

(19) 

Table I lists the values of l1/Ja(x, t) la as functions of t 

for different values of x, Po, and a. Fig. la shows a 
typical plot of this function, and also a plot of l1/Ja(x, t) la, 
calculated from the approximate formula (19). It is 
quite easy to solve the problem of the vanishing of the 
barrier or of two parallel barriers under certain other 
boundary conditions, for example in the case when the 
wave function of the neutron must vanish at certain 
points after the vanishing of the barrier. We shall not, 
however, describe the corresponding formulas since 
they do not lead to phySically new results. 

We turn now to the case of "instantaneous vanishing 
of an infinitely high barrier," i. e., we seek a solution 
ofEq. (1) at Uo-oo, e-O, Uoe a_ oo , f(t)=e(t) with the 
initial condition 
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¢(x, 0) =¢.' (x, 0), ¢.' (x, t) =exp{ipox-iPo't/2). 

We note first that the antisymmetrical part of the 
wave function is not perturbed at all by the appearance 
of such a barrier, i. e., at all values of t we have 

(20) 

Next, recognizing that at t> 0 the symmetrical part of 
the wave function should vanish at the boundary of the 
barrier (at X= 0), we can seek in the form 

1 ( 2 ),/, S~ ( p't ) 1j:.(x,I)"'T[ljJ(t,f)+IJ;(-x,t)]= --; B(p)sin(plxl)exp -i2 dp, 
, 

V2S~ 1 (1 1) B(p)= - dxsinpxcosp,x=-;=P,--+-- . 
n" 12n P-Po p+po 

Accordingly 

1jl.(x,t)=~P jSin(plx!)exp (-i~) (_1_+_1_) dp 
n , 2 p-p, p+po 

1 ~ d ' 
=-. P S -P-exp(-i~) (e'plrl_e-'p",) 

2m _~ p-po 2 

= ~exp (-i po't) [e,p.,rIF ( lxi-pot) +e-'p.'rIF (~+p"t)] 
2 2 (21) 'J, (21)" 

And finally 

(21 ) 

(22) 

(23) 

(24) 

In this expression, the term proportional to e-1Pox at 
x> 0 and the term proportional to eiPox at x < 0 are the 
same as in (8), while the term proportional to exp(ipox) 
at x> 0 and the term proportional to e-iPox at x< 0 coin­
eide with the same term in (8) if we replace x in the lat­
ter by - x. We shall not present the results of the de­
tailed analysis of expression (24). We note only the fol­
lowing relation, which we shall need later on: at I xl 
« ..; 2t we have an essentially nonstationary wave func­
tion 

. (. po't) [ . 1jJ(x, t) =1 exp -1-2- sm pox 

( ( t )':')] (1-i)lxl 
- sinpolxlF Po T + (nf)'!. 

In particular, at Po« (2/t)1/2 

~. (x, t) =ipox+ (1-i) I x I (rrt) -'''. 

and at Po»(2/t)1/2 

cos (Pox). (25) 

(26) 

1jJ(x, t)=iexp(-ipo'tl2) {x-lxllPo+PolxiO(1Ipo't). (27) 

Plots of I lJI(x, t) 12 against t at certain values of x and 
vo=poIm=1 m/sec, calculated with the aid of the exact 
formula (24) and the approximate formula (25), are 
shown in Fig. 2. 

The conditions for the applicability of expression (4) 
are obviously the same as in-the case of fast vanishing 
of the barrier. 
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FIG. 2. Dependence of the square {If the modulus of the wave 
function of UeN on the time t after the vanishing of the bar­
rier, at a distance x from the barrier at a velocity v = 1 m/ sec: 
1) x = 3· 10-6 cm; 2) x = 10-6 cm; 3) x = 3· 10-7 cm. The solid 
curves were calculated from the exact formula (24) and the 
dashed curves from the approximate formula (25). 

3. INTERACTION OF UCN WITH A WEAKLY 
OSCILLATING ONE-DIMENSIONAL POTENTIAL 

We consider the solution of the nonstationary Schrtl­
dinger equation in the case of a one-dimensional poten­
tial 

a1jJ 1 a'1jl 
i-=---+ [Uo(x)+U,(x,t)]1jJ, 

at 2 ax' (28) 

when the time-dependent part of the potential U1 is 
small, so that we can confine ourselves to the first or­
der of perturbation theory in U1• We can then represent 
IJI in the approximate form 

(29) 
Uo(x)=(2n)-"'S dteiO'U,(x,t), 

where lJIo and Eo are the wave function and energy of the 
unperturbed stationary state, and the function gE(X, x') 
is a solution of the equation (likewise stationary) 

[ E +~~- Uo(x)] gE(X,X') =b(x-x'). 
2 ax' 

(30) 

Let2) Uo(x)-O as x--co and Uo(x»Eo as x-co. Then 
gE(X, x') is conveniently represented in the form 

gE(X, x') = ~[9(x-x')<pp(x)1jJp(x') +8 (x' -x) <Po (x')1jJp(x)], 
lp 

where the functions IJIp and qJp are solutions of the homo­
geneous equations corresponding to (30), 

¢p (x)---+ e- ipz, <pp(x)-+-O, <P.(x) ---+2cos(px-bp), p=(2E) 'I. 

(lip is a constant). We note that apart from normalization 
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we have 1/!o(x) = (,Opo(x). In particular, when - x is large 
enough, so that Uo(x)« P V2, we have 

( P 't) 1jl (x, t) =2 exp -i + cos (poX-b p,) 

1 m (P't ) 
+ i(2n)'" J dpexp -iT- ipx M(p,po), 

(31 ) 

M(p,po)= J dxUg(x)'Pp(x)'Pp,(x), Q='/,(p'-po'). 

We note that the matrix element M(p, Po) is symmetri­
cal with respect to the substitution P-Po, as it should be 
in accordance with the detailed-balancing principle. In 
addition, since the reflected waves with different P do 
not interfere with one another (as x-- oo ), the probabili­
ties of reflection of UCN with different momenta can be 
considered independently. Accordingly, without loss of 
generality, we can assume that Ui(x, t) depends har­
monically on the time: 

U,(x, t)=V,(x) cos wt. 

The relations (31) then take the form 

1jl='Pp,(x) exp( -ipo't/2) + jfiJ (p+. po) cxp (-ip+'tj2-ipTX) 
+Jl(p_, p,)exp(-ip_'t/2-;p_x), 

(32) 

(33) 

If the potential varies sufficiently slowly with the co­
ordinate, so that I auo/ax I«P~, then M(P,po) can be 
calculated in the quasiclassical approximation (see, 
e. g., [3]): 

J [ 2U, (x) ] -'I. [2U, (x) ] -'I. 
M (p, p,) =-2 1m dx U, (x) -p;:- - 1 -p-, - - 1 

c 

xexp{J' (2Uo(X')-P,')'''dX'-] (2U,(x')_p,')'I,dx'}, (34) 

where aj is the root of the equation 2Uo(al)=p~, withP~ 
and p~ respectively the larger and smaller values of 
p~ and p2, while the contour C passes in the upper half­
plane below all the singular points of the potentials Uo 
and Ui (it is assumed that neither Uo nor Ui has 
singular points on the real axis at finite values of x). 
In particular, if near the turning point 

1 I au, I Ip-p,l..:: U, a:;: ' (35) 

then . 
M(p,p,)"" 2 J dxU,(x)[1-2U,(x)Pn-'j-'I,. (36) 

We note that, as seen from this formula, M (p, Po) 
depends essentially on the behavior of Uo(x) and Ui (x) 
in all of space, and not only near the turning point of 
the classical motion, as might appear at first glance. 

For certain concrete dependences of Uo and Ui on x, 
the matrix element it (p, Po) can be calculated exactly 
(see, e. g., [4]). In particular, in the case of practical 
importance3 ) 
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Uo (x) ='/zq'e'/·, l. (x) =AU,(X) 

(q, a, and ~ are constants), elementary calculations 
yield 

(37) 

(38) 

K~(z) are Macdonald functions. Hence, at w«p~ and 
aw« Po (i. e., if the condition (35) is satisfied we have 
M(P." Po) = ~poa, which agrees with calculation by for­
mula (36). 

The previously consideredU ] oscillating flat wall, 
i. e., the potential of the type 

C(x, t) ='/,q'8(x-a cos ",I) (39) 

can also be described in first-order perturbation theory 
in a by an expression of the type (33), where 

2p 
'1'.=2 COS (px+Il.) O( -x) + _e-"X O(x); 

q 
(40) 

4. DISCUSSION OF RESULTS AND CONCLUSIONS 

Let us examine certain possibilities of experimental­
ly investigating the behavior of UCN in a nonstationary 
force field. First, taking into account the nonstationary 
character of the wave function of the UeN, it is neces­
sary to refine the principles of the methods used for 
their detection. We shall assume that the experimentor 
has at his disposal the following two types of ideal de­
tectors: 1) a detector of the UeN denSity, 4) which makes 
it possible to measure 11/!(x, t) 12; 2) a detector of the 
momentum distribution of the UeN, 5) which makes it 
possible to measure the square of the modulus of the 
Fourier transform of the form of the wave function. 

In experiments in which a high potential barrier ap­
pears and vanishes, both types of detectors can be used 
in principle. We consider first the case of registration 
of I1/!( x, t) 12. 

As seen from formulas (7)-(13) and (17)-(19), one 
of the most interesting experiments is the investigation 
of 11/!(x, t) 12 at a sufficiently large distance from the 
barrier at relatively short times after its vanishing, 
when6 ) x-a-vot 'it,(2Iit/m)l/2. In this region, accord­
ing to the laws of classical mechanicS, there should be 
no UeN at all. 

Formulas (7)-(13) and (17)-(19) were derived under 
the assumption that the initial wave function (at t,,;: 0) 
is stationary (it takes respectively the form (4) and 
(15». If at t,,;: 0 the wave functions of the UeN are 
superpositions of stationary wave functions, a simple 
generalization of the results for 11/!(x, t) 12 (averaging 
the plots of Fig. 1 or the data of Table lover the initial 
distribution) is possible only in the case when the rela­
tive phase shifts of all the wave functions constituting 
the initial state are statistically independent. It is rela­
tively easy to realize such an initial state in experi­
ments with two barriers. It is necessary for this pur-

... 
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FIG. 3. Diagram of a possible experiment with vanishing of 
two barriers. 

pose that the UeN stay between the barriers for a time 
To~4a/v, where vis the average value of the neutron 
velocity component normal to the barrier. 

Thus, it is natural to propose the following experi­
mental setup (Fig. 3). The stream of UeN from the 
source S passes through a system of filters7) F, which 
cuts out a line which'is narrow with respect to the nor­
mal velocity component in the interval ilv, and also 
with respect to time (in order to decrease the back­
ground), and falls into the gap between the barriers 
BB at the instant when the gaps are produced. The UeN 
trapped in this space are confined there for a time To, 
and then, at the instant t = 0, the barriers BB vanish and 
the time dependence of the function II/! 12 at the location 
of the detector D is registered. (It is possible to use 
for this purpose, a set of different detectors located at 
different x.) It is necessary here to satisfy the follow­
ing conditions. The thickness of the detector D should 
be low enough so that the averaging of I I/! (x, t) 12 over the 
volume of the detector does not affect strongly the time 
dependence of II/! 12 shown in Fig. 1a. It is obvious that 
the second barrier and the detector must be parallel 
with the same accuracy. For this reason, velocity 
scatter ilv should be small. Figure 1b shows the re­
sults of averaging of the plot of Fig. 1a for the case 
v = 3 m/ sec and x = 3a = 1. 5 xl 0-3 cm under the assump­
tion that the detector thickness is 3 x 10-5 cm and that 
the velocities have a Gaussian distribution with mean 
square deviations ilv/v respectively equal to 0.01, 0.03, 
and 0.06. 

The corresponding experiment can be carried out in 
a cyclic regime with frequency 1I=1(To+T1), where T1 
is the time during which there are no barriers. 

By way of example we consider the following case: 
2a = 10-3 cm, x-a=10-3 cm, To=T1=5x10-e sec (Le., 
v=105 Hz), v=300 cm/sec, ilV/V=0.03, and the de­
tector thicknesses ilx= 3 x 10-5 cm. Then, at a total 
UeN flux to the filters F=100 neut/cm2 sec, a mini­
mum cross section area of the system S= 50 cm2, and 
a neutron-detector registration efficiency Jl = 0.1, the 
total number of detector counts per second is 

N=baFS\'Il·'w/f', 

where b is a numerical factor on the order of unity, 
which depends on the form of the UeN spectrum, and 
takes also into account the UeN losses in the course of 
formation of barriers and in the passage of the filters. 
Therefore, putting b:::: O. 4, we obtain N = O. 1 neut/ sec. 
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This experiment can be modified by using a beam of 
cold or even thermal neutrons that are well collimated 
in one direction and are at a grazing angle to the in­
stallation conSidered above. It is then possible to ob­
tain a much higher neutron density accumulated be­
tween the barriers, owing to the appreciable broaden­
ing of the admissible region of variation of the neutron 
velocities in the plane of the barriers. 

Another type of experiment with registration of the 
UeN density can consist of measuring II/!(x, t) 12 as a 
function of the time when one barrier is produced. 
However, as seen from Fig. 2, the effects of interest 
to us, come into play at very short distances from the 
barrier (-10-6 cm) and at very short times after the in­
stant of the production of the barrier (-10-7 sec), 8) so 
that this type of experiment (at least at first glance) 
seems more difficult to realize than the above-con­
sidered experiment with vanishing of two barriers. 

We consider now the case of registration of the mo­
mentum distribution of the UeN. As seen from (16), 
the momentum distribution of ( I A(P) 12) in an experi­
ment in which two barriers vanish oscillates rapidly 
(with a relative period ilp/p- l/no = 1fn / poa, which 
amounts to 6.6x10-3 at v=300 cm/sec and a=10-3 cm), 
and that these oscillations are difficult to observe. How­
ever, the momentum distribution averaged over these 
oscillations, which takes the form 

IA (p) I '=1/4na(p-po)', 

seems to be readily amenable to experimental analysis. 

Finally, we consider the possibility of experimental­
ly observing the interaction of UeN with a weakly oscil­
lating field. The problem considered in Sec. 3 cor­
responds to the case of registration of neutrons at a 
large distance from the reflecting potential. There­
fore observation of the time dependence of the UeN 
density (for example, the shift of its phase relative to 
the phase of the oscillation of the potential) is of no 
interest under such conditions. 

The action of an oscillating potential on the pulsed 
distribution is easiest to investigate in experiments on 
the reflection of UeN from a flat oscillating wall. To 
increase the intensity we can use a beam of high-veloci­
ty neutrons incident on the reflecting wall at a grazing 
angle. Thus, at a grazing angle - 1 0 and a neutron 
velocity v- 50 m/sec (L e., at vJ. -1 m/sec), one should 
expect a noticeable effect at w -107 sec-1 and a -10-6 

cm. 

It is interesting to trace in similar experiments the 
transition from the pure quantum case pa« n to the 
classical case pa» n. In the former case the scatter­
ing-induced change in the neutron energy is ± nW (in 
first-order perturbation theory); with further increase, 
the divergence of the perturbation theory becomes 
worse; finally, in the limit pa »n, the change of the 
neutron energy is determined by the velocity of the wall 
at the instant of scattering. 

For potentials that decrease slowly with distance, 
their weak oscillations lead to an essentially lower 

.. 
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probability of the inelastic scattering than in the case 
of a steplike potential,9) as seen, for example, from 
formula (38). The effect then decreases exponential­
ly with increasing frequency and in real cases it can 
be noted only at w - 103 sec-l, corresponding to small 
changes of the energy. Therefore the experimental ob­
servation of the inelastic interaction of UCN with such 
potentials is much more complicated. Nonetheless, the 
effect of heating of the UCN when reflected from an 
oscillating (as a result of current pulsations) magnetic 
wall must be taken into account when designing mag­
netic traps. As follows from the foregoing, the most 
dangerous here are the low frequencies. 

In concluSion, the authors are sincerely grateful to 
Yu. G. Abo v , B. G. Erozolimskii, V. K. Ignatovich, 
L. A. Kirzhnits, P. A. Krupchitskii, O. A. Langer, 
V. M. Lobashev, V. I. Lushchikov, V. G. Nosov, 
M. I. Padgoretskii, A. V. Stepanov, A. V. Strelkov, 
and I. M. Frank for interest in the work and for stim­
ulating discussions. 

1)Such a barrier can be realized, for example, by placing a 
ferromagnetic foil in an alternating magnetic field parallel to 
the surface of the foil. 

2)A particular case of such a potential, namely a rectangular 
potential threshold, was discussed by us earlier in an analy­
sis of the heating of ueN by reflection from a weakly oscil­
lating wall of a trap. [11 A more general dependence of Uo on 
x can be produced for example, with the aid of a magnetic 
field from specially arranged current-carrying conductors. [21 

3)Vladimirskil has shown[21 that such a potential can be real­
ized in actual constructions of magnetic traps. 

4)For this purpose, for example, we can register the absorp­
tion of the UeN in a thin foil that perturbs weakly the wave 

function of the neutron. In order for the registration effi­
ciency to be independent of the UeN momentum, the foil ma­
terial must have a near-zero coherent neutron scattering 
length. 

5)Inasmuch as in all the examples considered above the mo­
mentum distribution of the ueN that are acted upon by the 
nonstationary potential is subsequently independent of the 
time, it is possible to use for these measurements, for' ex­
ample, the method of spatial separation of ueN beams mov­
ing with different momentum components perpendicular to 
an equipotential plane and having equal but nonzero momen­
tum components in this plane. It is convenient to direct the 
primary UeN beam at a grazing angle with the equipotential 
plane. 

6)We use here the customary units. Accordingly, Po is re­
placed by the UeN velocity Vo =po/m, and z is multiplied by 
(Ii /m)t/2. 

7)For example, interference filters. 
8)Therefore, in particular, the major role may be assumed by 

effects connected with the non-ideal character of the barrier 
(finite height and width) and the specific features of its real 
structure (in the case of a magnetic barrier, for example, 
by the character of the behavior of the magnetic field near the 
barrier). 

9 )This is natural, for the effective time of interaction of the 
UeN with the wall increases in this case. 
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A canonical description of multiquantum resonance 
interactions of radiation with matter 

V. S. Butylkin, Yu. G. Khronopulo, and E. I. Yakubovich 

Institute of Radio Engineering and Electronics, USSR Academy of Sciences 
(Submitted March 10, 1976) 
Zh. Eksp. Teor. Fiz. 71, 1712-1725 (November 1976) 

It is shown that the response of matter in multiphoton resonance interactions with light involving an 
arbitrary number of energy levels can be described by the Neumann equation with a certain effective 
Hamiltonian r in the right-hand side, and with off-diagonal matrix elements that do not vanish for 
resonant transitions. The explicit form of this effective Hamiltonian is found. The polarization of the 
matter can be determined, with allowance for the effects of saturation and the Stark shifts of the levels, 
with the aid of r and a generalized dipole moment D that depends on the amplitUdes and phases of the 
interacting fields. As a result, the description of complex resonance interactions of matter with strong 
fields, including coherent processes, is much simplified. The following matters are treated as examples: 
induced transition probabilities for an arbitrary number of resonances, the stationary nonlinear 
susceptibility of a molecule in incoherent and coherent multiphoton processes, and the nonlinear dielectric 
constant that arises in q -photon scattering of an ultrashort pulse. 

PACS numbers: 42.6S.-k 

.E nj(i)j=(t)mn +v., 
i 

(1) Among the multitude of nonlinear optical phenomena 
observed in recent years, one can distinguish a large 
group of resonance processes that take place when con­
ditions of the following type are satisfied: where w"'" are the resonance frequencies of the matter, 
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