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A magneto-gravitational effect of the following form is considered: a body rotating in a strong constant 
field of a magnetic dipole whose axis coincides with the axis of rotation generates electromagnetic 
radiation if the rotation is accompanied by a change of the gravitational potential with time. This effect is 
due to the fact that the equations of electrodynamics in a strong variable gravitational field have very 
different solutions from the nonrelativistic equations. Two cases are considered in which the gravitational 
field varies: a) an axisymmetric ellipsoid rotates around an axis that does not coincide with the symmetry 
axis; b) a triaxial ellipsoid rotates about a principal axis. In the second case, the radiation is very 
different from magnetic dipole radiation. 

PACS numbers: 04.40.+c 

1. INTRODUCTION 

In the case of rotation of a body that has a strong 
meridional magnetic field, not only magnetic dipole ra­
diation is emitted but also a further radiation due to an 
effect of the general theory of relativity; we call this 
magneto-gravitational radiation. It is similar in nature 
to a number of effects considered earlier by various 
people. Gertsenshtetntll considered the generation of a 
'gravitational wave by an electromagnetic wave propagat­
ing in a strong magnetic or electric field. Dubrovicht2J 
investigated the oppOSite effect of generation of an elec­
tromagnetic wave by a gravitational wave propagating in 
a constant magnetic field. Finally, Zel'dovich[SJ con­
sidered a coupled electromagnetic-gravitational wave in 
which there is mutual generation of one type of wave by 
the other in the presence of a constant magnetic field. 

The magneto-gravitational effect which we study here 
, is as follows. Consider a body with a strong axisym­

metric magnetic field. For Simplicity, we shall con­
sider a field of the form 

HO(r) = [3r(f.Lr) -r'f.L]/r', 

where jJ. is the magnetic moment and r the radius vec­
tor. Suppose the body rotates about an axis that is not 
the axis of axial symmetry. This can Occur in two 
cases. 

a) The body has axial symmetry but the axis of sym­
metry does not coinCide with the vector w of the angular 
velOCity. Such noncoincidence of these directions can 
occur in a star because of nonsymmetric collapse or 
the influence of tidal forces in close binaries. 

b) The body does not have axial symmetry; for ex­
ample, it is a triaxial ellipsoid, which, as we assume 
for simplicity, rotates about one of the prinCipal axes. 

In these cases, the rotation of the body will be ac­
companied by a variation of the gravitational potential 
with the time, and if the relativistic parameter if>/c2 

(if> is the gravitational potential) and the angular velocity 
of rotation are sufficiently large, then, as we shall see, 
the variation of the gravitational potential in the mag­
netic field gives rise to the emission of electromagnetic 
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waves.. SUch a situation may occur in neutron stars 
and, in particular, in pulsars. The electromagnetic 
radiation will consist of two parts: magnetic dipole ra­
diation (if the magnetic moment does not coincide with 
the direction of the axis of rotation) and the radiation 
due to the magneto-gravitational effect. In what follows, 
we shall determine the ratio of the intensities of the two. 

In this paper, we consider the simplest case when the 
direction of the magnetic moment and the axis of rota­
tion COincide, and therefore, there is no magnetic di­
pole radiation. A tendency for this limiting case to be 
realized in a rotating figure does indeed exist. The 
meridional magnetic field is produced by circular cur­
rents. It is readily seen that the Coriolis force tends 
to arrange these currents in the plane perpendicular to 
the axis of rotation and, therefore, the magnetic mo­
ment along the direction of the axis of rotation. At the 
same time, the magnetic field produced by the currents 
themselves will not prevent their displacement since 
the displacement is parallel to the field. The time dur­
ing which this tendency can be realized is inversely pro­
portional to the magnetic field strength, the angular ve­
locity w, and the mean free time of the electrons in 
these currents. We shall not consider what are the con­
ditions under which the time needed for the orientation 
of the currents is reasonably short but restrict our­
selves to this qualitative argument, which shows that 
the limiting case we consider of no magnetic dipole ra­
diation is not merely a formal model. 

2. DERIVATION OF LINEARIZED EQUATIONS OF 
ELECTRODYNAMICS IN THE PRESENCE OF A 
VARIABLE MAGNETIC FIELD 

Since the ratio of the gravitational radius to the ra­
dius of a star is less than unity for even a neutron star, 
in the solution of the problem we can consider small 
perturbations of a pseudo-Euclidean metriC, linearizing 
the equations with respect to it; in addition, we can also 
assume that the generated electric and magnetic fields 
are small. The equations of electrodynamics in three­
dimensional notation have the formt4J 

a -
ax" CY'f H"/Y goO) =0, (1) 
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aE. 1 a - -
e"~'~=---('I~H"/'Ig ) ax' c at I 00 , 

aH, 1 a - -
e""~=--('I1 E"/'Igo,) ax' c at ' 

a - -
-a ('11 E"/'Igoo) =0. 

x" 

(2) 

(3) 

(4) 

Here, the Greek indices take three values: 1, 2, 3; 
eOt/30 is the completely antisymmetric unit tensor, y is 
the determinant of the three-dimensional metric tensor 
YOt8 = -gOt/3 (this equation is true only for gOOt =0, and the 
metric of the post-Newtonian approximation, which we 
shall use in what follows, satisfies this condition). All 
raising and lowering of indices is done by means of the 
three-dimensional metric Y Ot /3. In the approximation of 
a weak gravitational field, i. e., a metric that is nearly 
pseudo-Euclidean, [4] 

goo=1+2tlllc', 1"=1"=133=1-2tll/c', 

'fy=1-3tll/c', ,,("=,,("=,,(33=1+2tll/c'. 

Since Eqs. (1)-(4) contain both covariant and contra­
variant components of the electric and magnetic field 
vectors, we must make more precise what we under­
stand by E and H. In accordance with the meaning of 
the problem under consideration, a strong electric field 
Eo iIidependent of the gravitation is absent; therefore, 
because E is small, it is immaterial whether we identify 
it with EOt or EOt in the linear approximation. It is con­
venient to represent the field H in the form of the sum 
HO +Ht, where ao has the classical value already given 
in the introduction. In order to satisfy Eq. (4) in the 
stationary case, we must identify ao with the covariant 
components of H~. Thus, we finally obtain a system of 
equations linearized with respect to the gravitational 
field and the generated electromagnetic field, and this 
has the form 

div H=2c-'H'Vtll, 
1 aH 2 atll 

rotE = - --;fit + ~ H' at' 
divE=O, 

rotH=~~. 
c at 

(5) 

(6) 

(7) 

(8) 

Here, by H we understand the magnetic field generated 
in the effect we are considering. 

To solve these equations by analogy with ordinary 
electrodynamics, we introduce pseudovector and pseudo­
scalar potentials A and w in accordance with the defini­
tions (with allowance for (8)) 

E=rotA, 
1 aA 

H=--+ 'V'l'. 
c at 

Substituting into (5) and (6), we obtain 

1 a - 2 
t.. 'l' +--div A = --H''Vtll, 

c at c' 

_ _ 1 a'A 1 a'l' 2 0 atll 
graddivA-t..A=-------V-+-H -. 

c' at' c at c' at 

Imposing on the pseudopotentials an additional condition 
(analog of the Lorentz condition in ordinary electrody­
namics) 
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- 1 8W 
divA+--. -=0 

c at ' 

we obtain for A and w the wave equations 

. 2 
D'l'=-HoVtll 

c' ' 
- 2 atll DA_-_Ho_ 

c' at . 

(9) 

(10) 

Note that the right-hand sides of these equations satisfy 
a relation analogous to the continuity equation: 

( 8tll) a -div H°at +8t'(HOVtll)-O. (11) 

It automatically follows from divao = alfl/at =0. It is 
precisely because the inhomogeneities of Eqs. (10) are 
related by (11) that we can assert that the retarded po­
tentials obtained by integrating the wave equations sat­
isfy the condition (9) (cf[5]). 

3. GRAVITATIONAL POTENTIAL OF A 
HOMOGENEOUS ELLIPSOID SLIGHTLY DIFFERENT 
FROM A SPHERE 

As is well known (see[S]), the potential is 

3GM S~ [ x' y' ZZ] ds tll(x y z)=-- 1--------- ---
, '4 a'+s b'+s c'+s t.. (s) , 

t.. (s) =[ (az+g) (b'+s) (c'+s) J''', 

where x, y, z are the coordinates in the system of the 
principal axes of the ellipsoid; a, b, c are the corre­
sponding semiaxes; ,\ is the positive root of the equation 

;X2 y2 Z2 
--+--+--= 1. 
a'+). b'+). cZ+). 

Finally, M is the mass of the ellipSOid and G is the 
gravitational constant. 

In what follows, we shall assume that the ellipSOid 
differs little from a sphere: 

a'=R,'(1+a;), b'=R,'(l+~}, c'=Ro'(l+"(}, 

. where a, (3, and yare smaller than unity in absolute 
magnitude. In the linear approximation with respect to 
them, the potential is 

3GM [ 4 2Ro' . 2R,' ] 
tll =-4- 3r+'5r'(ax'+~Y'+lZ')- 15r'(a;+~+1) , 

r=(x'+y'+z')'h. 

In case a) (see the introduction), i. e., for an ellip­
soid of revolution, we set a = {3. For the transition to 
the coordinate system of an external observer, in which 
the ellipSOid rotates around an axis w that does not co­
incide with the symmetry axis, we must make two rota­
tions of the coordinate system: through the angle 8., be­
tween wand the symmetry axiS, and through the angle 
wt, which we shall measure from the plane passing 
through the symmetry axis and w. Since if> is a three­
dimensional scalar, only the coordinates in its argu­
ments will change under these transformations. Omit­
ting the terms that do not depend on the time, we obtain 
for the potential of the rotating ellipSOid in the linear 
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approximation with respect to the "deformation" param­
eters a, {3, y the expression 

3 R '[' x'-y' III =-GM ,..' '(a cos' B.+1 sin' B.-a)--cos2wt ro 2 

+ (a cos' B. +1 sin' B.-a)xy sin 2wt+(a-l)sin 2B.(xz cos wt+yz sin wt) ]. 

Here, x, y, and z are the coordinates of the pOint at 
which the field is detected in the system of the external 
observer; the z axis of this coordinate system is along w. 

The exact theory of rotation of such a body about an 
axis that does not lie along the symmetry axis(71 leads 
to the conclusion that the rotation axis itself precesses 
around the symmetry axis with angular velocity propor­
tional to the oblateness. Therefore, the influence of 
the precession on the variation of the gravitational po­
tential is proportional to the square of the oblateness. 
Since we restrict ourselves to the approximation linear 
in the oblateness, we can ignore the precession of the 
axis of rotation. 

USing an appropriate coordinate transformation, in 
case b) as well we can also readily obtain an expression 
for the gravitational potential in the system of the ex­
ternal observer: 

3 R,' [ x'-y' ] 
1ll=-GM~(a-~) --cos 2rot+xy sin2wt . ro r' 2 

4. MAGNETO-GRAVITATIONAL RADIATION IN 
MODELS a) AND b) 

Substituting the expression for the gravitational poten­
tial of the corre_sponding model into (10), we obtain an 
expression for A in the form of a retarded potential de­
fined at the point R at time t: 

- 1 S H' (r) a ( IR-rl ) A(R,t)=-- ----CI) r,t--- d'r. 
2ne' IR-rl at c 

In case a), we can ignore retardation. Then, integrat­
ing over r from Ro to 00 (which is justified because of 
the rapid decrease of the integrand), we obtain 

(1, B ( R ) (1, B (R ) if =--sinw t-- if =-cosoo t--
x R c t 1/ R c' if!"=0, 

(a.-1) GM /.100 . 
B=------sm2B •. 

25 e'R, e 

The electric field is E = curl A, so that 

(I, Boo (R) E. =--costisinw t-- , 
Rc e 

(I, Boo (R ) E. =-costicosw t-- , 
Re . c 

(I, Boo ( , R) E, =-sintisinw t-- . 
Rc c 

Here, the x axis is chosen such that the direction to the 
observer R lies in the xz plane and forms an angle iJ 

with the z axis. 

Thus, in the direction R there propagate two waves of 
frequency w; one of them is circularly polarized and the 
other is plane polarized and the direction of polarization 
is parallel to the axis of rotation. The angular distri­
butions of these two fields are different. To determine 
the magnetic fields of the two waves, we can use Eq. 

871 Sov. Phys. JETP, Vol. 44, No.5, November 1976 

(6). We note that the term associated with the variabil­
ity of the gravitational potential produces a negligibly 
small contribution at great distances, and we can there­
fore use the ordinary Maxwell equation. This leads to 
the following expression for the Poynting vector: 

,I, CR(BW)'[ Smg= -- -- '[ +cos' ti-sin' tI cos 2wtJ. 
8nH Re 

Let us compare this expression with the Poynting vec­
tor for the magnetic dipole radiation of a system in 
which the magnetic moment IL in the expression for If 
is inclined at angle 8 to the axis of rotation: 

cR (,.. sin B",' )' 
Smd=-- ---,- [l+cos' tI-sin'{j·cos 2w1J. 

8nH He' 

We arrive at the conclusion that the angular distribu­
tions of the radiation are the same and the ratio of the 
intensities is 

S':;~ =[ (a-l)sin2B,., GM ]' 
Smd 25 sin e e'Ro . 

Thus, in this case the magneto-gravitational effect can 
be interpreted as changing the magnetic moment. In 
accordance with what we have said above, the magneto­
gravitational effect is the more important compared with 
the magnetic dipole effect the smaller is the angle be­
tween the magnetic moment and the axis of rotation and 
the closer is the radius of the body to its gravitational 
radius. 

We now turn to case b). Substituting the previously 
calculated potential of the gravitational field into the ex­
pression for the retarded potential for A, we make in 
the argument of the gravitational potential the expansion 

j R-rj =R-rn, n=RIR 

and ignore r in the denominator of the integrand. Ex­
panding now <I>(t -Ric +r' n/c) in a series in powers of 
r' 01 c to (r' nl c)2 and integrating over r from Ro to 00, 

we obtain 

(', F ( R) LT. =-costlsintisin2", t-- , 
R c 

(" ' F , ( R) .IT. = - - cos tI sin ti cos 2~) t - - , 
R c 

(" 2F.". ( R ) LT, = --sJll"tism2w t-- , 
3R c 

F = 3CiM (2",)'R,',.. (a- ). 
175c'R. c' ~ 

Here, as before, the radius vector of the pOint of obser­
vation R forms an angle iJ with the axis of rotation and 
lies in the xz plane. The components of the electric 
field vector are 

(" 2wF ( R) E. = --;;R sin ti cos' ti sin 200 t -7 ' 

E.("= - 2",F sin tI (cos' ti + ~sinz tI)cos 200 (t _.!i). 
eR 3 c 

(2) 2",F ( R) E, =---costlsin'tlsin2w t-- . 
eR c 

Therefore, in this case two waves of frequency 2w are 
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emitted in the direction of R: an elliptically polarized 
wave with ellipticity that depends on the angle {J, and a 
plane polarized wave with polarization parallel to the z 
axis. The magnetic field of the wave is determined in 
the same way as in the preceding case, and the Poynt­
ing vector is equal to 

en (ZwF)' S =-8 -- sin' tl{cos' tl+(cos' tl+'I,sin' tl)' 
n cR 

+[ (cos' tl+'I, sin' tl) '-cos' tl1cos 46) (t-Rlc)}. 

In this case, the magneto-gravitational radiation is very 
different from the magnetic dipole radiation as regards 
the frequency of the emitted waves, the angular distri­
bution, the intensity of the radiation, and its dependence 
on the angular velocity of rotation. 

This effect is important in the case of rapid rotation 
and in the presence of strong magnetic and gravitational 
fields. In accordance with the classical theory, rapid 
rotation leads to a departure from spherical shape of the 
rotating body and to its replacement by a Maclaurin el­
lipsoid of revolution and a triaxial Jacobi ellipsoid. It 
is this second case that we consider in model b). At 
even higher angular velocities, one can have more com­
plicated equilibrium figures. [8] However, small devia­
tions from these classical figures are unstable. In[9] , 
Tsygan made the assumption that for suffiCiently large 
velocities the deviations increase and may become 

stable. If this is true (though it should be noted that it 
has not yet been proved), the rotation of such a body, in 
which the radius -vector of its surface as a function of 
the direction is characterized by the spherical function 
Y'm({J, lP), must lead to an increase in the frequency of 
the radiation in model b) in proportion to the quantum 
number m and of the intensity of the electromagnetic 
radiation by a factor m 8• 
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Optical activity of heavy-metal vapors-a manifestation of 
the weak interaction of electrons and nucleons 
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The feasibility of detecting parity non conservation in atomic transitions by observing the rotation of the 
plane of polarization of light in heavy-metal vapors is discussed. The angle of rotation of the plane of 
polarization when the vapor temperature is 1200'C is _IO-s rad/m in thallium and lead and 
10-7_10- 6 rad/m for various transitions in bismuth. 

PACS numbers: 32.10.Dk 

1. INTRODUCTION 

It has been noted recently that there is a fairly real 
possibility of detecting the weak interaction of electrons 
with nucleons by observing parity-nonconservation ef­
fects in atomic transitions. The first to draw attention 
to these effects was Zel'dovich as long ago as 1959, [11 

and since then they have been discussed repeatedly by 
theorists[Z-S] (cf. also[6,7]). An extremely important 
step was taken by Bouchiat and Bouchiat who pointed out 
in their note[S] that parity-nonconservation effects are 
enhanced in heavy atoms to the extent that their observa-
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tion in induced doubly-forbidden Ml transitions lies on 
the borders of the possible. 

It was recently pointed out that it is feasible to detect 
parity nonconservation in atomic transitions by the ro­
tation of the plane of polarization of lightll in heavy­
metal vapors[8-19] (see also the note[11l, in which the 
analogous effect in the radio-frequency region is dis­
cussed). In the present paper we consider the question 
of near which transitions and in which chemical elements 
we must look for optical activity. We then calculate the ' 
effect in the elements that appear to be the most suit-
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