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A statistical-thermodynamic analysis is presented of the spatial structure of a long polymer chain in which 
the loosely-spaced links merge into pairs and form saturated bonds. It is shown that with decreasing 
temperature such chains form a globular type of structure with irregular joining of the functional links. 
Although the interaction is by itself incapable of forming a condensed phase, it can lead in a polymer 
chain to a coil-globule phase transition. The transition is unique in that although formally it is of first 
order, it is in fact very similar to a second-order transition (the density discontinuity, the heat released, 
etc. are comparatively small). The extreme cases of a sufficiently short chain in which the excluded 
monomer volume is of no significance and of an extremely long chain are investigated analytically. A 
numerical calculation in the intermediate region it has made it possible to fit together the two asymptotic 
values. 

PACS numbers: 36.30.Ba, 61.40.Km 

1. INTRODUCTION 

The spatial structure of a polymer chain suspended 
under equilibrium conditions in a dilute solution, is de­
termined by the interactions (direct or via the solvent 
medium) between the particles of the chain. If these 
interactions are strong eneough, then they stabilize vari­
ous structure elements, as a result of which, depending 
on the concrete character of the acting forces, the poly­
mer coils can turn into globules, helices, folded struc­
tures, etc. 

The interactions of the parts of the chain with one an­
other and with particles of the solvent are divided into 
two qualitatively different classes: saturated bonds 
(covalent, hydrogen) and unsaturated (van der Waals, 
multipole, etc.). It is known that unsaturated forces 
lead, with decreasing temperature, to formation of 
globules of various types. On the other hand, in the 
case of saturating bonds, the resultant structure de­
pends essentially on the character of the arrangement of 
the functional (capable of forming bonds) monomers along 
the chain. 

Whereas all the monomers of the chain, or at least 
those that are densely arranged along it, are capable 
of forming bonds, a regular conformation of the helical 
or folded type is thermodynamically not profitable; ex­
amples are the O! helix or the 13 structure of polypeptides. 
In essence, the reason why such regular structures are 
thermodynamically favored is the rigidity of the section 
of the chain between the neighboring functional groups, 
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as a result of which the entropy loss occurring' when a 
definite conformation is fixed is small. 

The opposite case, however, wherein the functional 
units are quite widely spaced and are separated by 
flexible pieces of chain, is also possible (the distance 
between these pieces along the chain is larger than or of 
the order of the so-called persistence length, i. e., the 
length over which the memory of the direction is lost). 
In this situation, any structure with a definite fixed 
method of binding the pieces of the chain is entropywise 
unprofitable, so that the chain should (with decreasing 
temperature) form a structure of the globular type, in 
which most closed bonds are made up of particles that 
are very widely spaced along the chain. 

This paper is devoted to an analysis of the spatial 
structure of the globule and of the coil-globule phase 
transition in such systems. 

Under conditions when the functional groups are sepa­
rated by long sections of a "nonfunctional" chain, it is 
natural to assume that the length of the bond between two 
linked ("reacting") groups is small in <:omparison with 
the length of the "nonfunctional" section. We can there­
fore employ the formalism developed in[I) and[2) for a 
statistical-thermodynamics description of the polymer 
chain with short-range (in the sense indicated above) 
forces of lateral interaction. We recall that an essential 
feature of this formalism was the method of introducing 
into the theory a concrete form of lateral interaction: 
all the results were expressed in terms of thermody-
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namic functions of a gas of broken links with a given in­
teraction. It is natural to take the term link to mean 
here an entire piece of the chain with one functional 
monomer. From this point of view, the considered in­
teraction (more accurately, its "attracting" part) in a 
gas of links reduces to the fact that the "atoms" of this 
gas can join into "diatomic molecules." The distinguish­
ing feature of the situation is that such interactions can­
not cause any phase transition or phase stratisfication at 
all in a system without linear memory (a gas of links). 
We shall show, however, that a linear memory changes 
the situation in the sense that saturating bonds lead to a 
first-order coil-globule transition, although no phase 
stratification is obtained in the resultant globule. 

The plan of the subsequent exposition is the following: 
In the second section we consider a very simple model, 
in which the lateral interaction reduces completely to 
rare pairwise saturating bonds. If turns out that such a 
system collapses to dimensions on the order of the 
length of the link. Therefore it is necessary to supple­
ment the model with allowance for the excluded volume 
of the links, i. e., the repulsion forces at atmoic dis­
tances. This refinement will be introduced in the third 
section. Finally, Sec. 4 is devoted to a certain general­
ization to systems with arbitrary interactions of mono­
mers. 

Let us recall the fundamental equations previously 
derived[l-2] for the description of the structure of the 
globule: 

g1j>=A exp{J.I· (n) IT} 1j>, 

n=1j>' exp{J.I'(n)/T), 

N=Jnd'r, 

(1 ) 
(2) 

(3 ) 

Here g is a linear-memory integral operator, the 
kernel of which can be naturally regarded under the 
conditions of the problem as Gaussian, n(r) is the dis­
tribution of the density of the number of links, A and 
I/J(r) are auxilliary quantities (the function is proportion­
al to the distribution of the density of the end links), N 
is the total number of links in the chain, Il * = Il - Illd , 
Il (n, T) is the chemical potential of the gas of the links, 
and Illd= Tlnn (for details see[2]). After solving the 
equations, the free energy of the globule, reckoned from 
the free energy of the coil, can be calculated from the 
formula 

F=-NTlnA- Sp'd'r, (4) 

where p* = P - PM' P is the pressure in the system of the 
broken links, and Pld = nT. 

In this paper we shall not take into account explicitly 
the influence of the solvent. It is implied that all the 
employed characteristics of the system are so renor­
mali zed that this influence is effectively taken into ac­
count. The method of this renormalization was indicated 
earlier[3]; the singularities to which it leads in this case 
will be considered in another article. 
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2. CHAIN WITHOUT EXCLUDED VOLUME 

Thus, we consider a chain for which the gas of links 
constitutes a mixture of one- and two-atom ideal gases 
in the sense indicated above. Let nl and n2, III and 112 
be the partial densities and chemical potentials, respec­
tively, of single-link atoms and two-link molecules, 
n = nl + 2nz the total density of the gas of the links; x 
= 2nz/n is the concentration of the reacting links. The 
condition for chemical equilibrium is, as is well known, 

(5 ) 

In the considered case of an ideal gas, the condition 
reduces to the law of effective masses 

(6) 

where k = exp(- U /T)vo is the binding constant of the 
link. Here U is the binding energy and lnvo is the en­
tropy of the bond; in the classical case Vo is the volume 
available for the motion of one of two bound particles 
when the second one is made immobile. 

It will be convenient in what follows to rewrite condi­
tion (6) in the form of a connection between the equilibri­
um values of n and x: 

2nk=x/(l-x)'. (7) 

It is easy to verify that the volume denSity of the free 
energy of the mixture of a monatomic and diatomic ideal 
gas, reckoned from the density of the free energy of an 
ideal monatomic gas of nonreacting particles, can be 
written with the aid of (7) in the form 

fo'=/o-/id=nT[in(1-x) +x/2J. (8) 

From this we get 

This result must be substituted in (1) and (2). We re­
call that the kernel of the operator g is in our case the 
Gaussian function g(r) = (41ra2)-3/z exp{- rZ /4a~. For 
convenience, we introduce a new unknown function y 
= [x/(l - X)]l/2 = (2nz /nd /2 and a dimensionless coordi­
nate ; = r / a. The complete system of equations then 
takes the form 

g(y+y') =Ay, 

~ = S (y'+y')d';, ~""'2Nk/a', 
n= (2k) -t (y'+y'). 

(9) 

(10) 

The system (9) and (10) contains only one dimension­
less parameter {3. It is easiest to solve at large {3. In 
this case y is large almost everywhere where there are 
still particles (an estimate is given below), and we can 
neglect y in comparison with l, and l in comparison 
with y4. (According to (7), in this approximation we 
assume almost all the particles to have reacted and al­
most all the bonds closed.) The resultant simplified 
equations have a solution in the form of a Gaussian 
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FIG. 1. Density profiles at (3 
= 400: a-density profile based on 
formula (11), b-calculated 
numerically. 

function. As a result of some manipulations we obtain 
for the density profile 

n(r) ~(N/a3) (2/3n)~' exp{-2r'/3a'} (11) 

and from (4) for the free energy 

F~(NT/2) [i-In (2/27n)%~1. (12) 

We call attention to the fact that in this approximation 
the width of the density profile depends neither on the 
temperature, nor on the properties of the bonds, nor on 
the length of the chain. 

It is now necessary to use the results to find the region 
of its applicability: it is necessary to stipulate small­
ness of the fraction of the links that are situated outside 
of a radius R such that kn(R) -1. A numerical analysis 
leads to the estimate 

p~2Nk/ a3~ 1000. (13) 

ContribUting to the satisfaction of this condition are 
lowering of the temperature, the strength of the bonds, 
and the length and flexibility of the chain. 

However, condition (13) is violated before the globule 
is transformed into a coil (according to (12), this transi­
tion should take place at F=O, Le., (3=e(271T/2)3/2 
z 750). It is therefore necessary to carry out an analy­
sis of the system of equations (9) and (10) in the region 
where it does not contain a small parameter. The re­
sults of this analysis, carried out with a BESM-4M com­
puter, are considered in the Appendix; here, we report 
only those results which are needed for our purposes. 
At {3 = 6000, the obtained density profile coincided with 
the analytical results (11) within less than 10%. With 
decreasing (3, the density profile smears out noticeably 
and ceases to be Gaussian. By way of example, Fig. 
1 shows the profile of nCr) at (3 = 400. 

Calculating the free energy from the numerically ob­
tained density profiles, we find that the globule-coil 
phase transition takes place at 

(14) 

and is a first-order transition. At the transition point, 
the radius at which the density amounts to 0.1 nCO) is 
approximately 3.4 times larger than (11). 

Thus, a chain without an excluded volume with loosely­
spaced saturating bonds forms under suitable condi-
tions (low temperature, strong bonds, long and flexible 
chain (3> 195) a globule whose dimension depends little 
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on the temperature and on the length of the chain and 
remains of the order of the length a of one link. 

The quantity a was introduced above as the disper­
sion of the Gaussian kernel. This form of the kernel 
g is natural, but in the general case not at aU mandatory 
(the results of the present study are not very sensitive 
to the actual form of the nucleus). However, the quanti­
ty a can be introduced also in the general case as the 
mean spatial distance between two functional monomers 
that are neighbors along the chain. This quantity is 
connected with the distance l between them along the 
chain and with the persistence length lo by the formula 
a2 = llo /3. 

In a real situation there are always repulsion forces 
at atomic distances, L e., each link carries an ex­
cluded volume v. Therefore the results are applicable 
only under the condition nv« 1, or (see (11» Nv/ a3 « 101) 
(in terms of the lengths l and lo, this condition takes the 
form 1« N« (l/lo)1/2). Consequently, for sufficiently 
long chains it is necessary to take into account the ex­
cluded volume. 

3. CHAIN WITH EXCLUDED VOLUME 

In the presence of an excluded VOlume, the gas of 
broken links is no longer a mixture of ideal gases. It 
is necessary to find the free energy of a gas of particles, 
each of which is a filament with a finite self-volume (in 
accordance with the definition of the link). This can be 
done only approximately, although the qualitative re­
sults obtained below are little sensitive in their charac­
ter to the actual method used to introduce the excluded 
volume. 

We introduce, for example, an excluded volume in 
analogy with the manner used to introduce it in the van 
der Waals model. We note first that since in our chain 
only one monomer from each long link enters into a 
bond, the volume of the pair of links remains practically 
unchanged by the bonding. Consequently the second viri­
al coefficients of the interaction of two single links, of a 
single link and a bound pair of links, or of two pairs are 
related like 1 : 2 : 4, L e., they are equal to v, 2v, and 
4v. Using the same reasoning as in[4] in the derivation 
of the van der Waals equation (but neglecting the van der 
Waals attraction), we obtain 

r~fo'-Tnln(i-nu)~Tn [lnO-x)+ ~ -In(i-nU)]. (15) 

where It is defined in (8). In this approximation, the 
chemical-equilibrium condition (5) leads as before to 
(6) and (7). 

We consider first the case of a very long chain, when 
the dimension of the resultant globule is larger than a. 
In this case, as already shown (see[2]), if A is not close 
to unity, the globule contains a coil with a practically 
constant density no; around the core, the density de­
creases rapidly to zero at a distance - a. The density 
no is determined by the condition p* (no) = O. By deter­
mining p* from (15) 
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a b 
FIG. 2. Plots of #i*(n) at constant T: a) plot given inlll; b) 
plot of formula (18). The dashed lines are the plots of j.L*(n) at 
T = Te' In (a) no is finite and in (b) no - 0 as T - Tc. 

we obtain with the aid of (7) 

From this we get the free energy in the volume approxi­
mation (see l21 ) 

Let us analyze the coil-globule transition in a long 
chain. To this end we consider a plot of the function 
1J.*(n)=8f*/an, shown in Fig. 2. As already indicated 
(see l11), the point no is determined from the condition 
that the shaded areas be equal, and the transition tem­
perature is determined from the condition that the 
horizontal secant coincide with the abscissa axis. It is 
clear that a first-order transition can be obtained in the 
volume approximation only when the function IJ. * (n) re­
tains a minimum at large n, even above the inversion 
temperature of the second virial coefficient (the Flory 
o point), i. e., when at small n we have IJ.* (n» 0, as 
shown in Fig; 2a. The origin of this minimum is closely 
connected with the possibility of phase stratification in 
the gas of links. In the case of (15), however, such a 
stratification is impossible and the minimum vanishes at 
the 0 pOint. Consequently, no first-order transition is 
obtained in the volume approximation and when the 
transition point is approached the density in the globule 
tends to zero. 

To analyze the transition, we can therefore expand 
f* (n) in powers of n (the virial expansion) 

fen) =n'TB(T)+n'TC(T). 
B=v-k, C=v'/2+2k'. 

For f* in this form it is easy to carry out all the cal­
culations of the volume approximation and obtain no 
=-B/2C, A=1+~/4C, and for the free energy Fu 
= - NTF 14C. From this we see that the transition point 
in the volume approximation (i. e., the point where Fu 
= 0) is simply the Flory 0 point. From the expressions 
for no and Fu it is seen that in this approximation the 
transition is of second order, without a jump of the 
density and a gradual spreading of the system. How­
ever, besides this spreading, the surface layer be­
comes thicker, since the width of the surface layer has 
a characteristic dimension -al(A_1)1/2, and as T- Tc 
we have 11.- 1. When the transition layer becomes 
thicker, the surface contribution to the free energy be-

858 Sov. Phys. JETP, Vol. 44, No.4, October 1976 

gins to compete with the volume contribution, i. e., the 
volume approximation no longer holds. It is obvious 
that both contributions will be of the same order when 
the thickness of the surface al(A - 1)1/2 is of the order 
of the globule radius (Nlno)1/3. 2) Using no and A ob­
tained in the volume approximation, and recognizing that 

. near the 0 point we have 

we obtain an estimate for the transition temperature Tc: 

(16) 

In our concrete case it is easy to find .that C = (~)V2 and 
b = vU 10, so that 

1-TJ8=const(8/U) (a'/Nv) '''. (16a) 

The asymptotic formula (16a) holds only for large 
N, when nv« 1 at the transition point. At intermediate 
N it is necessary to solve the general system (1)-(4) 
and obtain IJ.* from (15). A numerical solution for a 
Gaussian curve was obtained with the BESM-4M com­
puter. The obtained first-order phase transition is 
shown in Fig. 3 in terms of the variables a and Nvla3. 
At small N (up to Nvla3 -10) this curve duplicates the 
result (14) within 10%. At extremely large N, the curve 
takes the asymptotic form (16a) with const = 6. 7. In the 
interval 0.15< a<0.5 the calculated curve can be ap­
proximated within 1% by the expression 

1 6.7 
2· - a = (.Vv/a') 'i'+10.4 

The average density in the globule at the transition 
point at large N is small: <nv>,- (a3 I NV)l /2. We con­
sider the case vla3 « 1. 3) Then the density of the coil4 ) 

is nc - 11 a3 N 1 /2, and thus the relative density jump is 

Consequently in this case the coil-globule transition is 
formally of first order and at large N takes place not 
much lower than the 0 point. However, with respect to 
some of its characteristics, the transition is close to 
second order. This manifests itself in the fact that, 
first, the heat of the transition per particle t:..QIN- U(a3 I 
NV)1/2 tends to zero as N - 00. Second, the relative 

FIG. 3. Phase diagram. 
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FIG. 4. Phase diagram in terms 
of the variables (C, T). I-coil; 
II-globule; III-helix. 

density jump - (a3Iv)3 / 2 does not depend on the length of 
the chain and is small in comparison with the relative 
jump in the ordinary first-order transition in a system 
with linear memory -a3N l / 2Iv. Third, the jumplike 
change of the density in the transition is preceded by a 
stage of gradual decrease of the average density in the 
globule to a very small value. 

In a finite chain, the coil-globule transition is in fact 
not a true phase transition but a more or less abrupt 
cooperative transition of width t:.T. Let us estimate 
t:.T. The smoothing of the phase transition takes place 
in an interval in which the difference of the free ener­
gies of the phases is F- T« NT and the equations used 
by us are not valid. From the estimate given above we 
easily obtain 

(17) 

Thus, in the considered case (v« a3 ) the width of the 
transition is much smaller than the smallest charac­
teristic temperature interval of the problem e - Tc; 
the transition is close to a first-order phase transition 
and takes place somewhat below the e point (see 16a). 

We consider now the case v - a3 • It is then seen from 
(17) that the transition broadens up to the e point, its 
width turns out to be - N-1 / 2, and it must be assumed in 
practice that even at finite N we are dealing with a 
transition that occurs at the e point itself. This is not 
a first-order phase transition in the sense that the dis­
tribution function of the system is not "transferred" 
from the regions of configuration space with large 
(globule) densities into regions with small (coil) densi­
ties, but this probability changes rather continuously. 

In concluding this section, let us consider qualitative­
ly the phase diagram of a sufficiently long polymer 
chain in terms of the variables (c, T) where c is the 
con('~ntration of the functional links. For the sake of 
argument we shall construct the same diagram for the 
polynucleotide chain poly-AT (which can wind itself 
around into a helix, forming a "spindle" diluted by non­
functional links (for example, r). At a small concentra­
tion of r, the chain will preserve in the main the helical 
structure with defects due to the presence of r. The 
temperature of the helix-coil transition will decrease 
with increasing concentration of r (Fig. 4, curve a). On 
the other hand, if the concentration of r is large enough, 
then the helical structure is less favored than the globule 
structure (see Sec. 1), and consequently at a certain 
concentration a first-order helix-globule transition takes 
place (curve b of Fig. 4). The obtained globule was in­
vestigated above, at a corresponding coil-globule transi­
tion is shown by curve c of Fig. 4. At very low concen-
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trations of the functional links, at the coil-globule tran­
sition temperature, the most essential role in the attrac­
tion of the monomers is played by the unsaturated 
forces, as a result of which the transition ceases to be 
described by the formulas of this section, and in the 
presence of sufficiently strong van der Waals interac­
trons it can proceed as an ordinary first-order phase 
transition in a system with linear memory (see[Z]). 

4. SOME GENERALIZATIONS 

Comparing the conclusions of the present paper with 
those Of(l] and[21, we readily see the large difference 
between the structures and properties of globules made 
up of saturated bonds and unsaturated short-range 
forces. In the case of saturating bonds there are no such 
phenomena as the appearance of a small globule (with 
dimensions smaller than the length of link a), formation 
of a sharp boundary between the coil of the globule and 
its fringe, or the vanishing of the fringe. All these sin­
gularities are due to the fact that the saturating bonds 
with unity valence do not form a condensed phase in the 
gas of the links. Also closely connected with this fact 
is, as we have seen, the closeness of the coil-globule 
transition to a second-order transition. 

It is clear that other polymers can behave in similar. 
fashion-the important factor is that the volume inter­
action lead to a function IJ. '" (n, T) of the same type as 
shown in Fig. 3b. The connection between this property 
and the phase stratification in a gas of links is clear 
from the fact that the latter is equivalent to a nonmono­
tonic behavior of the chemical potential IJ. (n) = IJ. * (n) 
+ Tlnn. An analysis of the coil-globule transition for 
such polymers does not differ from that given in Sec. 
3-in the general case all that changes is the interpreta­
tion of the meaning of the virial coeffiCients B and C. 

The role of the parameter analogous to vla3 in Sec. 3 
is played in this case by C 1/21 a3 • It is seen therefore, 
first, that the abruptness of the transition will be most 
clearly pronounced in a solvent in which the third virial 
coefficient has the smallest possible value. Second, the 
abruptness of the transition is aided by the increased 
rigidity of the chain (increase of a). These properties 
of the coil-globule transition below the e temperature 
agree with the results obtained by others(5-6] by modify­
ing the elementary Flory model and are confirmed by 
computer simulation. (7-9] 

On the other hand, if IJ. * (n, T) takes the form shown in 
Fig. 3a (this can occur only when the principal role in the 
the attraction of the links at large densities is played by 
unsaturating forces), then the coil-globule transition 
proceeds like the ordinary first-order transition de­
scribed in the earlier papers. U-2] The temperature of 
this transition lies above the e point, and its qualitative 
characteristics do not depend essentially on the prop­
erties of the elementary link. 

It is interesting to note that the loosening of the globule 
prior to the transition into a coil below the e point is in 
clear qualitative correspondence with the well-known 
fact(lO] that even the most concentrated phase is extra-
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FIG. 5. Plot of A(f3) , f3o"" 145, 
f31"" 195. 

ordinarily diluted when a solution of chains is stratified 
at the e point. 

We indicate in conclusion that to observe experimental­
ly an abrupt coil-globule transition below the e tempera­
ture it is necessary that the solution be sufficiently di­
lute: the chain density ng in the solution must be so 
small that the transition into the globule occurs prior 
to the precipitation of the polymer. To this end it is 
necessary that the gain in the surface energy when two 
globules stick together be smaller than the loss of the 
entropy due to the loss of the degrees of freedom of the 
relative motion of the globules. An order-of-magnitude 
estimate leads to the result 

lIn n,u,I"';'a'C-''', 

where ve is the volume of the globule. 

APPENDIX 

The results of an analysis of the system of equations 
(9)- (10). The system (9)- (10) specifies y(;) and A as 
functions of~. A plot of the function A(m is shown in 
Fig. 5. At ~< ~o'" 145 the system has no nontrivial 
solutions. At ~> ~o the system has two nontrivial solu­
tions; one of them corresponds to the maximum of the 
free energy (the solution corresponding to smaller A), 
and the other to a minimum. At ~> ~1 '" 195 this mini­
mum is absolute and corresponds to the equilibrium 
state of the system. At ~o< ~< ~1 the maximum is local 
and determines a metastable state, while the equilibrium 
state is the one corresponding to the trivial solution y 
;: 0 (coil). From this point of view, the value ~ = ~o is the 
stability limit of the metastable state. 

y(;) as a function A has a monotonic behavior: when 
the point A = 1 is approached from above, this function 
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"spreads out" and becomes «1. In this case we can 
replace the integral operator g by the differential opera­
tor 1 + a2il, using the fact that y« 1, and obtain the func­
tion A(m, apart from a numberical factor. It turned 
out that ~ - (A - 1 t 1/2 , and that the solution obtained in 
this manner is valid at A - 1 « 1, i. e., it describes the 
lower part of curve on Fig. 5, corresponding to the 
maximum of F. Both the transition point and the stabili­
ty limit of the metastable phase lie at larger values of A. 

1)Consequently, in order to be able to neglect the excluded 
volume at the transition point (14), it is necessary to satisfy 
the inequality Oi;: v/2k« 0.05. In order for a region of ap­
plicability of the Gaussian approximation (13) to exist, the 
stronger condition Oi «0. 01 is necessary. 

2)Using the fact that in the transition region the density in 
the globule is small, and that the density profile changes 
smoothly, we can write down the equations (1) and (2) in the 
form 0i2il1j!=(A-l)If,+2B~2+3C1j!5, n=1j!2. All the remaining 
terms of the equation for If, turn out to be in the region of the 
first-order transition, owing to the anomalously low value of 
the coefficient B near the ® point. 

3)This case is realized, for example, when the link, having a 
length on the order of the persistence length, consists of a 
large number M of monomer groups with identical excluded 
volume. Then estimates show that v/ a3 - M-I «1. 

4)At the transition temperature, the parameter of the volume 
interaction in the coil is N I /2B1a3 -(v/a3)1/2«I, i.e., the coil 
can be regarded as Gaussian. 
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