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Free and forced helicon oscillations in high-purity indium single crystals are investigated experimentally. 
The dependence of the helicon dispersion law and damping on the magnitude and direction of the magnetic 
field is studied. In agreement with the basic law of macroscopic electrodynamics, the dispersion law and 
damping of helicons are found to be independent of the structure of the intermediate-state domains. The 
resonance frequency of the oscillations in the plate do not depend on the concentration of the normal 
phase and decrease with inclination of the magnetic field relative to the normal to the plate surface. The 
damping of helicons in the intermediate state is independent of the inclination of the magnetic field. These 
facts are in agreement with Andreev's theory. (Zh. Eksp. Teor. Fiz. 51, 1510, 1966; Sov. Phys. JETP. 
24 1019, 1967). 

PACS numbers: 7S.60.Fk, 76.90.+d 

In 1966, Andreev derived the equations of macroscopic 
electrodynamics of superconductors in the intermediate 
state. UJ In Andreev's theory, the electromagnetic fields 
were averaged over distances greatly exceeding the di­
mensions of the normal and superconducting domains 
that are produced in the sample volume. In this macro­
scopic approach, to describe the field distributions there 
is no need to know the structure of the intermediate 
state, the shape of the domains, the rate of motion of 
the boundaries, etc. For Andreev's equations[1] to be 
valid it is important only that free motion of the domain 
walls between the phases be possible, i. e., that there 
be no pinning by the sample defects. 

It was shown in [1J that in a pure uncompensated metal 
in the intermediate state, just as in the normal state, 
circularly polarized low-frequency electromagnetic 
waves-helicons-can propagate in a constant magnetic 
field. The condition that ensures weak damping of the 
helicons is a large electron mean free path l in compari­
son with the characteristic dimensions R of the electron 
orbits in the magnetic field. Helicons in the intermedi­
ate state were first observed experimentally by Maxfield 
and Johnson in polycrystalline indium samples. [2] A 
more thorough investigation was then carried out with 
lead samples. [3] In both cases, however, they used 
pure-quality samples of low-purity metals at l < R. This 
caused a strong damping of the helicons in the inter­
mediate state, which led to difficulties in the interpreta­
tion of the experimental results and to apparent dis­
crepancies with the theory. 

We report here a detailed experimental investigation 
of helicons in high-purity indium single crystals. We in­
vestigated the dispersion and the damping of the heli-
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cons as functions of the magnitude and direction of the 
magnetic field. All the experimental results obtained in 
the intermediate state are in full agreement with An­
dreev's theory. Ul 

HELICON OSCILLATIONS IN A PLATE (THEORY) 

1. Dispersion law. We consider the distribution of 
alternating low frequency fields in an unbounded plate of 
thickness d in the intermediate state. We introduce a 
system of Cartesian coordinates (x1]!;) such that the sur­
faces of the plate are defined by the equation!; = ± d/2. 
We introduce also a coordinate system (xyz), which is 
rotated through an angle e about the x axis relative to 
the other system, so that the z axis is directed along the 
constant magnetic field Ho inside the plate. In the in­
termediate state I Ho I = He (He is the critical field) and 
the connection between the angle e and the angle cp be­
tween the external constant field J€ and the!; axis de­
pends on the value of the field. From the condition that 
the tangential components of the field intensity be con­
tinuous, we get 

(1) 

The alternating increment to the constant field will be 
designated by the vector HI' We assume that IHII «He, 
and that the dependence of the alternating field on the co­
ordinates and on the time is given by the factor eitr-iwt. 

Then as shown in [1], the following relation should hold 
between the projection k8 of the wave vector k on the z 
axis and the frequency w: 

(2) 
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Here aa.B are the components of the conductivity tensor 
of the metal in the normal state at Ho = He, a, (3 = x, y. 

It follows from Andreev's equations (1) that the alter­
nating electric and magnetic field intensity vectors lie 
in a plane perpendicular to Ho. In pure metals with un­
equal electron and hole densities N* 0, under the condi­
tion l»R, we have ax~"'-a~x»axx"'a~~ and Eq. (2) shows 
that in the intermediate state there can propagate weak­
ly-damped plane circularly-polarized waves, which were 
named helicons. Equation (2) coincides with the disper­
sion law of helicons in a normal metal at kl« 1 and e = 0 
(see, e. g. ,[4]). The difference lies in the dependence on 
the angle between k and Ho. In the normal state Eq. (2) 
contains besides the projection k. also the absolute value 
of k. 

2. Free oscillations. The natural modes of the os­
cillations in a sample are obtained from the conditions 
for the continuity of the tangential components of the 
magnetic field intenSity and the normal components of 
the magnetic induction on the surface of the sample and 
the vanishing of the alternating fields as r- 00. We note 
that when solving the external problem we can use the 
magnetostatic equations, in view of the small dimensions 
of the sample in comparison with the wavelength in vac­
uum in the frequency band of interest to us. For an un­
bounded plate, by virtue of the symmetry of the problem, 
all the fields depend only on the coordinate " and the 
boundary conditions reduce to the equality H1x = Hb = 0 at ,= ±d/2. 

Assume that at the initial instant of time H]x = 0 and 
Hty is an even function of ,. We expand this function in 
a Fourier series 

H" = L G. cos k_. . 
By virtue of the boundary conditions, the wave numbers 
are k=nrr/d, where n is an odd integer. Taking into ac­
count the time dependence, we obtain under the condi­
tion axp~x!£; - (axx - a~~)2/4!£;0: 

o,X ~G k' ( ') -w", H,,= --.:... .cos '~sm w t e , 
0, • 

~ (' Ou-O,.. .t) -woo, H,,= .:...G.cosk~ cosw t+~smw e , . 
where 

I c2k/ O'J 1/ c2k/ O'XX+OIlV 

w =4,;~' W =~---zcr;-' 

0,=[ -0""0,,,- (ou-O,.) '/41,\ 0,= (-0.,0",+0«0,,) ''', 

k,=k cos 6, k=nn/d; n=1. 3, 5, ... 

The vector H1 executes damped oscillations with a 
logarithmic damping decrement 

d=211W" /w'=n(oxx+o,.)/o,. 

(3) 

In the case 'axx - a~~' « 'ax~' '" 'a~x' the oscillations are 
circularly polarized, and the direction of rotation of the 
vector H1 around the direction of Ho, coincides with the 
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direction of rotation of the predominant group of car­
riers. 

As shown by Gardukov [5] the transverse magnetore­
sistance p for pure indium in a strong field is isotropic, 
accurate to 5%. For our samples, the critical field at 
low temperatures is already strong enough. Thus, we 
can assume that axx = a~~, ax~ = - a~x' Under these as­
sumptions we obtain 

(3') 

Here oIiH = (Nec)-l is the Hall coefficient. 

If ~ is not very small, then at equal damping decre­
ments the higher modes of the natural OSCillations, cor­
responding to values n> 1, attenuate much more rapidly 
than the fundamental mode. Thus, after the lapse of a 
certain time, the distribution of the field in the sample 
is described by a single exponentially-damped standing 
wave of frequency w', corresponding to the value k = rr/d. 

3. Forced oscillations. Assume that the alternating 
field on the surfaces of the plate is speCified in the form 
H 1x(,=±d/2)=0, HlY(,=±d/2)=H1e-lwt, where w=2rrll is 
a real quantity. Under these boundary conditions, the 
distribution of the fields inside the plate can be ex­
pressed with the aid of the dispersion equation (2) in the 
form 

H,,=H,~[ cos(k~/cos8) ch(k"~/cos8) Jr'.' 
2io, cos (kdl2 cos 8) ch (k'd/2 cos 8) , 

1 [( . OU-O.,) cos(k~/cos8) 
H,,=H,- 0,+1--- ) 

2o, 2 cos (kd/2 cos 8 

( . 0=-0,.) ch (k"~/cos 8) J e-'.' 
+ a, -1--2- ch(k'd/2 cos 8) , 

k=k'+ik" =(2nw/c') '''[ (0,+0,) '''+i(o,-o.)'''). 

The magnetic flux along the x axis through a sample of 
unit width is equal to 

Cll.=AGn (o,.lio,)H,r'·', 

where 

A =J... sin (k'd/cos 8) +ish(k"d/cos 8) 
k cos (k'd/cos8)+ch(k"d/cos 8) 

+ i sin (k"d/cos 8)+ish(k'd/cos 8) 

k' cos (k" d/cos 8) +ch (k' d/cos 8) . 
(4) 

Here en is the concentration of the normal phase, which 
is connected with the external field by the relation 

Gn = (:16/ H.) cos q;[ 1- (de/ H,),sin' q; ]-"'. 

If 'a2 - a1 ' « 'a2 + a1 ', then the first fraction in (4) 
goes to resonance maxima as the frequency is varied. 
Enea the maximum of the amplitude <I>x. the phase dif­
ference 1/! between the flux and the exciting field Hty on 
the surface of the sample goes through zero. Express­
ing tan1/! = 1m <I>JRe <I> x with the aid of formula (4) and re­
taining only the principal terms, we obtain near the first 
resonance 

tg Ij;"'- (G+O.451'-O.556')/1; 

!',=(k'd/:'lCos6)-1, 161~1, 1=k"/k'. 
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Neglecting the anisotropy of the transverse magneto- u 

resistance and assuming that axx « laxyl, obtain the re-
lations 

k' = (4T1w I 0" lie') ", [1 +' I, (oj ox,) 'J "" (4T1wl c':1lH H,) 'I, (1-31'/2) ; 

l=k" I k' "" (axxl2l ax, I) [ 1-'1, (oxx/ox,) ' J ""pl2:1lffH,. 

(6) 

We define the resonant frequency Vo = Wo /2rr in accor­
dance with the condition tamp = O. We then obtain with the 
aid of (5) and (6) 

c':1lffH, cos' 9 , 
Vo "" 8d' (1+2.1"( ). 

We note that in contrast to the case of free oscillations, 
the resonant frequency Vo depends on the damping y. 

EXPERIMENTAL PROCEDURE 

1. Samples. We used in the experiment flat and cy­
lindrical single crystals of indium grown from the melt. 
Plane-parallel plates with transverse dimensions 8x 18 
mm and thickness 1 mm were produced in a dismountable 
polished quartz mold by the procedure described by 
Sharvin and Gantmakher. [6] Two samples (1 and 2) with 
axes [100] and [011] along the normal n to the plate sur­
face were investigated in greatest detaiL The angle be­
tween the vector n and the corresponding crystal axis 
was approximately 5 ° in both cases. 

The cylindrical samples with diameter 4 mm and ap­
proximate length 100 mm were cast in glass tubes whose 
inner walls were coated beforehand with silicon oxide to 
prevent sticking of the metal to the glass. The single 
crystals were grown without a primer and their orienta­
tions were random. After cooling the metal, the sample 
was not removed from the glass tube. This protected 
with extremely soft indium against random deforma­
tions. The difference between the temperature coeffi­
cients of the glass and the indium made it possible to 
cool the sample to helium temperatures without produc­
ing mechanical stresses. 

2. Measurement setup. The samples were immersed 
in liquid helium whose temperature was lowered to 
1. 2 oK The cryostat was placed between the poles of 
an electromagnet that produced a homogeneous constant 
magnetic field de, which could be rotated in the hori­
zontal plane. The intensity of the field X in our experi­
ment did not exceed 700 Oe. To register the helicon os­
cillations we used the known crossed-coil procedure. A 
system of two excitation coilS, placed symmetrically 
around the cryostat, produced at the location of the sam­
ple a small homogeneous field JIG! directed in the hori­
zontal plane perpendicular to the field de. In our experi­
ments we had de!:S 30 Oe. A receiving coil '" 20 mm 
long, with vertical axis (x axis), was wound around the 
sample. The voltage U:S 1 m V induced in the receiving 
coil was fed to a 'semiconductor amplifier. The ampli­
fied signal was recorded either with an automatic re­
corder in the case of slow processes, or with a long­
persistence oscilloscope in the case of frequencies high­
er than 1 Hz. 

Both free and forced helicon oscillations were excited 
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FIG. 1. Plots of free helicon oscillations in a cylindrical 
sample. The upper curve was plotted in the intermediate 
state (Cn = 0.54, dC= 185 Oe), the lower curve-in the normal 
state (16= He = 245 Oe); T = 1. 23 OK. 

in the experiments. To observe the free oscillations, 
the constant field JIG! was turned on or off. The rapid 
change of the field JIG! within a time'" 0.01 sec excited 
natural electromagnetic oscillations in the sample, which 
in turn induced a voltage in the receiving coil. Typical 
plots of the free helicon oscillations in a cylindrical 
sample are shown in Fig. 1. With the exception of the 
initial section, which lasts for approximately half a cy­
cle, the Signal is an exponentially decreasing sinusoid 
corresponding to the fundamental mode of the natural 
oscillations. The accuracy with which the frequency and 
the logarithmic damping decrement of the natural oscil­
lations were measured depended strongly on the damping 
itself, amounting in the best case 2 and 10%, respective­
ly, and in the worst case approximately 10 and 50%. 

To observe the forced oscillations, a sinusoidal cur­
rent of frequency v was made to flow through the exciting 
coils. At the start of the experiment, the excitation 
field dIi! had to be already oriented perpendicular to the 
axis of the receiving COil, so as to make the received sig­
nal equal to zero in the case when there were no heli­
cons, for example, when the sample went over into the 
pure superconducting state. In the intermediate and 
normal states, a voltage U was induced in the receiving 
coil. 

During the course of the experiment we measured the 
amplitude and the phase of the voltage U as a function 
of the frequency v at a fixed field JIG. The phase shift 1/!u 
of the voltage U relative to the excitation field dIi! was 
determined from measurements of the Lissajoux figure. 
To increase the accuracy of the measurements of the 
quantities 1/!u'" 1T/2, the horizontal sweep of the oscillo­
scope or of the automatic recorder was fed, when the 
Lissajoux figure was produced, from a reference voltage 
source shifted in phase by rr/2 relative to the exciting 
field del' The value of 1/!u differed by rr/2 from the phase 
shift 1/! of the flux <l>x through the sample. The resonant 
frequency v = Vo was determined in experiment from the 
condition cot1/!u = tan1/! = O. The procedure used to ob­
serve the forced oscillations and register the resonance 
by determining the change of the phase turned out to be 
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FIG. 2. Resonance curves for induced helicon oscillations. 
Solid lines-calculation with formula (4) using the experi­
mental values of Vo (marked by an arrow) and of the damping 
i' (indicated on the right side of the curves). Experimental 
points-results of measureme!1ts of the quantity UI V:' 0- X 
= 100 Oe, ~-~= 200 Oe, 0- ai= 250 de; sample 1, T = 1. 3 K, 
JIC II n. The matching of the vertical scales of the calculated 
curves and of the experimental points was carried out indepen­
dently for each curve at one of the values of lJ near resonance. 

most convenient and most accurate for the study of heli­
cons under strong damping conditions. The reason is 
that the received signal in this case is larger than in the 
free-oscillation procedure, and its phase changes more 
rapidly when the frequency is shifted near the resonance. 

EXPERIMENTAL RESULTS FOR FLAT SAMPLES 

1. Shape of resonance curve. In our experiments we 
observed only the first resonance. Near the resonance, 
in accordance with (5), we have 

On the basis of this relation we determined the damping 
')I of the helicons from the change in the value of tanlj! at 
small detunings (v - vo)/vo« 1. Just as in the case of 
the free oscillations, the accuracy of the measurements 
of the frequency Vo and of the helicon damping depended 
on the value of ')I itself. For the smallest values, ')I '" 0.1, 
the error in the measurement of Vo was'" 2%, and that 
of the damping was'" 10%. For the largest values, ')I 

"'0.5, the error increased by approximately 3 times. 
Thus, the inaccuracy due to the use of formula (7), from 
which terms of order ')12 have been omitted, do not ex­
ceed in any case the measurement error. By determin­
ing Vo and ')I we could plot the amplitude A of the quantity 
<Px against the frequency v in accordance with formula 
(4). Typical examples are shown in Fig. 2. A compari­
son of the calculated curves with the measured values of 
U / v show that relation (4) describes satisfactorily the 
shape of the resonance curves for induced helicon os­
cillations. The amplitude of the helicon signal, in ac­
cord with (4), was proportional to the concentration en. 

2. Dependence of the dispersion law on the magnetic 
field. Figure 3 shows the results of the measurement 
of the resonance curve Vo and the conditional width of the 
resonance curve ~v = 2')1 Vo as a function of dt. We dis­
cuss first the results obtained at d€> He. 
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In the normal state, the helicon dispersion law has the 
Simplest form in the local limits, when the conditions 
kR « kl «1 are satisfied. Formula (2) is then valid in 
the case J'€lln for k8=k. The direction of the vector k 
inside an unbounded plate, on which an external plane 
wave is incident, coincides with the normal n, owing to 
the large difference between the propagation of veloci­
ties of the electromagnetic wave in the metal and in 
vacuum. By calculations similar to those used in the 
derivation of (7), we obtain 

\'0= (cJ'6'/8/Ne/d') (1+2y'). (8) 

The width of the resonance curve ~v = 2')1 Vo '" pc2/8d2 does 
not depend on the field if we operate under conditions of 
saturation of the magnetoresistance. According to 
Gaidukov's results, (5) for our samples the change of p 

at J( ~ He does not exceed at low temr>eratures the errors 
in the measurement of c"v. 

In the nonlocal case, when the electron mean free path 
becomes comparable with or exceeds the wavelength of 
the helicons, the situation becomes more complicated. 
However, if the conditions kR« 1 are satisfied, the con­
nection between the real part of the wave vector and the 
frequency is given as before by formula (6). At the 
same time, the damping of the helicons can acquire an 
additional term connected with the absorption of the wave 
energy by the electrons that move in phase with the 
wave, if their orbits are inclined to the constant-phase 
plane. This is the so-called magnetic Landau damp-
ing. (7) It does not appear if the orbits of the electrons 
of the central section of the Fermi surface lie in a plane 
perpendicular to k. In this case the damping is given as 
before by formula (6) and the resonance width ~v does 
not depend on the field. This is observed in our experi­
ments at dt ~ 500 Oe. The values of Vo were in this case 
proportional to de. The straight lines in Fig. 3 show the 
extrapolation of these results to weaker fields. 

With decreaSing magnetic field, the strong inequality 
kR « 1 is violated. An important role is then assumed 
by the nonlocal corrections to the dispersion law, due 
to the Doppler-shifted cyclotron resonance for electrons 
moving along the magnetic field (see, e. g. ,(7)). This 

to 

200 JOO 400 500 
eX,Oe 

FIG. 3. Dependence of the resonance frequency lJo(o) and of 
the conditional width of the resonance curve ~v = 2')'vo(~) on the 
external field. Sample 1, &It'll n, T=1.3 K. Solid lines-re­
sults of extrapolation of the data obtained at &It > 500 Oe. 
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leads to an increase of the helicon damping and to a 
more complicated k'{w) dependence. [8) These circum­
stances explain why the experimental points deviate from 
the straight line on Fig. 3 at df > He. In the intermediate 
state, the electrons move inside the normal domains, 
being reflected backward from the boundaries with the 
superconducting phase. The special character of the re­
flection, in which the quasiparticle excitation branch is 
changed (electron-hole transition), are the reason why 
the boundaries between the normal and superconducting 
phases make no additional contribution to the electric 
resistance. [1) As a result of such reflections, however, 
the electrons become localized inside the normal re­
gions. Therefore all the nonlocal effects that influence 
the dispersion and the damping of the heilcons in the 
normal state vanish when the characteristic dimension of 
the normal domains a satisfies the inequality ka« 1. 
This condition is in fact the bas is of the macroscopic ap­
proach itself to the problem of the propagation of heli­
cons in the intermediate states. In our experiments 
a'" O. 1 mm at e = 0 and Cn '" O. 5. The most noticeable in­
crease of a takes place at Cn > O. 9. According to for­
mula (7), in the intermediate state y ,., 0 and e = cp = 0, the 
value of Vo does not depend on the external field. Allow­
ance for the decrease of the damping as Cn - 0 explains 
the small changes of Vo which are observed in experi­
ment (see Fig. 3). 

It should be noted that the limiting value Vo = 5. 3 Hz, 
obtained as Cn - 0, differs noticeably from the value Vo 

= 4. 9 Hz which is result of extrapolation of the data 
from the region of strong fields to the value d{'= He. So 
appreciable a discrepancy cannot be eliminated by taking 
into account terms of order y2,.,0. 01 in the expression 
for the resonance frequency. Allowance for the correc­
tions necessitated by the finite width of the plate (see, 
e. g. , [9) can make matters only worse, since these cor­
rections should increase the resonance frequency for the 
sample in the intermediate state to a lesser degree than 
in the normal state. Although the indicated discrepancy 
only slightly exceeds the experimental errors, it can 
serve as evidence that the macroscopic electrodynamics 
is not accurate. It is possible, that in the approach de­
veloped above no account was taken of the role of the 
sample surface. Near the surface, a change takes place 
in the relative concentration of the normal and the super­
conducting phases. This may be why the effective thick­
ness of the sample decreases. We note that the theore­
tical resonant frequency Vo = 4. 85 Hz of an infinite plate 
01 thickness 1 mm at df = 244 Oe = He (1. 3 K) can be ob­
tained with the aid of formula (8) from the value N= 3.9 
X 1022 cm-3, which corresponds to a carrier density of 
one hole per atom. 

From the eXperimental data given in Fig. 3 it is evi­
dent that the helicon damping is strongly altered by the 
transition to the intermediate state. The observed de­
crease of the damping is due to the localization of the 
electrons inside the normal domains, which leads, first, 
to a vanishing of the nonlocal cyclotron damping and, 
second, to a decrease of the contribution of the electron 
scattering by the sample surface. [lO) We shall assume 
that at J'(J> 500 Oe the helicon damping is described by 
formula (6), where the resistivity p is determined by a 
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certain effective electron mean free path leu = (l/l + 1/ 
d)-l. In this expression, the first term in the right-hand 
side takes into account the scattering of the electrons in 
the bulky sample, while the second term takes into ac­
count the restriction imposed on the mean free path by 
the diffuse scattering from the surface of the plate. In 
the intermediate state the resistivity p contains only the 
bulky-sample mean free path l. These assumptions en­
able us to estimate l from the ratio of the values of the 
helicon damping l/l.u = 1 + lid = t.v(500 Oe)/ t.v(100 Oe). 
For sample 1, the value obtained in this manner is l 
,., 3. 2 mm 'it T= 1. 3 OK. This value agrees with the esti­
mate of l that can be obtained from the absolute value of 
the damping of the helicons in the intermediate state y 

= 517/2 in accordance with the isotropic-metal model, if 
we put l = V7, and if the values of the Fermi velocity v 
= 1.1 X 108 cm/sec and of the cyclotron frequency 51= eH/ 
m*c for an effective mass m* = 2mo (mo is the mass of 
the free electron) are taken as the result of averaging 
of the experimental data over the cyclotron resonance 
in indium. [11) 

3. Helicons and structure of intermediate state. Spe­
cial experiments were performed to observe the struc­
ture of the intermediate state at XII n. These experi­
ments were performed with a magneto-optical setup at 
the Institute of Experimental Physics (Lausanne) in col­
laboration with P. Laeng.1) The magneto-optical pro­
cedure is described in[l2J. As noted earlier, [13) the 
structure that arises in the sample is usually far from 
equilibrium and is determined by the history of the mag­
netization of the sample, by edge effects, and by other 
extraneous factors. In particular, Haenssler and Rin­
derer (4 ) have noted that when the field is decreased 
from the normal state a layered structure is observed 
in the samples, and when the field is increased from 
the value:M = 0, the intermediate state has a cellular 
structure. We have arrived at the same conclusion by 
observing the structure of the intermediate state in our 
samples. At the same time, the values of the resonance 
frequency Vo and of the helicon damping at O. 3 He:S X 
:S 0.9 He depended only on the value of the external field, 
but not on the prior history of the sample magnetization. 
Thus, one of the main premises of the macroscopic elec­
trodynamics of the intermediate state was confirmed, 
according to which the Andreev equations, which de­
scribe the electromagnetic properties of the intermedi­
ate state at low temperatures, [l J are valid independently 
of the concrete form of the structure of the normal and 
superconducting domains. 

It is interesting to note that as ;J€- 0, when the mag­
netic flux penetrates into the sample only in individual 
normal domains that are far from one another, the reso­
nant frequency of the helicon oscillations retains its val­
ue. After turning on the external field d{, the process 
of crowding out the magnetic fields from the sample to 
the small res idual level of the frozen- in field proceeds 
quite slowly and takes several minutes. In that case Vo 

remains practically constant. All that decreases is the 
amplitude of the signal in accordance with the decrease 
of the concentration of the normal phase. These facts 
agree with the results of the microscopic theory, l15J 

which yields for an individual domain the same helicon-
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FIG. 4. Dependence of helicon damping on the inclination of 
the external field: O-Ji',= 250 Oe, ~- Ji',= 200 Oe, C-Ji',= 100 
Oe. Sample 2, T = 1. 3 OK. 

oscillation dispersion law as macroscopic electrody­
namics. 

When the field is smoothly increased, the sample goes 
over from the pure superconducting state into an inter­
mediate state at 16::::: 0.3 He' When the structure is visu­
ally observed, starting with this value of the external 
field, a rapid penetration of the normal domains from 
the edges into the center of the sample begins. In ex­
periments on stimulated helicon oscillations, there is no 
signal in the receiving coil at d€< O. 3 He if the sample 
was cooled previously from the normal state to a low 
temperature in a zero field. 

At a slight excess of the indicated critical value of 
the field, the helicon signal reaches rapidly an ampli­
tude corresponding to a specified concentration of the 
normal phase in a decreasing field. This phenomenon 
has already been observed in Ref. 3. It is connected 
with the geometric form of the sample, particularly 
with the circumstance that the demagnetizing factor of 
the sample differe from unity. The start of the penetra­
tion of the field at dr$::::: O. 3 He agrees well with the re­
sults of the calculation given in[16J. 

In the case of a slow decrease of the field from the 
value :16 == He' a decrease of the frequency lIo, which is 
typical of the normal state, was observed in a number of 
cases. In the vicinity of the values J(::::: 0.9 He' uncon­
trollable factors have caused the resonance frequency to 
change jumpwise to the value obtained in an increasing 
field. Thus, in experiments on helicon oscillations we 
observed a unique supercooling wherein the sample re­
tained the electromagnetic properties of the normal state 
at 1C < He. It should be noted that it was impossible to 
observe a similar hyeteresis in the vanishing and in the 
appearance of the traces of the superconducting phase by 
visual observation' of the structure. 

4. Oblique field. In an oblique field, if the sample is 
in a normal state under the condition of the local dis­
persion law, the resonant frequency is lIo- coscp, and the 
damping is y-l/coscp. [4J In the nonlocal case, the de­
pendences of lIo and y on the angle between k and d€ can 
be very complicated. An important role is played here 
by the anisotropy of the Fermi surface. It is very diffi­
cult to calculate the changes of the frequency and of the 
damping under these conditions. This pertains in par-
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ticular to the case kR::::: 1. On going to the intermediate 
state, everything Simplifies substantially. The electro­
dynamics again becomes local, and Andreev's formulas 
make it possible to investigate theoretically the angular 
dependences. 

Let us turn first to helicon damping. According to 
formula (6), the value of y does not depend on the angle 
of inclination of the field. Figure 4 shows experimental 
data obtained with one of the samples. It is seen that in 
the normal state the damping is noticeably increased with 
increasing cpo On going to the intermediate state, this 
dependence becomes weaker and at a sufficiently high 
concentration of the superconducting phase the value of 
y is independent of the inclination of the vector $G. In the 
case of sample 1 this situation sets in already at ~ 
$ 0.9 He (see Fig. 5). 

In the course of these experiments, measurements 
were made on two flat samples with random orientation. 
In the normal state, when the angle cp was varied, there 
was a complicated interplay in these samples between 
different factors that determine the helicon damping, 
while y had a very unusual nonmonotonic dependence on 
the angle cpo In the intermediate state at en::::: 0.5, within 
the limit of experimental errors, the damping remained 
constant. 

Let us discuss now the changes of the resonant fre­
quency. According to (7), lIo- cos2e. The value of the 
angle e can be calculated by using formula (1) from the 
known values of the angle cp and the ratio d6/He• In Fig. 
5, the experimental results on the angular dependence 
of the resonant frequency are represented in coordinates 
that are convenient for comparison with the theory. As 
seen from the figure, the theory agrees fully with the 
measurement results. 

HELICON OSCILLATIONS IN A CYLINDER 

The problem of the resonance frequenCies and of the 
damping of helicon oscillations in cylinders in a trans­
verse magnetic field presents considerable mathematical 
difficulties and has not yet been solved. An analysis of 
the experimental results is presented below to the extent 
permitted on the basis of the initial equations. 

v, Hz 

FIG. 5. Depencence of the resonance frequency "0 and of the 
helicon damping l' on the angle () between the vectors H and k: 
o-Ji',=220 Oe, ~-dIl= 180 De, c-dIl= 160 De, x-d1t= 100 Oe. 
Sample 1, T = 1. 25 OK. 
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FIG. 6. Dependence of the frequency of the free oscillations 
(.l, x) and of the resonant frqquency of the induced oscillations 
(0, +) in a cylindrical sample on the field strength. 0, .l-T 
= 1. 23 K; x, +-T = 3.0 K. The dashed line shows the theoreti­
cal dependence for a plate d = 4 mm thick. The arrow indicates 
the field H. for the low temperature. 

Figure 6 shows the results of measurements of the 
frequency of the free oscillations and the resonant fre­
quency for forced oscillations in a cylindrical sample. 
As expected, in the case of weak helicon damping these 
frequencies coincide. All the nonlocal corrections to 
the helicon dispersion law are nonexistent in view of the 
large diameter of the cylinder. If the connection be­
tween the current density j and the electric field E in 
the normal state is written for the local case in the form 

then, substituting this relation in Maxwell's equations, 
we obtain for alternating component of the magnetic field 
Hi the equation 

4naa, 2 ["",. 
---=pV H,-iFlHrot <70Xrot Hd· 
c' at 

It is clear from this equation that at p« :R HJ{; the reso­
nant frequencies for a sample of any shape proportional 
to ;/6, while the damping is determined by the ratio pi 
ill H:Je. 

An estimate of the mean free path of the electrons 
from measurements of the damping decrement of the 
free helicon oscillations in cylindrical samples was car­
ried out in(10) with the aid of formula (3) derived for the 
case of plane waves. The entire aggregate of the results 
obtained there makes it possible to assume that the use 
of formula (3) for the damping decrement in a cylinder 
does not result in a large error in the data reduction. 
For the cylindrical sample used in that study, estimates 
of the electron mean free path in the bulky metal, ob­
tained both with the aid of the isotropic- metal model 
from the value of the damping as Cn - 0, and from the 
change of the damping on going from the normal into the 
intermediate state with the aid of the simple Nordheim 
formula (seetlO )) yielded a value I"" 6 mm at T 
= 1. 23 0 K. Allowance for the temperature dependence 
of I, which was measured in(10), yields for the residual 
mean free path an estimate Io'" 8 mm. 
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In the intermediate state, in the approximation p = 0, 
the linearized Andreev equations[1) yield for the alternat­
ing components of the field and for the concentration Cni 

of the normal phase the relation 

aH, 1. ac., 1. 
at+ c. H,Tt= 4n c'iFlBrot (BoV)H,. (9) 

For plane waves, by virtue of the condition 

C. div H,+H, VC.,=O 

the derivative is acni/at- cnaHi/at, and Eq. (9) shows 
that the resonant frequencies of the helicon oscillations 
in the plate do not depend on the concentration of the 
normal phase. In the general case this is not so. It 
appears that this circumstance explains the observed 
change in the frequency of the natural oscillations in the 
cylinder with changing external field at d€ < He' 

Formulas (3') show that in a plate the frequency of the 
free oscillations does not depend on the magnitude of the 
magnetoresistance and remains unchanged so long as the 
Hall coefficient is constant. At the same time, accord­
ing to formulas (6), the value of the resonant frequency 
for the induced oscillations increase with increasing 
magnetoresistance, i. e., with increasing helicon damp­
ing, A similar situation is observed also in a cylinder. 
Experiments with a cylindrical sample have shown that 
when the temperature is raised to 3 OK the frequency of 
the free oscillations in the normal state does not depend 
on the temperature within the limits of the measurement 
accuracy, whereas the resonant frequency of the induced 
oscillations increases noticably in accordance with the 
increase of the helicon damping. 

The author is grateful to Yu. V. Sharvin and A, F. 
Andreev for a discussion of the results, to S. V. Gu­
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for supplying high-purity indium. 
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A statistical-thermodynamic analysis is presented of the spatial structure of a long polymer chain in which 
the loosely-spaced links merge into pairs and form saturated bonds. It is shown that with decreasing 
temperature such chains form a globular type of structure with irregular joining of the functional links. 
Although the interaction is by itself incapable of forming a condensed phase, it can lead in a polymer 
chain to a coil-globule phase transition. The transition is unique in that although formally it is of first 
order, it is in fact very similar to a second-order transition (the density discontinuity, the heat released, 
etc. are comparatively small). The extreme cases of a sufficiently short chain in which the excluded 
monomer volume is of no significance and of an extremely long chain are investigated analytically. A 
numerical calculation in the intermediate region it has made it possible to fit together the two asymptotic 
values. 

PACS numbers: 36.30.Ba, 61.40.Km 

1. INTRODUCTION 

The spatial structure of a polymer chain suspended 
under equilibrium conditions in a dilute solution, is de­
termined by the interactions (direct or via the solvent 
medium) between the particles of the chain. If these 
interactions are strong eneough, then they stabilize vari­
ous structure elements, as a result of which, depending 
on the concrete character of the acting forces, the poly­
mer coils can turn into globules, helices, folded struc­
tures, etc. 

The interactions of the parts of the chain with one an­
other and with particles of the solvent are divided into 
two qualitatively different classes: saturated bonds 
(covalent, hydrogen) and unsaturated (van der Waals, 
multipole, etc.). It is known that unsaturated forces 
lead, with decreasing temperature, to formation of 
globules of various types. On the other hand, in the 
case of saturating bonds, the resultant structure de­
pends essentially on the character of the arrangement of 
the functional (capable of forming bonds) monomers along 
the chain. 

Whereas all the monomers of the chain, or at least 
those that are densely arranged along it, are capable 
of forming bonds, a regular conformation of the helical 
or folded type is thermodynamically not profitable; ex­
amples are the O! helix or the 13 structure of polypeptides. 
In essence, the reason why such regular structures are 
thermodynamically favored is the rigidity of the section 
of the chain between the neighboring functional groups, 
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as a result of which the entropy loss occurring' when a 
definite conformation is fixed is small. 

The opposite case, however, wherein the functional 
units are quite widely spaced and are separated by 
flexible pieces of chain, is also possible (the distance 
between these pieces along the chain is larger than or of 
the order of the so-called persistence length, i. e., the 
length over which the memory of the direction is lost). 
In this situation, any structure with a definite fixed 
method of binding the pieces of the chain is entropywise 
unprofitable, so that the chain should (with decreasing 
temperature) form a structure of the globular type, in 
which most closed bonds are made up of particles that 
are very widely spaced along the chain. 

This paper is devoted to an analysis of the spatial 
structure of the globule and of the coil-globule phase 
transition in such systems. 

Under conditions when the functional groups are sepa­
rated by long sections of a "nonfunctional" chain, it is 
natural to assume that the length of the bond between two 
linked ("reacting") groups is small in <:omparison with 
the length of the "nonfunctional" section. We can there­
fore employ the formalism developed in[I) and[2) for a 
statistical-thermodynamics description of the polymer 
chain with short-range (in the sense indicated above) 
forces of lateral interaction. We recall that an essential 
feature of this formalism was the method of introducing 
into the theory a concrete form of lateral interaction: 
all the results were expressed in terms of thermody-
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