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The propagation of spin waves in alloys of the type Pd1 _ x Fex is considered. For sufficiently low impurity 
concentrations such alloys are described by a model of randomly positioned magnetic centers with an 
exchange interaction falling ofT exponentially with distance. Using percolation-theory ideas it is shown that 
in this case the mass of the spin waves has the same exponential dependence on x as the Curie 
temperature. The pre-exponential factor is also found. At high concentrations (but with x « 1). when the 
magnetization of the electrons of the matrix is substantial. this dependence becomes less steep. The 
results obtained are in satisfactory agreement with experiment. 

PACS numbers: 75.30.Fv 

INTRODUCTION 

In dilute ferromagnetic alloys of the PdFe type the on­
set of magnetic order is due to the indirect exchange in­
teraction of the localized impurity spins via the d- elec­
trons of the matrix. As a result of the strong correla­
tion of the electrons in the d-band of palladium the sign 
of the indirect interaction is ferromagnetic. If the mag­
netic- impurity concentration (per atom of the matrix) 
c« 1- Ip( f F), where I is the correlation energy and p(FF) 
is the density of states of the d-electrons at the Fermi 
surface (for palladium, 1-Ip(E F)zO.l), the spin split­
ting of the d-band in the ferromagnetic state is small. 
In this case the magnetic properties of the alloy are well 
described by a model of randomly positioned spins, the 
exchange interaction between which varies with distance 
in accordance with the law 

The range R of the potential is R z a(1-Ip(EF))-1/2 (a is 
the lattice constant). At low concentrations the range R 
is much smaller than the mean distance re - njl/3 between 
impurities (n/ is the impurity concentration in cm-3 ). [1-3] 

Therefore, the exchange interaction between the spins 
depends strongly on the specific configuration. But if 
c ~ 1- Ip(f F ), the spin splitting of the d- band of palladi­
um is comparable with the width of the d- band, and 
the whole alloy is magnetized almost uniformly. Exper­
iment shows[4] that uniform magnetization in PdFe sets 
in for c~O.04. 

Because of the conservation law for the total spin, 
weakly-damped low-frequency spin waves with a quadrat­
ic dispersion law should exist for any degree of nonuni­
formity. However, the dependence of the mass of the 
spin waves on the impurity concentration is determined 
by the specific situation. 

Spin waves in alloys of the PdFe type were first in­
vestigated theoretically in [5.6]. The authors of these 
papers, having confined themselves to the region of low 
concentrations c« 1- Ip( EF ), assumed at the same time 
that the molecular field acting on the localized spins was 
uniform. As a result they obtained an incorrect concen­
tration dependence for the spin-wave mass, and also for 
the Curie temperature Te. Unfortunately, these papers 
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have been widely used in attempts to interpret experi­
mental results (cf., e. g. , [7]). 

In the present paper the concentration dependence of 
the spin waves is treated both in the region of low con­
centrations and in the region of high (1)> c »1- Ip( EF ) 

concentrations. In the former case it is shown by means 
of percolation-theory ideas that the "stiffness" D of the 
spin waves, equal to W./q2, depends on the impurity con­
centration in accordance with the law nj (I-v)/3 exp(- y I 
RnV3 ), where v is the index of the correlation length L 
in percolation theory[8.9] and y = 0.89. [3] The spin exci­
tations have the character of weakly-damped waves, if 
their wavelength A is large compared with the correla­
tion length Lzre(reIR)v»re. This is connected with the 
fact that a hydrodynamic mode can exist only in the case 
when averaging of the exchange potential occurs over a 
wavelength. Since R« r e , such averaging can occur only 
over distances larger than re in the parameter relR. 
Excitations with a characteristic length scale less than 
L are localized owing to the strong fluctuations of the 
potential. 

At high impurity concentrations, fluctuations of the 
magnetization are insignificant. This makes it possible 
to average the kernel in the equation for the Green func­
tion of the localized spins over the configurations of the 
impurities. In this case the stiffness D depends on c 
more weakly (nonexponentially) than at low impurity con­
centrations. The concentration dependence obtained for 
D is in satisfactory agreement with the available experi­
mental data. 

1. LOW CONCENTRATIONS 

We shall consider a system of randomly positioned 
spins, the exchange interaction between which is de­
scribed by a Heisenberg Hamiltonian with the potential 

If the mean distance between impurities re - njl/3» R, 
then, according to U - 3 ], the Curie temperature of such a 
system is determined, to within a pre-exponential fac­
tor, as follows: 

(3) 
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For T« Te spin waves with the quadratic dispersion law 

exist in this system. We shall find the dependence of D 
on the concentration of localized spins. 

The equation of motion for the transverse component 
of the spin positioned at the point rm has the form 

where V mn = V(rm - rn) is determined by formula (2), and 
S~ = ~ + is:'. Moreover, as shown in (10), the static con­
ductivitya in a system of randomly positioned centers in 
which the probability of an electron hop between centers 
is determined by formula (2) is related to the eigenvalues 
of the operator 

Namely, it is easy to see that a - nicO' where Co is the 
coefficient of l in the expansion of the eigenvalue of the 
operator (6) in powers of q, the coefficients of the lower 
powers of q being equal to zero. Comparing (5) and (6), 
we remark that Co coincides with D; consequently, 

D-a/n,. 

The analogous formula for the problem with nearest­
neighbor interaction in a lattice was first obtained by 
Kirkpatrick. [II) 

The dependence of a on the concentration is well 
known [12.13): 

where v is the correlation-length index. According 
to[9.141, v=0.8-0.9. Thus, 

(7) 

It is known[3) that in a system of randomly positioned 
centers in which all the centers are coupled and the dis­
tance r between them does not exceed a certain distance 
rl' an infinite connected cluster arises if r l <> ro = yni l/3 • 

In the spin system that we are considering, ''bonds'' 
with length ro±R correspond to an energy E;::;exp(-y/ 
Rnl'3). It can be seen from (9) that it is precisely this 
energy which determines the stiffness of the system with 
respect to propagation of spin waves. This circumstance 
seems entirely obvious if we regard the propagation of 
the wave as the hopping of a spin excitation from center 
to center, and regard V mn in (5) as the hopping proba­
bility. 

Weakly-damped spin waves exist if their wavelength is 
greater than the characteristic distance determining the 
length-scale of spatial fluctuations in an infinite cluster 
with r l = ro+R. According to the scaling theory of[s.9): 
for I (rl - ro)/rol« 1 the characteristic distance is the 
correlation length L- (rl - rot". Thus, the spin-wave 
wavelength A ~ LR - re(re/R)". 
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Excitations with length A < LR are localized. The max­
imum spin-wave energy is 

wm-DLR-'- (R/r,)" exp(-1/Rn;'). 

It is easy to see that for T;::; wm the deviation of the mag­
netization from saturation, associated with the excita­
tion of spin waves, is small, i. e., wm« Te. 

We note that if the exchange interaction is described 
by a potential differing from (2) by a pre-exponential 
power-law factor, i. e., if 

v (r) = V,f(r) e-· /R• 

where j(r) is a power function of r, an additional factor 
j(re ) will appear in (9). In particular, for the potential 
(1), which is realized in alloys of the PdFe type, we 
have 

(10) 

Since v differs little from unity, this formula predicts 
an exponential dependence of D on n1'3, without a pre­
exponential factor. 

2. HIGH CONCENTRATIONS 

In the region of impurity concentrations c;;: 1- Ip(E F) 
« 1 the spin splitting of the d-band of palladium becomes 
important. Therefore, it is necessary to take the elec­
tron subsystem into account explicitly. Here we as­
sume, as before, that c« 1. 

As usual, we write the Hamiltonian of the system of 
localized spins and d-electrons in the form 

de = E ekak+ak + Eln"n'I-2J E (S,a,)"", (11) . , , 

where at and a; are respectively d-electron annihilation 
and creation operators, lOt is the d-electron energy, iii 
is the operator for the number of electrons at site I, and 
a I is the electron-spin operator; 'P 1= 1 at sites occupied 
by a magnetic impurity and 'PI = 0 at all other sites. The 
ensemble average 'PI = c. 

We represent the Hamiltonian (11) in the form of a 
sum of two terms: 

The electron Hamiltonian, describing the strongly cor­
related electrons magnetized by the iron spins, has the 
form 

de, = Eekak+ak+I En,jnq-21SE ""a,'. . , , 
The Hamiltonian of the localized spins is 

des=-l E (S,+a,-+S,-a,+) ",,+21 E S,'",,<o,'). 
, 

(12) 

(13) 

In the last term in (13) the longitudinal component a~ of 
the d- electron spin operator has been replaced by the 
thermodynamic average (a~>, since we are considering 
temperatures T« Te. 

We first consider the Hamiltonian (13). We introduce 
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the correlators of the localized and electron spins: 

x+-(l, 1', .-.')=<T,a'+(-r)a,,-(.'». 

In the zeroth approximation we discard the first term in 
(13). The remaining Hamiltonian 

describes a system of localized spins in an effective 
field created by the d-electrons. The corresponding 
Green function has the form[l5l 

(16) 

where 

w,=2J<a,')=J «n,t)-<n~», (17) 

and 11m = 27TmT, where m is an integer. 

We now take into account the interaction of the trans­
verse components of S and cr. It is not difficult to see 
that, in lowest order in the parameter J / fF' the equa­
tion for !:£(l, l') has the following form: 

(18) 

in which the electron susceptibility X·-(Z, m) should be 
calculated from (l4) using the Hamiltonian (12). 

Up to now we have nowhere assumed that there is sub­
stantial spin splitting of the d-band of the matrix. 
Therefore, Eq. (18) should also be applicable in the re­
gion of low conc entrations c« 1 - I P ( E F)' In th is cas e, 
in the calculation of X·-(l, m), in (12) we can discard the 
last term, which gives rise to spin splitting of the d­
band. Then ;(-(l, m) is the well-known susceptibility of 
an almost ferromagnetic electron gas without impuri­
ties, and at large r we have x·-(r)- r-le-riR. On the oth­
er hand, it follows from (17) and (12) that 

w,=J.E x"(I, n)'P". 

Since, for small splitting of the d- band, XU(Z, n) = x·-(Z,n), 
Eq. (18) reduces to the equation for the Green function 
of localized spins interacting with potential VCr) 
-r-le-TIR , and this equation (to within the factor r- l in 
V(r)) is equivalent to the equation of motion (5). 

For c ;::1- Ip(fF), the molecular field that arises from 
the localized spins and acts on the d- electrons of the ma­
trix is sufficiently large for spin splitting of the d-band 
to become important. In this case, as already noted, 
the polarization of the d-electrons becomes almost uni­
form. Bearing this situation in mind, we can average 
over the distribution of impurities in (12) and (18). Go­
ing over then to the Fourier transform of the Green func­
tion in (18), we obtain the following equation for the 
spectrum of the electrons: 

w=w o-2I'ScX+-(g, w), 

where 
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(19) 

+_( )_ x.(q,w) 
X g, w - i-Ix.(g, w) , (20) 

(21) 

(22) 

n, and n, are respectively the concentrations of electrons 
with spin parallel and antiparallel to the magnetization. 

It is easy to see that WO=2J2Scx·-(0,0), so that (19) 
can be rewritten in the form 

w=2J'Sc(Z·-(O. O)-x+-(q, w». 

At low frequencies w« Il=I(n, - n.) + 2JSc and small q 
« EF/V, where v is the velocity of the electrons at the 
Fermi surface, we obtain, analogously to U6l , 

D = 6(nt-n~+2CS) {.E (fkt-/k,) V'e. - : .E (/.,-/0,) I Ve.I'}. 
• ,0 

(23) 

The detailed character of the dependence of D on the im­
purity concentration is essentially determined by the 
structure of the Fermi surface of the d-electrons. This 
dependence can be establiShed analytically when 

(24) 

where EF is the Fermi energy and ne""n, is the electron 
concentration. In this case, in (23) we can discard the 
terms proportional to n, and expand in powers of c. The 
following expression is obtained: 

D=A+Bc, (25) 

where 

A= 6~. {.Et'tV'e.- I: . .Ef.,IVe.I'} 
• • 

(26) 

1 {4JS ~ 2 } 
B= 6n. (In)' L.if.,IVe.1 -12SA . 

• 
(27) 

It is clear that A < O. Otherwise, a large moment would 
arise for c = O. The quantity B> 0, and the expression 
(25) has meaning only for c such that D> O. 

For a quadratic spectrum (ek = k 2/2m), the quantity 

1 ( ey ) A =- 1-1.27- , 
2m In, 

and, near the threshold of the onset of ferromagnetism 
Un.iEF=j-), IAI« B; i. e., for not too small c, the stiff­
ness D- c. 

3. COMPARISON WITH THE RESULTS OF OTHER 
WORK 

A theory of spin waves in alloys of the PdFe type was 
developed in the papers[5,6l. It was assumed that the 
spin splitting of the d-band of palladium is small. In 
this case, as already noted, the alloy is extremely non­
uniform, and the nonuniformity determines all the fea­
tures of its ferromagnetic properties. Nonetheless, 
in[5,6l averaging over the configuration of impurities was 
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FIG. 1. Dependence of log (Tc/D) on 
loge for Pdl-cFec alloys. The values 
of D are taken from the papersWI 

(+, 0) and[201 (e) and the values of Tc 
from[211. 

carried out at the very beginning. It turned out, there­
fore, that the principal contribution to D was given by 
pairs of impurities with spacings r- R« r e , even though 
such pairs obviously have no relation to the propagation 
of spin waves. As a consequence, the incorrect result 
D - c was obtained. 

In addition, the density of states of the spin waves was 
incorrectly calculated in [6]. It is obvious that the den­
sity of states of the spin waves, per unit volume, is 

( ) ~_1_k,~~_1_ i(;) 
ps w 2:rt' dw 4:rt' D'I, . (28) 

The expression obtained in[6] for the density of states 
contains an extra factor c. The source of the error 
made in[6] is best seen using the example, investigated 
in [17\ of a system of randomly pos itioned spins in which 
the range of the exchange potential R» r e' It was shown 
that to calculate the magnon spectrum it is sufficient to 
confine oneself to lowest order in (rJR)3, while to cal­
culate the density of states it is necessary to calculate 
higher approximations. As a result, the extra factor c 
that arises in the Green function of the localized spins in 
first order in (reIR)3 is cancelled. 

An attempt to calculate D for a strongly disordered 
system with R« re was undertaken by us in U7 ]. The 
Green function of the localized spins was represented in 
the form of a series without a small parameter, and it 
postulated that the first term of the series, which gives 
D - exp(- y/(R3n)1/2), Yt = const, correctly describes the 
concentration dependence of D. As can be seen from 
Sec. 1, this assumption was not justified. 

The coefficient D for PdFe, PdCo, and also PdMn al­
loys has been determined experimentally from measure­
ments of the magnetization, [18] specific heat, [18,19], 
NMR[20] and electrical resistivity. [7] In Fig. 1, the ex­
perimental dependence of TclD on the impurity concen­
tration for low concentrations c,,:; 1% is plotted on a dou­
ble logarithmic scale. The values of Te are taken 
from [21] and the values of D from [18-20] • 1> It can be seen 
that the experimental points are well fitted by a straight 
line; i. e., in agreement with the theory, D and Te con­
tain the same exponential factor, with T J D - C 0.45. The 
exponent here is close to the value 0.4 that follows from 
(3) and (9) with II = O. 8, if we assume that Tc for the po­
tential (2) does not contain a concentration-dependent 
pre-exponential factor. The absence of such a factor 
seems reasonable from the following considerations. 

The quantity Tc can be estimated by means of the for-
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mula for the deviation of the magnetization from satura­
tion: 

t>,.M - J ps(cu) dw 
ef»/T_l ' 

by equating this deviation to the magnitude of the satura­
tion magnetization. 

As was shown in Sec. 1, for w« wm the function Ps(w) 
is determined by the spin waves, i. e., Ps(w)-.fW. On 
the other hand, at energies w» exp(- y IRn}'3) the den­
sity of states decreases with increase of w. [1] Since ex­
citations with energies w> wm are localized over length 
scales less than L, it is natural to assume that p s (w) 
reaches a maximum at W = wm • In this case we obtain 
for Tc the expression (3). 

We are grateful to B. I. Shkovskii for useful com­
ments. 

IlTo obtain D from the resistivity data the authors of the 
paper[71 had to make a number of poorly justified assump­
tions about the dependence of J on the impurity concentration. 
Therefore, we do not use these data. 
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