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Distribution of "hot" electrons in a metal at low 
temperatures 
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The electron distribution function at T = 0 is found for a thin metal plate in a "heating" stationary and 
uniform electric field (T is the lattice temperature) in the case in which the "temperature" approximations 
(Kaganov et aI., 1956, 1967) are not satisfied. 

PACS numbers: 72.15.Jf 

1. Attention was called in the work of one of the au­
thors [1J to the importance of the study of the effects of 
heating of an electron gas as applied to the analysis of 
the resistive behavior of thin superconducting films, in 
which such a heating is first revealed by the hysteresis 
of the critical current. The temperature dependence of 
this hysteresis was calculated in Ref. 1 in the approxi­
mation of two different temperatures for the electrons and 
the lattice[2J and it turned out to be in good agreement 
(for films of In and Sn) with experiment. [3J 

As is well known, the electron-temperature approxi­
mation allows us to "bypass" the investigation of the 
kinetic equation for the electron distribution function in 
a strong electric field, and is correct when the criterion 
of thermalization of the electron gas is satisfied: v;,. 
« vee' Here v;,. is the frequency of the energy relaxa­
tion of the electrons from phonons and vee is the fre­
quency of interelectron collisions. Taking into account 
the well-known estimates 

(here T" is the characteristic energy of the electrons, 
EF is the Fermi energy, aD is the Debye temperature, 
Te« aD), it is easy to see that a rough estimate for the 
electron temperature Te , below which thermalization 
is guaranteed as a result of the interelectron collisions, 
is given by the inequality Te« a~ IE F' For such metals 
as Sn, In, Pb, Nb, the right side of this inequality is 
smaller than or of the order of 1 0 K. At the same time, 
the electron temperature for these superconductors, as 
follows from the results given in Ref. 1, even with a 
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current jc2' is only slightly below critical (apart from 
the dependence on the lattice temperature), i. e., T" 
;::. 3 oK and the thermalization criterion given above is 
obviously not satisfied. Moreover, what has been 
pOinted out above means that precisely the opposite situa­
tion is of practical interest for the metals mentioned 
above. In such a case, the role of interelectron col­
lisions in the formation of the distribution function of 
hot electrons is of little importance. 

In this connection, the problem arises as to the find­
ing of the electron distribution function in "heating" elec­
tric field in the absence of interelectron collisions 
generally. In the case of nondegenerate semiconductors, 
the answer to a similar question has already been ob­
tained by Davydov. [4J By a significant simplifying cir­
cumstance, used in Ref. 4, account was taken of the 
known[5J ineffectiveness of the energy relaxation of the 
electrons from acoustic phonons in semiconductors. 
Therefore, expanding the desired distribution function 
in the collision integral of electrons with phonons in a 
series in the small ratio of the energies of the phonon 
and electron, we can replace the corresponding integral 
operator by a differential one. In metals, however, at 
Te «aD, the energy relaxation is effective and a similar 

. simplification is impossible. 1) Moreover, in contrast 
with the nondegenerate semiconductors, the collision in­
tegral of electrons with phonons in a metal contains a 
nonlinearity in the distribution function, associated with 
the necessity of taking into account the Pauli principle. 
The difficulties mentioned (absence of a small parameter 
and the essential nonlinearity of the problem, see Eq. 
(6) below) provide, in our opinion, the reason for the 
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absence of even qualitative discussions on the character 
of the distribution function of "hot" electrons for the 
case of metals (for example, whether or not it is mono­
tonic, what are its asymptotes). 

In the present work, we study the qualitative behavior 
of the solution of the corresponding nonlinear integro­
differential equation for the electron distribution func­
tion for the case of the experimental situation of interest 
to us (thin film with dominant elastic scattering of the 
electrons2) in a constant, uniform electric field) in the 
limit T - 0 (T is the lattice temperature). In addition, 
an algorithm is proposed for the construction of a suit­
ably accurate approximation to the desired function, and 
data of numerical computer calculations are given. It 
turns out that, in spite of the specific asymptote at in­
finity (see Eq. (15», the discovered distribution func­
tion actually differs little, in the characteristic region 
of change of the energy, from the equilibrium Fermi 
distribution with some effective (dependent on the value 
of the field) temperature Te' This latter Circumstance, 
in our opinion, helps to explain the excellent applicabili­
ty of the temperature distribution, used in Ref. 1, for 

I the analysis of the experimental dependences of Ref. 3. 

Further, the statement of the problem is discussed in 
Sec. 2, and the corresponding kinetic equation is in­
troduced. The monotonic character of the desired dis­
tribution function is proven in Sec. 3, its asymptote is 
found and the procedure for finding the solution of Eq. 
(6) is described. 

2. If the thickness of the metallic film d satisfies the 
inequality d«l~, where l~"'aeF/Te is the free path 
length of the phonon relative to scattering by electrons 
(a is the lattice constant), then almost all the phonons 
radiated by the electron are immediately thermalized 
in collisions with the film boundary (i. e., they leave 
the metal). Therefore, for films of thickness d$10S A 

4 0 

(l~-10 A at T,,-l°), we do not have to take into account 
the effects of dragging and heating of the phonon gas, 
i. e., we can assume the distribution function of the 
phonons to be an equilibrium one with the temperature 
of the thermostat. Account of this circumstance allows 
us to restrict ourselves to the investigation of the 
kinetic equation only for the distribution function of the 
electrons n~, which in a uniform and constant electric 
field with intensity E can be written down in the form 

where vfn~ is the "impurity" collision integralS) and 

\-,.Il p ~ L Wq{[np+. ([-np) (JYq"+ 1) -np(l-np+.)lYq"]c5(ep+q-ep-hw,) 

+ [n p q (J -np) S,'-n p (l-nH ,) (.Y."+'1) ]6 (fp_,-Fp+ho),)} 

is the collision integral of electrons with phonons. [7] 

Here f.~ is the energy of the electron with momentum p, 
nWq is the energy of the phonon with momentum q and 
N~=[exp(nwq/T)-lrl is the equilibrium phonon distri­
bution function at temperature T. In the following, we 
shall for simplicity limit ourselves to the consideration 
of an isotropic and quadratic dispersion law for the elec-
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trons and a Debye phonon spectrum. Then, in accord 
with Ref. 8, Wq =1Ta2w/ps2, where a is the constant of 
electron-phonon interaction, p is the material density, 
nwq = sq (s is the velocity of the longitudinal phonons). 
For the "impurity" collision integral, we use the relaxa­
tion time approximation. 

In what follows, as already noted in Sec. 1, we shall 
be interested in such a characteristic energy of the elec­
tron gas Te« aD that the elastic relaxation of the elec­
trons is dominant, i.e., V;~«T-l, where T is the mo­
mentum relaxation time. On the one hand, this allows 
us to assume the conductivity of the film 4) (J to be inde­
pendent of the value of the field (the region of "residual" 
resistance). On the other hand, this also allows us to 
represent the distribution function n~ as a sum, depen­
dent only on the energy of the isotropic part n(e) and a 
small anisotropic addition n~l), where n~l)« n( E) in the 
measure of the smallness of the parameter lot =eEl/T,,«l 
(the estimate for Te as a function of the value of the field 
E can be seen in formula (5) below). We shall now make 
use of the fact that vln(e)=O. Then, assuming that 
v~n(e)«vln~l)=_n~l)/T, in first apprOximation in the 
parameter lot, we have 

<I, eT dn{e) 
np =--(pE)--. 

m de 

In the second approximation in this same parameter, 
with account of the relation (Vf n~2». = 0, (the symbol 
( ... ). means the average over the constant energy sur­
face) we get the following equation for n(e): 

(1 ) 

Here N(O) is the density of states at the Fermi level. In 
Eq. (1), it is convenient to transform to the dimension­
less variable ~ = (e - e F)/Te , where Te is some charac­
teristic energy of the electron gas, after which Eq. (1) 
can be represented in the form 

(2) 

where v=aT:/41TvFpn 4s 4 has the order of the frequency 
of the energy relaxation of electrons with mean energy 
Te from phonons (v'" v;p(T,,», and y = T. /T. In Eq. (2) 
the electron-phonon collision integral is represented for 
convenience in the form of a sum of two terms. One of 
them ([o(m corresponds to processes connected only 
with the radiation of phonons by electrons, and does not 
depend on the thermostat temperature T: 

~ ~ 

I"(S)~[1-n(s)] S dxx'n(s+x)-n(s) S dxx'[1-n(s-x)]. (3) 
" , 

The other term (IT(~, y» describes processes with par­
ticipation of the thermostat and vanishes at T = 0: 

w 

JT(sll)~ S dxx'N'(F)[n(s+x)+n{s-x)-2n(s)]. (4) 
o 

In the subsequent analysis of Eq. (2), we neglect the 
term 5) [T (I;, y), which is physically equivalent to the in-
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equality T,,» T(y» 1), which corresponds to the situa­
tion of "strong heating" (but such that the inequality It 
« 1 is nevertheless always satisfied). Finally, it is con­
venient to choose T" from the condition 

aE'=N(O) T.''I), (5) 

so that Eq. (2) is greatly simplified and takes the form 

d'n(s) S~ S~ 
-~=[l-n(s)J dxx'n(s+x)-n(s) dxx'[l-n(S-x)]. 

, 0 0 

(6) 

which clearly demonstrates the absence of the small 
parameter. We note that the condition (5) has a simple 
physical meaning: the power absorbed by the electrons 
from the electric field «(f~), can be represented in the 
form of the product of the average number of phonons 
free to be radiated by the electrons N(O)Te , the mean 
energy of the irradiated phonon Te and the frequency of 
the energy relaxation v. 

3. For the study of the solution of Eq. (6), it is con­
venient to introduce the function qJ( ~): 

n(;)='/,[Hcp(s) J. 

We note that rp(-~) = - qJ(~) and qJ(- 00) =+ 1, rp(+oo) =-1. 
Then (6) can be rewritten in a more symmetric form: 

-[ 1+cp(6) J j dx x'[ Hcp(x-~)]}, 
o 

(7) 

and it follows from the oddness of qJ(~) that the problem 
reduces to the solution of Eq. (7) on the semiaxis 0< ~ 
<00 with the conditions qJ(O) =0, rp(oo)=_l. In this case, 
we shall seek a solution in a class of functions such that 
1 + qJ(~) has an exponential asymptote at infinity. For 
further analysis, we introduce the additional notation: 

00 

y (~) =-'/, S dx x'[ H(p(x+~) ], Z(6) ='/, S dx x'[ i-cp (s-x) J. 
o 

It is obvious that 

!('= I+q;(;) =211(;), :"'=1-'1'(;) =2[ l-n(6) J. 

It then follows that 

y"'+z'''=2, (8) 
y+z=~'/3+a~. (9) 

where 

a=2y' (0). (10) 

Equation (7) can be rewritten in the form 

cp"=yz"+zy'''. (11) 

In turn, by integrating (11), with account of the ex­
ponential decay of y(~) at + 00, we get 
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C.1 

FIG. 1. Solid curve-plot of n(x) obtained by a computed so­
lution of Eq. (13). For comparison, the plot of f(x) =[e2%+ 1rl 
is shown dashed. The dimensionless variable x = 'Y ~ is the 
abscissa. 

(P'=yzl/+zy"-z'y', (12) 

Now setting ~=yx(y5=3) on the basis of (9), we can re­
write the final equation for y(x): 

y"V)_P(X) y"+P' (x) y' 

-P"(x)y+,('(2yy" 

- (y')') =0, 
p (x) a!x'+yx, 

Y""'a,('. 

(13) 

We note that the statement of the problem for Eq. (13) 
is now the following: it is required to find the number 
O! and the solution of Eq. (13) such that y(x) falls off 
exponentially at infinity and 

y' (0) =a/2, y'" (0) =1. (14) 

Thus, although we have obtained a differential equa­
tion, the stated problem has remained as a whole non­
local. Here, in place of the nonlinear integro-differen­
tial equation (7), however, we have the nonlinear dif­
ferential equation (13) and the problem for it, of the type 
of a boundary problem on the semiaxis. We note here 
that it follows easily from (12) that the desired function 
qJ(~) falls off monotonically. Actually, it is seen from 
the positiveness of n(~) and the definitions of the func­
tions y(~) and z(~) that for all ~ we have (_ l)ny tn) < 0 
and z(n»o (n = 0, 1, 2). Then the right side in (12) is 
negative. 

To find the solution of the problem posed for (13), we 
begin with an estimate of the asymptotic behavior of 
y(x). The nonlinear terms in the equation here can be 
discarded and we get the following asymptote for the 
linear equation as x - 00: 

(15) 

Further analysis has been carried out on a computer. 
The general scheme is the following. We express y in 
the form 

and find yin) (n = 1, 2, 3) at the pOint x =xo, where Xo is 
sufficiently large. Fixing O! and (3, we find y(x). The 
final choice of O! and (3 is obtained from the two condi­
tions (14), which are the equations for these parame­
ters. Without pausing on the details of the numerical 
analysis (the accuracy of which is of the order of O. 1%), 
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we write out the final results in the form of a drawing 
(the continuous curve). For comparison we have draw­
ing the equilibrium Fermi function/(x) = [e2" + 1]-1 as a 
dashed curve; it is sufficiently close to the one found by 
us in the characteristic range O<x<2. 

The authors are grateful to R. N. Gurzhi and the par­
ticipants in the seminar organized by him for discussion 
of the work. 

1)ln this connection, one should recall the work of Shabanskil, [6J 
where an incorrect attempt was made to establish the possi­
bility of such a simplification. This has already been pointed 
out in Ref. 3. 

2)This could actually be either a "dirty" film with l < d (l is the 
free path length, dthe film thickness) or a "clean" film (l >d) 
with diffuse scattering by the boundary. 

3)The word "impurity" is put in quotation marks since in the 
case of a "clean" film, we are speaking of scattering by the 
boundaries with a characteristic momentum relaxation time 
T - d/ v F, and the corresponding kinetic equation does not con­
tain the term V' Vnp, which is necessary for calculation of 
the co nducti vi ty u. 

4)For a "clean" film, it is given by the well known relation 

U= (3/4)uo(d/l)1n(l/d), where Uo is the conductivity of the 
bulk specimen. 

5)The analYSis of the effect of the thermostat on the behavior 
of the distribution function in the case of an arbitrary rela­
tion between Te and T( 0 < ')' < 00) is connected with the account 
of the term IT(~,g), will be the purpose of a separate publica­
tion. 
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Optical polarization of nuclei in molecular crystals at 
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Polarization of hydrogen nuclei induced by unpolarized, near-ultraviolet light in molecular fluorene 
crystals with impurities is investigated at 4.2°K. Two characteristic peaks separated by a narrow gap, 
which have not been observed previously, are found in the dependence of the polarization on the external 
magnetic field intensity. The positions of the peaks are found to coincide with the regions of minimal 
distance between the magnetic sublevels of the triplet state of localized fluorene molecules. The effect is 
explained on the basis of the model of selective popUlation and mixing of electron-nuclear triplet states. 
The calculations are in satisfactory agreement with the experiments and this uniquely defines the 
mechanism of optical polarization of nuclei at low temperatures. 

PACS numbers: 35.20.My, 32.20.Ft 

1. INTRODUCTION 

About ten years ago, the phenomenon of optical polar­
ization of nuclei (OPN) was discovered in molecular 
crystals by a group of German investigators. [lJ At 
room temperature (and all the experiments on OPN to 
data have been carried out under these conditions), an 
enhancement of nuclear polarization was obtained that 
was record -breaking in comparison with other methods, 
and the effect arose under the action of unpolarized light. 
This feature drew serious attention to OPN in molecular 
crystals and stimulated a whole series of researches de­
voted to the elucidation of its physical mechanism. [2-6J 
At the present time, it is clear that OPN in molecular 
crystals is due to the nonequilibrium population of the 
electron spin sublevels that arises upon excitation of 
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phospherescent triplet states of the molecules. Two 
specific mechanisms of transfer of polarization from 
the electron spins to the nuclear spins were proposed in 
Refs. 4, 5: a modification of the Overhauser effect in 
the migration of the excitation in the triplet exciton band 
of the matrix[4J and selective population and depletion of 
the electron-nuclear magnetic sublevels of triplet mole­
cules with account of the mixing of states by hyperfine 
interaction (HFI). [5J In crystals with impurities, about 
which we shail speak below, the first mechanism is of 
little effect[4J; so far as the second is concerned, al­
though general considerations and calculated estimates 
indicate its usefulness. [5, 6J the most characteristic fea­
ture of this mechanism has not been observed experi­
mentally up to the present. This feature is the sharp 
increase in nuclear polarization (predicted by the theory) 
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