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On the basis of the hypothesis of the universality of the critical behavior of systems a method is proposed 
by means of which, for Hamiltonians of certain symmetry types, it is possible to establish a connection 
between the symmetry of the system and the properties of the renormalization-group equations for the 
invariant charges. As an example the properties of the phase transition in a two-component system with 
cubic symmetry are analyzed by the method. The functional equations for the Gell-Mann-Low functions 
are obtained for this model and, using these, it turns out to be possible to establish the positions of the 
fixed points of the system of renormalization-group equations on the phase plane and to draw conclusions 
about the nature of their stability without direct recourse to perturbation theory. 

PACS numbers: OS.70.Fh 

1. INTRODUCTION 

In a number of papers[I-7) renormalization-group (RG) 
equations have been analyzed in order to study the be­
havior of matter near a critical point. To describe the 
pattern of the phase transition in many-component sys­
tems it is important to establish where the fixed points 
of the system of RG equations are located and to ascer­
tain whether they are stable, since it is known that sta­
ble fixed pOints correspond to second-order transi­
tions. l ) For space of arbitrary dimensionality d the 
system of RG equations is very complicated and cum­
bersome. Simplification of the system arises only when 
d = 4 - E, E - 0, when the RG equations are transformed 
into the Gell-Mann-Low (GML) equations of field the­
ory. In this case, the first few terms of the Taylor se­
ries for the GML functions can be calculated by the E­

expansion method. [1,3,8,9) However, only for e« 1 is it 
possible to approximate the GML functions by trunca­
tions of the series in powers of e, and it remains un­
clear whether it is possible to extrapolate the results 
obtained for small f to the physical point f = 1. It is 
known, e. g., that in such an extrapolation the stability 
character of certain fixed pOints is found to depend on 
the number of terms in the series[3) and thus we cannot 
obtain even a qualitative picture of the behavior of the 
renormalized coupling constants near a transition in 
three-dimensional space. 

Moreover, according to the universality hypothesis, 
the structure of the RG equations should be connected in 
some way with the symmetry of the Hamiltonian. This 
relationship should impose certain restrictions on the 
general form of the GML functions and on the values of 
the renormalized coupling constants near the transition. 
If it were possible to establish this relationship, we 
could hope to obtain information about the properties of 
the phase transition to any order of perturbation theory. 

In the present paper we propose a method by means 
of which we can elucidate the character of this relation­
ship for Hamiltonians of certain symmetry types. The 
possibility of effective application of the method to a 
given Hamiltonian is intimately connected with the ex-
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istence of a certain special group of transformations 
for the Hamiltonian. As will be shown below, functional 
equations for the GML functions follow from the sym­
metry of the system. Using these it turns out to be pos­
sible to establish the character of the location of the 
fixed points of the system of RG equations on the phase 
plane and to obtain information on the stability of these 
points. We note that, although in three-dimensional 
space the RG equations do not go over into the GML 
equations,2) it is clear that the form of the RG equations 
near the transition will depend only on the symmetry of 
the bare Hamiltonian and not on the values of the bare 
constants. It is possible to believe, therefore, that the 
qualitative results obtained by us in the framework of 
the E-expansion and based on symmetry considerations 
will also remain valid for real three-dimensional sys­
tems. Since all the basic features of the method will be 
clear in its application to a two-component system with 
cubic symmetry, we shall first consider this model in 
detail3 ) and then give a general formulation, 

2. MODEL OF TWO COUPLED SCALAR FIELDS 

The Hamiltonian of the model has the form4) 

Assuming the dimensionality d of space to be close to 4, 
we can write the RG equations for the invariant charges 
Al and A2 in the form 

8A,/8/= '¥ 1 (A" A,), Ad ,~"=1", 

a.\,iiit= '¥ ,(.\" .\,). .'\,1 ,~o=i.,. (2) 

Here '¥l and '¥2 are the GML functions and t= _lnx2 , 

where x2 is the "physical mass," We shall consider 
those transformations K of the fields {cpJ under which 
the Hamiltonian (1) preserves its form but has different 
values Al and A~ of the constants. It is known that, from 
the group of rotations, rotations of the fields {cp i} 
through angles equal to 1T (1 + 2n)/4 where n is an integer 
(and only these rotations) will be such transformations. 
These transformations carry ~ into ~' , 
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where 
(3) 

(4) 

The system of RG equations describes the critical be­
havior, which, according to the universality hypothesis, 
depends only on the symmetry of the Hamiltonian, 
Therefore, it is natural to assume that the form of the 
system of RG equations for J'€' is the same as for :16, 
if dt and :16' have the same symmetry, The symmetry 
of dt' will coincide with the symmetry of JfJ in the case 
when there are, as before, two independent invariants 
of the symmetry in the expression for df', i. e., when 
the values of the constants A1 and A2 are independent and 
nonzero. Then for the system with Hamiltonian :X' we 
shall have 

fJA,'/fJt='¥,(A,', A,'), A,'I,_.=f.,', 

iJ.\,'/iJt='l',(.\,', .\z'), ·\,'I,~o=A,'. 
(5) 

We shall establish the relation between the Ai and the 
Ai. The invariant charges Al and Az are proportional to 
the renormalized vertices 

r,=r •••• (o, 0, 0, x') and L=3[ •• ,,(0, 0, 0, x'), ,,""p. 

The coefficients of proportionality do not change under 
a transformation K, since they are related to the Green 
functions, the matrix Gij = GfJij of which does not change 
under transformations rotating the fields, It is suffi­
cient, therefore, to find out how r 1 and r 2 transform. 
Taking into account that r 1 and r 2 are simply expressed 
in terms of irreducible correlation functions (whose 
transformation law is easily found if we know the trans­
formation of the fields {cp J), we obtain 

Hence we have 

Then for the GML functions 'l11 and 'l12 we obtain 

\1',(.\,', A,')=a'l',(.\, .. \,)+~\j',(.\" .\,), 

\!.',(.\,', A,')=1'l',(.\" :\,)+1)'\',("\" .\,). 

(6) 

(7) 

(8) 

These equalities are functional equations for 'l11 and 'l12' 

If, as is usually done, we expand the 'l1 i in series in AI, 
A2, relations for the expansion coefficients will follow 
from (8). In n-th order there will be 11 independent lin­
ear relations for 2n unknown expansion coefficients, 
since, knowing one of the functions 'l1 i' it is easy to find 
the second from (8). In particular, the expansions ob­
tained inl51 for the GML functions for four-dimensional 
space satisfy these relatiOns. 

Starting from Eqs. (6) and (8), we can determine the 
location of the fixed points of the system (2) on the phase 
plane and obtain information about their stability. We 
shall regard the equalities (6) as a transformation of the 
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point with coordinates AI, Az in the phase plane to a 
point with coordinates Ai, A2• Then, generally speak­
ing, the stable fixed points should also transform into 
each other. We shall assume, however, that the coordi­
nates AlO) of such points satisfy the relations 

(9) 

i. e., stable fixed points remain stationary under the 
transformation (6). It is obvious that if the system has 
only one such point the condition (9) is fulfilled for it, 
Below, using rather natural assumptions, we shall show 
that, apparently, it is precisely this case which occurs 
in the system under consideration. At the same time 
we shall adduce arguments from which it follows that 
the stable fixed points should be stationary for certain 
other systems too. The stationary points are the eigen­
vectors, with eigenvalue + 1, of the matrix of the linear 
transformation (6). This matrix has two eigenvectors: 
A2 = 2AI and A2 = - 6A1, with eigenvalues + 1 and - 1 re­
spectively. Consequently, the stationary fixed points 
of the system (2) can lie only on the straight line A2 
= 2A1, i. e., they are the fixed points of the isotropic 
Heisenberg model. 

The arguments adduced cannot be extended to those 
values of the bare constants Al and A2 for which the sym­
metry of the Hamiltonian changes under the transfor­
mation K. Such special values do exist. In fact, if the 
bare constants Al and A2 lie on one of the straight lines 
v = 0 or y = 6 ( v'" A2/Al)' the transformation K carries 
them on to the straight lines A2 = 6A1 and A2 = O. In this 
case the Hamiltonians :J€ and de' will have different num­
bers of invariants and, consequently, their symmetry 
will be different. Therefore, in these cases we cannot, 
of course, use the universality hypothesis, and the form 
of the system of RG equations for the Hamiltonian de' 

will differ from (2). Thus, we arrive at the conclusion 
that, apart from points that are stationary under the 
transformation (6), points lying on the straight lines A2 
= 6AI and A2 = 0 can also be fixed points of the system 
(2), It is obvious that the fixed points on these straight 
lines are the fixed points of the Ising model. 

We see, then, that (if the assumption (9) is valid) all 
the fixed points in our model lie on only three straight 
lines: the straight lines y = 0 and y = 6 (Ising fixed 
points) and the straight line y = 2 (Heisenberg (XY-mod­
ell fixed points). 

We now consider the question of the stability of the 
fixed points, We introduce the matrix A: 

A~(iJ'l'.IiJ.\, iJ'l''!ri.\,)~(a b). 
rj 'l',/O.\, i,i'l')J.\, c d (10) 

The characteristic equation at the fixed point then has 
the form 

p'- (a+d) p+ad-bc=O. (11) 

Points which are carriect into each other by the trans­
formation (6) will be called conjugate points. By taking 
differentials of both sides of the equalities (8) we obtain 
the following relations between the first derivatives of 
the GML functions at conjugate points: 
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~a'+ib'=~a+~c. ~a'+6b'=~b+pd. 

(Xc'+id' =,,(a+6c, pc'+ed' =,,(b+6d. 
(12) 

Here a', b', c' and d' are the elements of the matrix A 
at the conjugate point. As is easily checked, it follows 
from (12) that at conjugate points 

a'+d'=G-'-d. a'd'-b'c'=ad-bc. (13) 

i. e., the roots Pi and P2 of the characteristic equation 
(11) are the same at conjugate Ising pOints, as they 
should be. Therefore, it is sufficient to ascertain the 
stability of the Ising points on the straight line A2 = O. 
It is clear that for points on this straight line, c = 0 and 
a = >J!~_l is the derivative of the GML function for the Is­
ing model. Thus the matrix A has the form 

(14) 

and the roots of the characteristic equation are Pi 
= >J!~_l and P2 = d. Consequently, the stability of the Ising 
point depends only on the sign of the function d= a>J!2/aA2 
at this pOint. For the Heisenberg (stationary) point it 
is clear that 

iiW /iJ.V=iiW/il.\,. (15) 

and from (12) we find that the matrix A has the form 

( a 'I, (a-d) ) 
3(a-d) d ' (16) 

with a + 2b = 3a/2 > d/2 = >J!~_2' where >J!~-2 is the derivative 
of the GML function for the XY-model. The roots of the 
characteristic equation are Pi = >J!~_2 and P2 = 3d/2 - a/2, 
and, consequently, the Heisenberg point is stable if 

(17) 

Finally, for the point Ai = A2 = 0 both (14) and (16) are 
fulfilled, whence it follows that the matrix A has the 
form 

(18) 

and the equality 

(19) 

FIG. 1. 
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FIG. 2. 

should be fulfilled at Ai = A2 = O. This equality is con­
sistent with the fact that the form of the linear term in 
the expansion of the GML function in the invariant charge 
for the n-component Heisenberg model does not depend 
on the number of components. (4) 

Thus, the point Ai = ~ = 0 is an unstable zero, as we 
should expect. Taking account of this fact and the fact 
that we know the positions of the other fixed points, we 
can analyze qualitatively the behavior of the phase tra­
jectories. It is then not difficult to convince oneself 
that the Ising points cannot be stable zeros but are sad­
dle pOints. 

Of course, the stability of the Heisenberg point near­
est to the origin cannot be determined unambiguously 
from symmetry arguments alone. We shall diSCUSS, 
therefore, both the available possibilities. 

A. The Heisenberg point is a saddle point. Then, if 
the GML function of the two-component Heisenberg mod­
el has only one nontrivial zero, then, in our model, 
there is no power-law solution at all and, consequently, 
no scaling, since the phase trajectories go away to in­
finity for practically all values of the bare constants 
(see Fig. 1). A power-law solution can be obtained only 
by assuming that the GML function of the Heisenberg 
model has no fewer than three nontrivial zeros (see Fig. 
2). In this case, depending on the magnitude of the bare 
interaction, we should observe no fewer than two dif­
ferent (generally speaking) types of critical indices. 
However, while not rejecting this case entirely, on the 
basis of the arguments cited we regard it as improbable. 

B. The Heisenberg point is a stable zero. This situ­
ation seems to us to be more natural. The critical in­
dices in this case are the same as those for the Heisen­
berg model. The qualitative pattern of the behavior of 
the phase trajectories is depicted in Fig. 3. 

In the figures the numeral 1 denotes the phase tra­
jectory A2 = 2Al (the Heisenberg fixed points (stationary) 
lie on this straight line) and the numerals 2 and 3 denote 
the phase trajectories ,~= 6Al and A2 = 0 (the Ising 
points (conjugate to each other) lie on these straight 
lines). The region of instability of the Hamiltonian (1) 
is shaded. 

We return to the condition (9). If the Heisenberg 
point is stable, there will evidently be no other stable 
points. The point is that, if this were not so, there 
would be no fewer than three different stable fixed 
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FIG. 3. 

pOints, and integral curves which would separate the re­
gions of stability corresponding to these points would 
exist. It seems natural to assume that the existence of 
such separatrices should be associated with certain 
changes in the symmetry of the Hamiltonian, i. e., with 
definite values of the ratio y = X2/X 1 of the bare con­
stants. Therefore, such separatrices would be straight 
lines passing through the coordinate origin. However, 
for any value of yother than 0, 2, or 6, the symmetry 
of the Hamiltonian is the same (there are two indepen­
dent invariants). Thus, there are evidently no such 
separatrices, and the stable Heisenberg point is the only 
stable fixed point. 

For both cases (A and B) and for bare constants Xl> 
x2 such that - 2 < y < ° or 6 < y < 00 the phase trajectories 
leave the region of stability. This indicates the possi­
bility of the existence of a first-order phas e transition 
in the system. The properties of first-order transitions 
have been calculated recently by Lyuksyutov and Pokrov­
skil[5] in first order in f. We note that the results ob­
tained in[3.8] by approximate methods do not contradict 
ours and give the case B. 

3. GENERAL FORMULATION AND DISCUSSION OF 
THE METHOD 

We shall formulate our principal assumption in gen­
eral form. Suppose that we have the Hamiltonian Je 

=J6({CPj}, {X k }) of an n-component field {cpj} with III cou­
pling constants Ak and that it possesses a given sym­
metry. Let there exist a transformation of the field, 
K{cpj}={cpa, such that the Hamiltonian Je preserves its 
symmetry under this transformation, i. e., the same 
number of the same symmetry invariants appear in the 
expression for the transformed Hamiltonian de' as in 
16. We then assert that the form of the RG equations 
will be the same for the systems with Hamiltonians If 
and :J6'. 5) This postulate is based on the idea that the 
GML functions describe the behavior near the phase­
transition point, and this behavior, by the universality 
hypothesis, depends only on the symmetry of the Hamil­
tonian and is, consequently, the same for systems with 
the Hamiltonians d( and J('. It follows from this that 
such symmetry considerations are applicable to the sys­
tem of RG equations near Tc not only for small e but al­
so for the real three-dimensional case (when, strictly 
speaking, there are no GML equations of the form (2». 
Here the conclusion that there is a possible increase in 
the symmetry of the system at the transition point evi­
dently remains in force. 

754 Sov. Phys. JETP. Vol. 44. No.4, October 1976 

It is clear that the set of K-transformations forms a 
group. We shall call it the group of covariance of the 
Hamiltonian. Inasmuch as a transformation K depends, 
obviously, on the concrete form of Je, the structure of 
this group is related only to the Hamiltonian (for a given 
degree of nonlinearity of de int ), since the actual form of 
the Hamiltonian is completely determined by the sym­
metry of the system. At the same time the covariance 
group imposes certain conditions on the GML functions, 
i. e., on the structure of the RG. In fact, if we express 
the invariant charges Ai in terms of the Ai' we obtain 
certain functional equations of the type (8) for the GML 
functions. From these equations we can obtain certain 
information on the stability of the fixed pOints, as was 
done in the example cited above. Thus, the structure 
of the RG is found to be connected with the symmetry of 
the Hamiltonian. 

In general, in the approach expounded the basic prob­
lem concerns whether covariant transformations that 
are nontrivial (i. e., not identity transformations, with 
respect to the invariant charges) exist for the given 
Hamiltonian, and how to find them. Inasmuch as the 
symmetry group of the system is defined by a certain 
set of rotation and reflection operations, the covariance 
transformations must also be sought primarily amongst 
the linear transformations. It is fairly clear that such 
linear transformations exist for systems with low sym­
metry. For example, if we consider a system with tri­
clinic symmetry, the interaction Hamiltonian is in gen­
eral a complete homogeneous polynomial with indepen­
dent coefficients. Any rotation leaves the form of the 
Hamiltonian unchanged, i. e., the covariance group is 
continuous. Therefore, if a second-order phase transi­
tion occurs in such a system, the position of the corre­
sponding stable fixed pOint (in the space of the invariant 
charges) cannot be arbitrary. Indeed, otherwise an 
infinitesimal K-transformation would carry this point in­
to an arbitrarily close point, which ought also to be 
stable. Thus, the fixed pOint would turn out not to be 
isolated. 

As the symmetry of the system is increased (i. e., as 
the bare coupling constants obey an ever larger number 
of conditions), the number of nontrivial covariant trans­
formations decreases, and for sufficiently high sym­
metry there can be none at all. For example, it can be 
shown that there are no nontrivial linear covariant trans­
transformations for systems with cubic symmetry and 
n > 2 components. If we assume that the covariance 
group of the RG equations is exhausted by the linear 
transformations, the absence of such transformations 
for systems with sufficiently high symmetry makes pos­
sible, for such systems, the existence of fixed points 
of a type that is characteristic just of the given sym­
metry. The appearance of the specific fixed point (cu­
bic) for n > 2, obtained by the e-expansion method in[31, 
is not surprising from this point of view. 

From the arguments adduced it follows that second­
order phase transitions which would correspond to "low­
symmetry" fixed points, i. e., points at which the sym­
metry admits a continuous covariant transformation, do 
not exist. Therefore, in a system with "low" sym-

w 
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metry, a second-order phase transition can occur only 
with an increase of symmetry at the transition pOint. 
Moreover, an increase of symmetry at the transition 
point will also occur for systems possessing a discrete 
covariance group if the system of RG equations has only 
one stable fixed point. 

For such systems the same critical indices as for sys­
tems with the higher symmetry should be observed ex­
perimentally. The structure of the critical fluctuations 
and, consequently, the increase in the symmetry of the 
system as T- Tc can be investigated by means of elec­
tron paramagnetic resonance (EPR), light-scattering ex­
periments, acoustic methods, etc. In particular, data 
which apparently indicate a change in the symmetry of 
the field of the critical fluctuations in the structural 
phase transition in the cubic crystal SrTi03 have recent­
ly been obtained by the method of EPR spectroscopy. [11) 

In conclusion I express my gratitude to A. I. Sokolov 
for numerous discussions and useful criticism, and also 
to S. L. Ginzburg and S. V. Maleev for a discussion of 
the results of the work. I am sincerely grateful to D. 
E. Khmel'nitskii and A. A. Migdal. Discussions with 
them on the structure of the RG equations have been of 
great benefit to me. 

1)It is implied that the power-law asymptotic form has already 
been separated out from the expressions for the invariant 
charges. 

2)The GML equation in[4] was obtained in the framework of a 
certain self-consistent scheme and is not, strictly speaking, 
an exact equation for the renorrnalized coupling constants. It 

is possible, however, to adduce arguments that the values 
of the critical indices calculated using such an equation will 
be close to the true values. 

3)The behavior of such a model in the framework of the £-ex­
pans ion was investigated earlier in[3,5,8]. It is used to de­
scribe structural phase transitions from tetragonal to rhombic 
symmetry and also applies to the formation of superstruc­
tures in alloys forming a body-centered cubic lattice. [5,10] 

4)The notation is the same as in[5]. 
5 )We note that for certain special values of the constants {"k} 

the transformation K can lead to couplings between different 
"k or can make some of the "k vanish. In this case the sym­
metry of ~"I{' will not coincide with the symmetry of J'6 and our 
assertion does not apply to these special cases. 
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Phase diagram and domain-boundary structure in a uniaxial 
ferrimagnet near the compensation point 
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The phase diagram of a quasi-uniaxial mixed rare-earth iron garnet has been investigated by magneto­
optical methods. The lines of stability loss were determined for the low- and high-temperature collinear 
phases and the noncollinear phase, together with their ranges of coexistence. Near the triple point of the 
phase diagram. there was observed a broadening of the domain boundary between collinear phases, with 
subsequent transformation of the boundary to the noncollinear phase. It was shown that phase segregation 
in the specimen occurs over a wide range of temperatures and of magnetic fields, located within the single­
domain range for the "Weiss" domains that are due to the demagnetizing fields. The structure of the 
transition regions between coexisting magnetic phases was investigated. 

PACS numbers: 75.50.Gg, 75.60.Fk. 78.20.Ls 

The continued interest in investigation of the behavior 
of ferrimagnets in the vicinity of their magnetic com­
pensation pOint has recently increased significantly be­
cause of the discovery, in this region, of the phenome­
non of coexistence of several magnetic phases; that is, 
of a distinctive domain structure, which exists over a 
quite wide range of variation of the temperature and of 

the external magnetic field, including fields that ap­
preciably exceed the field for "technical" saturation of 
the material. [1-10) In experiments on iron garnets, 
which have good optical transparency in the visible and 
infrared ranges of wavelength, broad use is made of 
visual methods of investigation, based on the use of the 
Faraday and Cotton-Mouton magneto-optic effects. [2-11) 
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