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Structure of a transverse shock wave in a plasma 
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The structure of a shock wave front propagating in a fully ionized collision-dominated plasma 
perpendicular to the direction of the magnetic field is determined for arbitrary values of /3 = 81rp/ H '. It 
is shown that in the case of a magnetized plasma (fl, T, > 1) the wave front structure is determined by the 
ion viscosity and by the dispersion due to inertia of the electrons. The dispersion is more important at 
small values of /3, and the structure of the wave front consists of oscillations that decay behind the wave 
front. At finite values of /3 the shock wave front is monotonic. In a shock wave with a sufficiently big 
temperature discontinuity, however, dispersion predominates at the beginning of the front and leads to the 
appearance of decaying oscillations ahead of the shock wave front. The Alfven Mach numbers that are 
critical for the effect of dispersion are found. Dispersion due to electron inertia is not essential in the case 
of an unmagnetized plasma (fl, T, < I). The width of the shock wave front is determined by Joule 
dissipation. The values of the critical Mach number (M.h(f3) above which Joule dissipation is insufficient 
for a continuous transition from a state ahead of the shock wave front to a state behind it are found. An 
isomagnetic discontinuity is produced behind the shock wave front in this case. The structure of the 
isomagnetic discontinuity, which is determined by the electron thermal conductivity. ion viscosity, and ion 
thermal conductivity, is found. 

PACS numbers: S2.3S.Lv 

The structure of transverse shock waves in a plasma 
has been the subject of many theoretical as well as ex
perimental studies (see, e. g., the reviewU ] and the 
book[2]). In view of the great variety of interactions of 
particles in the plasma, the structure of the shock wave 
is determined by various dissipative processes or dis
persion effects, depending on the magnetic field strength 
and on the relations between the plasma parameters. 

The first studies of shock waves in plasma[3.4] yielded 
only a qualitative picture of the structure of the shock
wave front in the limit of a strong shock wave and under 
the assumption thatthe wavefront is the result of ion vis
cosity. The authors of subsequent papers devoted to the 
structure of the front of collision shock waves limited 
themselves either to numerical calculations or arbi
trarily left in the equations a dissipation of some sort, 
neglecting the dispersion and the remaining dissipative 
terms. [5-9] Naturally, the region of applicability of the 
results obtained in this manner is not clear. 

A number of studies[10-12] yielded the values of the 
critical Mach numbers which specify the boundary above 
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which there exists no integral curve jOining the states 
ahead and behind the shock-wave front. 

In the present paper, the critical Mach numbers are 
obtained for arbitrary values of {3. It is shown that the 
boundary shock-wave intensities defined by these num
bers Signify either that at high intensity the chosen prin
cipal dissipation is insufficient for the formation of the 
shock front, or that oscillations appear on the front as 
a result of predominance of dispersion at an intensity 
below the given value. [13,14] 

The magnetic field in the plasma is usually charac
terized by the ratio {3 = 8rrp/H 2 of the gas pressure to the 
magnetic-field pressure. Collisionless shock waves 
correspond to the cold-plasma limit, i. e., {3« 1. A 
more convenient parameter when using the structure of 
shock waves is the degree of plasma magnetization ~lT, 
where n",i =eH/me,lc is the cyclotron (electron) frequen
cyand 

is the corresponding time of the Coulomb collisions. It 
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turns out that the dispersion due to electron inertia can 
be significant only in a magnetized plasma. 

The principal dissipative process in a magnetized 
plasma is always the ion viscosity, [15] but at small val
ues of /3 a more important role is assumed by disper
sion, and the structure of the shock-wave front (for ex
ample, the change of the magnetic field) constitutes in 
this case oscillations that are damped behind the Shock
wave front. In the case of a large temperature jump, 
the oscillations can be produced also ahead of the shock
wave front. We obtain in this paper the critical values 
of the Mach numbers M a (/3), below which oscillations on 
the front are possible. 

In the case of a partially magnetized or unmagnetized 
plasma (n; T; < 1), the dispersion due to electron inertia 
is suppressed by the Joule dissipation and does not in
fluence the structure of the wave front, which is deter
mined mainly by the plasma resistance. But the Joule 
dissipations cannot form a front of an arbitrary strong 
shock wave, and therefore a discontinuity of the type of 
the isothermal jump appears in the structure at an in
tensity above a certain value. [11,16-19) Thus, in the case 
of shock waves with M. > MZ(3) (M: = 2.76 at (3 « 1) an in
ternal discontinuity appears on the shock-wave front, 
namely an isomagnetic jump, in which a discontinuity 
appears in the velocity, density, temperature, etc. at 
an almost constant magnetic field. 

The width of this discontinuity is determined by the 
electronic thermal conductivity. On the other hand, when 
the intensity of the shock wave is even larger, 
M. > M;({3) (M; = 3. 02 at (3« 1), the velocity and the den
sity experience inside the isomagnetic jump one more 
discontinuity at a constant electron temperature. The 
width of the latter discontinuity-the electron isothermal 
jump-is determined already by the ion viscosity. 

We note that although formally the value of the critical 
Alfven Mach number M= as (3 - 0 is the same in a colli
sion-dominated plasma as for the isomagnetic jump in 
a collisionless shock wave, [20-22) their physical natures 
are entirely different. 

1. We consider a stationary plane shock wave propa
gating in a fully ionized plasma along the x axis. We 
direct the z axis along the magnetic H. We assume the 
plasma to be simple with Ye = Y i =t. As usual, we 
change over to a coordinate system moving together 
with the shock-wave front. In this system, the plasma 
flows in from x = - 00 in state 1 and flows out to x = + 00 

in state 2-behind the front of the shock wave. Consid
ering a planar stationary problem, we obtain for the y 
component of the electric field, from the equation 
curl E = 0, that Ey is constant. The boundary conditions 
at ±oo yield Ey=u1H1/c=uzH2/C, The subscripts 1 and 2 
pertain here to states far in front (x = - (0) and far be
hind (x = + (0) the shock-wave front, respectively. We 
shall neglect the dispersion effects due to deviation from 
quasineutrality, assuming in first-order approximation 
that nj=ne=n, rD=O and determining the critical field 
Ex in the next-order approximation in rD' We then ob
tain from the equation curl H = 41Tj/C 
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dH 4n . 
a;=-c-ne(v.'-v;). (1.1) 

The vanishing of the x component of the current together 
with the quasineutrality condition yields v~ = v: = v. 

As the material equations for the collision-dominated 
plasma we choose the equations of two-fluid hydrody
namics for the electrons and ions and the values of the 
kinetic coefficients obtained by Braginskil . [23] 

We write down the first integrals of the equations for 
the continuity and for the conservation of the momentum 
and energy fluxes for the entire plasma as a unit in the 
form 

nv=C; (1.2) 
. HZ_Ex' 

(m, +m,) Cv+n (T,+T,) +l1xx'+tt,x' + ---s,;-- = P; (1. 3) 

. ExE, ( ) (m.v/+m,v:)C+nx;+l1x,' -, -- = G; 1. 4 
4" 

m m 5 
+(v'+v/')C + -2''-(v'+v'')C +2(T,+T,)C 

(1. 5) 

where C, P, G, and S are integration constants deter
mined from the boundary conditions. 

Equations (1. 2)-(1. 5) must be supplemented with the 
equations of motion and the thermal conductivity for the 
electrons 

Here Ti,e, 1T~:, qi,e are respectively the temperatures, 
viscous-stress tensors, and heat fluxes of the ions and 
the electrons; R" and Ry are the components of the fric
tion force acting between the ions and the electrons; Qe 

is the heat obtained when the electrons collide with the 
ions. 

The investigation and solution of Eqs. (1.1)-(1. 8) is 
preferably carried out by changing over to dimension
less variables. We introduce the dimensionless tem
peratures, velocities, densities, etc. as ratios of their 
values to the corresponding equilibrium values in states 
1 or 2, i. e., ahead or behind the shock-wave front. The 
dimensionless variables E and <p (the x component of the 
electric field and the electrostatic potential) are the ra
tios of the corresponding energies to the thermal energy 
in the equilibrium state. Finally, the scale .:l of the co
ordinate x should be specially determined from physical 
considerations. Referring all quantities, for example, 
to the state 2, we denote 

W=V/U2, Aj,e=V;,e luz, v=nln2, 8 i ,e=T i ,e/Tz, 

h=HIH" E=eExrD/Tz, <!>=e<jlIT,. ~=x/l1. 
(1. 9) 

It is known that only one fast magnetosonic wave 
propagates across the magnetic field, with velocity u 
= (U!+u:)1/2, where Us is the velocity of ordinary sound 
and ua is the velocity of the Alfven wave. Thus, by de-

A. L. Velikovich and M. A. Liberman 728 



fining the Mach number as the ratio of the flux velocity 
to the velocity of the fast magneto sonic wave, .If =u/it, 
we have .If 1 > 1 for the transverse shock wave (super
sonic flux). We introduce as the parameter of the di
mensionless equations not the number .;It, but the acous
tic and Alfven Mach numbers M =u/us and Mo =u/u,,, re
spectively, which are connected with .II by the simple 
relation 

(1.10) 

The region of variation of the numbers M and Ma in 
the incoming flux, corresponding to the shock wave, is 
shown in Fig. I-this is the region above the hyperbola 
Ml-2+M;~ =1 on the (M~, M!l) plane. 

Written in terms of the dimensionless quantities be
hind the shock-wave front, the equations contain the 
Mach numbers Ma and Moa in the outgoing flux, which 
are connected with M1 and Mal by the relationll5 ] 

(1. 11) 

where wa and 6 2 are the jumps in the velocity and in the 
temperature through the shock-wave front 

(1. 12) 

El,~J..-~ T, ~ l+M I '(1-Ol,) (0l"+00'-~)/ 300,. (1.13) 
Ell TI J!" 

The region of variation of the numbers Ma and Moa, cor
responding to the shock wave, i. e., to the condition 
.It I> 1 is shown in Fig. 2. On the (M~, ~a) plane it is 
located between the hyperbola Mi2 +M;~ = 1 and a curve 
whose parametric equation is 

M ,_30l,'(50l,+1) M' 
~ - ,a3 
- 5(l-w,)' 

00,'(500,+1) 
2 (40l,-/) 

In Fig. 2 the upper boundary-the hyperbola-corre
sponds to the limit of the weak shock wave (UJ2 = 1, 6 a = 1), 
while the lower one corresponds to the limit M 1 - 00, 

i. e., to an infinitely large temperature jump at an arbi
trary compression wa. In particular, at sufficiently 
large Ma (small (3a =t M~/M~) there are realized shock 
waves in which an arbitrarily large temperature jump 
is associated with an arbitrarily small compression. 

~~~=-~-=--------

,125 

FIG. 1. The values of the Mach numbers corresponding to the 
shockwave, i.e., w2<l, lie above the hyperbola Mj2+M;;=1. 
The region M 2 > 1, in which the shock wave can have a nonmono
tonic structure, is shown shaded. Ma{;3 = 0) =2.76. 
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"';'1 \ 
\. 
\ 
\ FIG. 2. Region, corre

sponding to wI> 1, of the 
Mach numbers behind the 
front of the shock wave. 

We put I: = (m,,/m i)l /a and denote the degree of mag
netization of the ions by (n; 7i)"1 =ri/l; = O. Then 
(n" 7 e)"1 = EO. 

Since the form of the equation and the values of the 
kinetic coefficients are different and depend on the val
ue of 0, we consider separately two limiting cases, 
0« 1 and EO» 1. Inasmuch as the temperature in
creases through the shock-wave front it follows that, 
assuming 0« 1 ahead of the shOCk-wave front, we see 
that the first inequality (the condition of strong magne
tization) is not violated also behind the front. To the 
contrary, the second inequality (the condition of weak 
magnetization) can be satisfied ahead of the shock-wave 
front and is violated behind it at suffiCiently large inten
sities. This restricts the investigation of this limiting 
case to shock waves that are not too strong. 

2. We consider a strongly magnetized plasma, in 
which the electrons and ions ahead of the shock-wave' 
front are magnetized: <5« 1 and E 0 « 1. 

In terms of the dimensionless variables (1.9), Eq. 
(1.1) takes the form 

.M,6[, dh 
1..-1.,=1.0;) M---;- 00 -. 

" L1 d~ (2.1) 

Changing over in (1.2)-(1.8) to the dimensionless 
variables (1.9), eliminating the y component of the di
mensionless electron velocity Ae , and omitting the small 
terms with electron viscosity, we obtain 

'\'00=1, (2.2) 

",_1+_3_(El.+0'_Z)+h'-1_ ~ 
10M,' '" 2M,; 110.1 

X [ (0.320,'1'+ 0.36'h-'w-'0,-'!.) d~ + 0.56h- I (,)-10, d~,~] = 0, (2.3) 

00'-1 ).,' 3 h-l. eL1. dh 
-. -+--;-+-,-, (0,+0,-2)+--, + 1.0;)--,-1.,00-

2 2 ·,M,· M,. Ma, L1 d~ 

0.5::>(L1d)'( dh)' L1, [03? 'I. dw +- - 00- --=- . _0, w-
M,,' <l d~ Y 10 .1 d~ 

(2.5) 
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In Eqs. (2.3)-(2.7), An stands for combinations of pa
rameters with dimensions of length, which are charac
teristic of the various processes. The ion viscosity 
corresponds to the scale Av=l/M, the electron inertia 
corresponds to Ad = f oMl/M., the Joule losses to A J 

= Eo2Ml/~, and the transfer of energy from the elec
trons to the ions as a result of collisions to Ar = Ml/ F • 

The scale A of the transition to the dimensionless coor
dinate has so far not been defined. In the system of 
ordinary differential equations (2.1)-(2.7), the deriva
tives contain factors in the form of the ratio of the scale 
of the given physical process to the scale of the dimen
sionless coordinate. If we neglect all the derivatives, 
i. e., if we regard the shock wave as a discontinuity of 
all the quantities from the state 1 ahead of the shock
wave front to the state 2 behind the front, putting for
mally A = 00, then we arrive at the Hugoniot- Rankine 
relation, namely, we obtain algebraic equations that 
connect the values of the variables ahead and behind the 
shock-wave front. Solving these equations we obtain, 
as was done earlier, [15] the jumps of the velocity, tem
perature, etc. expressed in terms of the Mach num
bers. On the other hand, if we are interested in the 
structure of the shock-wave front, then we must choose 
a finite value of A and solve the system of differential 
equations. Assume that all the dimensionless variables 
are of the order of unity, as is the case in a weak shock 
wave. Choosing among them the maximum parameter, 
say A1, we put A = Al and neglect small terms of order 
A.!A 1• We can then obtain the solutions of the initial 
equations in quadratures, with the dissipative process 
with characteristic scale Al being the decisive one for 
the structure of the front, and the root of the front be
ing of the order A1• If the obtained solution does not 
give a continuous transition from the state 1 to the state 
2, then it is necessary to introduce at the discontinuity 
a smaller scale, etc. 

The indicated program calls for certain refinements. 
First, there are two possibilities of going over to di
mensionless variables: relative to the state 2 behind the 
shock-wave front and relative to the state 1 ahead of the 
shock-wave front. As shown earlier, [15] the velocities, 
concentrations, and the magnetic field in the shock wave 
vary in finite limits, i. e., the magnetic field in the 
shock wave vary in finite limits, i. e. , their dimension
less values are always of the order of unity. However, 
the temperature jump even in a weak shock wave (at 
small /3) can be .arbitrarily large. The two possibilities 
of changing to dimensionless variables relative to the 
values of variables of states 1 and 2 afford two choices 
of scales characterizing the given physical process. 
For example, the scale characterizing the isotropic 
component of the ion viscosity can be chosen the form 
Av(l)=ll/Ml or Av(2)=12/M2. In order of magnitude we 
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have Av(1)/Av(2)",0~/2. Since the boundary conditions 
admit of an arbitrary value 0 < 0 1 < 1" it fOllows that 
Av(l) can be arbitrarily small in comparison with Av(2). 
The physical cause of this is precisely the fact that the 
action of the viscosity increases in proportion to T5/2. 

Thus, in order for anyone particular physical pro
cess to predominate over the extent of the entire shock
wave layer, it is necessary that the length scale which 
is characteristic of this process, be the largest every
where. In the opposite case it is necessary to take into 
account the competing processes in one or another sec
tion of the shock layer. It must also be borne in mind 
that A is not necessarily of the order of the width of the 
shock-wave front. Weak shock waves are broader. To 
estimate the width of the front of a weak shock wave we 
introduce the shock-wave intensity 1=1 -.It i 2. This pa
rameter varies between 0 and 1 (corresponding to the 
limits of infinitesimally weak and infinitely strong shock 
wave respectively). The solution for the weak shock 
wave (1« 1) is 

w=1+AI[l+th (An)]' 

where A = (9 + 5/31)/2(9 + 20/31/3), from which it follows 
that the width of a weak shock wave is of the order of 
A/I»A. 

In Eqs. (2.3)-(2.7) we can separate the following pro
cesses and the scales corresponding to them: Av=l/M 
corresponds to ion viscosity and has a maximum value 
behind the shock-wave front in state 2. Ad = fOMl/M. 
corresponds to the dispersion due to the electron inertia. 
It is easy to verify that Ad = c / W p is the collisionless 
skin depth. Naturally, over A = Aa the freezing-in of 
the magnetic field is violated. AJ = Fo2Ml/M~ corre
sponds to the Joule losses and to the Hall fluxes; Ar 

= Ml / F is the scale of the temperature relaxation of the 
electron and ions. From a comparison of these four 
scales we see that the largest of them is always Ar • 

But the energy exchange between the electrons and ions 
can by itself not give rise to a shock wave. 

As shown earlier, [15] the initial equations, at A = Ar , 

yield w =const, h=const, 0 e +0j =const. In this case 
only the electron and ion temperatures change and their 
sum remains constant. Behind the shock-wave front, 
near 2, we have 

w=h=l, 8,+8,=2, 

[ 1 1 +8'· 8 ." ] 
~-~o=O.gl -In--'---'--8 .. 

2 1-8," 3 ' 

(2.8) 

(2.9) 

Thus, the shock layer produced by the processes of vis
cosity, dispersion, etc. is followed by a relaxation 
layer, in which the electron and ion temperatures be
come equalized. Accurate to small quantities of order 
A/ Ar , the energy exchange inside the shock layer can 
be neglected and it can be assumed that the electrons 
and ions are heated independently. 

Returning to the three remaining scales A v , A a, and 
A J, we note that Ad »A J '" OAd always. Thus, the prin
cipal role in the formation of the shock front is played 
by the ion viscosity and by the dispersion. The Joule 
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heating and the hole fluxes can appear only as correc
tions against the background of the dispersion. 

The dispersion effects themselves cannot form a shock 
wave, only oscillations. The damping of these oscilla
tions and the transition from the state 1 into 2 are the 
result of viscous or Joule dissipations. 

Comparing the scales ~v and ~d' we see that at ~ 
«(ro)"1 ion viscosity predominates-in Fig. 2 this re
gion is marked V. At ~» (EO )-1 the principal process 
influencing the formation of the shock front is disper
sion-region D in Fig. 2. At 01 /2 (Eo)-1 «M~« (FO)-1 
the dispersion at the start of the shOCk-wave front is 
more important than the viscosity-the region VD. In 
the dispersion region, viscous diSSipation predominates 
at M~« (€ 02)-1, and Joule losses are principal at ~ 
»(F02)-I-subregions DV and DJ in Fig. 2. 

In the region V, as already stated, the prinCipal pro
cess influencing the formation of the shock front is ion 
viscosity. 

Substituting ~,=12/M2 in (2.2)-(2.7) we obtain, ne
glecting terms that are small in e and 0, 

00 -1 +_3_ (8,+8i _ 2) + h'-1 _ 0.32 e'/' ~ ~ 0 (2.10) 
10M,' 00 2M.; HO' d\; , 

00'-1 3 h-1 0.32 '/0 doo --+-- (8,+8,-2)+--==-8i oo--~O, 
24M,' M.,' Y 10 d\; 

hoo-l~O, 

d8, +~ 8,~~0 
d~ 3 00 d~ . 

(2.11) 

(2.12) 

(2.13) 

In the entire considered region of variations of M 2 , 

the magnetic field is frozen-in, accurate to terms small 
in e and 0 [Eq. (2.12)]. The ions are heated on account 
of the ion viscosity, and the electrons (at the same ac
curacy) only on account of adiabatic compression. The 
solution for the profile of the shock-wave front can be 
obtained in quadratures. We have 

8,~8,«O,!(O)'\ 

4 10M,' '( 1) ei~2+-(1-oo)+--(1-oo) 1--M , -8" 
3 9 Ol "' 

(2.14) 

(2.15) 

(2.16) 

The transverse velocity components are small in terms 
of 0 and are given by 

'A.~- 6 __ 8. ~ 
2Y 10 Ol d; 

A,'~- 6 [8,+ 20M2' ] oo~, 
2.10 30)M,,' d~ 

(2.17) 

(2.18) 

We consider now the region of values of f3 that are so 
small that M~» (EO)-I. In this case the scale ~d is the 
largest. We put ~ '= ~d '= c5M212/Ma2• From (2.2)-(2.7) 
we find that Ai is small relative to 10, and, omitting 
small terms in 10, 52, and 1/~, we obtain 

1 + h'-1 0,32 1 'f, dO) 
0) - :!Mo' - llOM'eo 8 i ds ~ 0, (2.19) 

(O'~l h-l (dh)' 032 1 c, dOl 
--+-+0,55 u)- --'---8" Ol-~O 

:2 AI.' d; nO M'E6' d; , 
(2.20) 
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d dh _'I, dh 
hO)-I~I,IO)-Ol-+ 1.0568, -d 

d~ d\; \; 
(2.21) 

Leaving out, in the zeroth approximation, the dissipa
tive terms we have 

Ol-I+(h'-1 )/2M.'~0, 

0)'-1 + h-1 + 0.55 (0) dh)' = 0 
2 AU M/ d~ , 

d dh 
hw-l~1.1w d\; W d; . 

(2.22) 

(2.23) 

(2.24) 

Substituting w from (2.22) in (2.23) and (2.24) and 
changing over to Lagrangian coordinates by means of the 
substitution w(d/d~) '= (d/d~), we obtain the following 
equation for h: 

- - +0.91--- ----1 ~O 1 (dh)' (h-1)' [ (h+l), ] 
2 d; 2 4.11,,' ' 

d'h [ h (h+ 1) ] -, +0.91(h-1) -?--1 ~O. 
d; _ill", 

(2.25) 

(2.26) 

Equations (2.25) and (2.26) have a well known mechani
cal analogy, [24,25] namely the energy integral and the 
equation of motion of a particle of unit mass in the field 
of a potential U(h). 

In the field U(h) there are two equilibrium points hl'= 1 
and h2'= [ - 1 + (1 + 8M!I)11 2]/2, corresponding to two sin
gular limiting points corresponding in term to states 1 
and 2. The phase curves of (2.26) are shown in Fig. 3. 
It is obvious that without dissipations no solution in the 
form of a shock wave can be obtained-it is impossible 
to go over from 1 to 2. It is therefore necessary to 
change over in (2.25) and (2.26) to dimensionless vari
ables with respect to the state 1. The solution with the 
boundary condition h(1) '= 1 is the soliton 

h (") -1 + 2 W.'-1 ) 
s -- H-M"ch(2:;(I-M-') .) 

... <I, 

(2.27) 

Inside the separatrix that starts with the point h'= 1 
(Fig. 3), periodic solutions are possible around h = ~. 

The maximum value of h is 

h"".=2M",-1. (2.28) 

Substituting hmax in (2.22) and stipulating that w(hma,x) > 0, 
we obtain immediately the known relation[24.25] 

.~r,,,<2, h"",.,<:l. 

These restrictions, however, do not lead to any new 
conditions whatever, since it is obvious (see Fig. 2) 

dh 
dr, 

FIG. 3. Form of the function 
U(h) and the phase curves cor
responding to a soliton, a pe
riodic solution, and a shock 
wave with oscillations that at
tenuate behind the front. 
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that at M 2 » 1 the values of M a1•2 differ from unity by a 
small quantity of the order of M22/3. By direct calcula
tions it is easy to find that Mal < 2 already at M2~6. 

We now take into account in the first-order approxi
mation the dissipative terms-the ion viscosity and the 
Joule losses. Leaving out the small dissipative terms, 
we have 

I h'-l 1.03 • , / I elh 
00= - ')Af ' - M 'AI "6 8, 100- d' . 

_ tI~ :! II! f ~ 
(2.29) 

Substituting (2.29) in (2.26) we get 

d'h + ~ [ 0.94 h'e':' + 0 \l568 ,-'/'] dh 
.... J " ., ! .<- t 

d;,- W f6.1f,-M,,,- <Ii, 

+O.!ll (h-1) [h~~:,~) - I ] = O. (2.30) 

The obtained equation must be solved simultaneously 
with the heat-conduction equations. Although it is im
possible to represent the solution in analytic form, its 
qualitative character is easily understood. 

Linearizing (2.30) near the singular point 2 (i. e. , 
behind the front of the shock wave) as h- h2' we have 

d'h dh , 
ii" + 21 d' + Q-h = O. . . 

where 

Q'= (:1)' I +8JJ..,'-8AI",'-I) l'dI,,''''' 1-.11,,', 

y=y ,+y,=0.%8;" /e6M,'+O.0;;68~':' . 

(2.31 ) 

We have taken into account here the fact that at M 2 » 1 
we have Ma2 '" 1 and h2 = w2 = 1 and the solution of (2.31) 
is of the form 

(2.32) 

Obviously, at 0 > Y these are oscillations that attenuate 
behind the shock-wave front. The quantities Yv and YJ 
determine the relative roles of the ion viscosity and of 
the Joule heating in the damping of the oscillations. At 
(r 02tl » M~» (f 0 )-1 the damping is due mainly to ion 
viscosity, and at M~» (£02)-1 to ohmic losses. We note 
that sufficiently weak shock waves always have a mono
tonic structure. Indeed, the condition for the existence 
of oscillations is 0 > Y v or 0> YJ. Inasmuch as at M 2 » 1 
we have Ma2 ", 1, we obtain 0 2", 1- M~2 - I, where 1« 1 is 
the shock-wave intensity. We assume 8 1 = 8 e = 1 behind 
the shOCk-wave front, and then the condition for 0> Yv 

x (0) YJ) is I> (£0~t2 or 1>02• 

We have already noted that the viscosity effect in the 
plasma is strong and depends strongly (like T5/2) on the 
temperature; in particular, ~v(1)/~v(2)'" 8 15 / 2• Thus, 
at a large temperature jump the scale that is character
istic of ion viscosity can be much smaller at the begin
ning of the shock layer than at the end. To the contrary, 
the dispersion effect, the scale of which is ~d = c/wp , 

does not depend on the temperature. This means that 
at a large temperature jump in the shock wave (region 
VD in Fig. 2) we can expect the appearance of disper
sion effects on the leading edge of the shock-wave front. 
The velocity and the magnetic field will oscillate near 
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the leading edge, and will subsequently approach mono
tonically their limiting values in state 2. 

Let us consider the shock-wave region with ~ 
«(£0)-1. We write down the equations in Lagrangian 
coordinates, assuming that ~ = ~d = C / w P2 and omitting 
terms that are small in e and 0 

d'h 
h",-I= 1.1 ds' . 

(2.34) 
(2.35) 

In Eqs. (2.33) and (2.34) the terms with the viscosity 
are multiplied by large factors ~vI ~d »1. In the con
sidered case, however, that of a large temperature 
jump, 8 1 can be arbitrarily small near the lower limit 
of the shock-wave region in Fig. 2, and consequently 
the last terms in (2.33) and (2. 34) are also small. 

To ascertain when oscillations are possible, we put 
for Simplicity 

Multiplying (2.33) by w and subtracting from (2.34) 
we obtain 

4 10M.' 10M,' [ (dh ) 'J 8,+8,=2+- (1-",) +--' (1-",},+-,-~ (h-I}'+ - . 
3 9 9M,,- d; 

(2.36) 
We linearize the equations in the vicinity of the state 2, 
putting h=l-x, w=l+y, 8 j +8e =2-zwhere x«l, 
Y « 1, z« 1. Then (2.36) yields z = 4y /3. Substituting 
z in the linearized equations (2.33) and (2.35), we get 

y( I-M,-') -x.lI,,-'-i.y'=O, 

x"-x+y=o. 

(2.37) 

(2.38) 

The characteristic equation of the system (2.37) and 
(2.38) is 

i.k( k'--I) - (l-el/, -') (/,;'-1) -JI,,-'=o. (2.39) 

If we neglect viscosity, putting A=O, then at M2 *1 we 
obtain from (2.39) 

l,'+Q'=O, (2.40) 

where 

Q'=[M,'I (:11,'-1) -JJ,o']/M,,'. 

The quantity M~2m"" = MV(M~ - 1) is the upper limit of 
the variation of M!2 in the region of the shock wave (the 
hyperbola on Fig. 2). At M 2 > 1. we always have 0 2 > 0, 
i. e., Eq. (2.40) has two conjugate imaginary roots. 
Consequently, oscillations in the shock-wave profile, 
due to the dispersion, can arise only at M 2> 1.. 

We put /J. = AMV(M~ -1), then (2.39) takes the form 

~lk'-fl/';-k'-Q'=O. (2.41) 

It is easy to obtain the critical value of /J., starting 
with which (2.41) has one real and two imaginary roots 
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~cr~ {[ 1+9Q'+3 (912'+ lOQ'+ 1) 'l"'-16}"'/4Y3. 

Thus, the dispersion becomes appreciable, and oscilla
tions appear on the shock-wave front at M 2 > 1 and 

(2.42) 

For M 2 » 1 we obtain 0 2 ""[« 1. Obviously, behind the 
shock front we have 8; "" 1 and t:.i t:.d» 1, i. e., the con
dition (2.42) is not satisfied behind the front. It can be 
satisfied ahead of the front at a sufficiently small value 
of 8 1, 

We have already mentioned that the electric field is 
assumed to be small relative to rDI t:. and can be ob
tained in the next-order approximation. From the defi
nition (1. 9) it is seen that the jump of the potential 

+~ 

~CD~CD,-CD1~-(AlrD') f E(~)ds (2.43) 

does not depend on the ratio rDI t:.. The potential differ
ence t:.<I> is of interest because it is measured in the ex
periment. Unlike the discontinuities of all the remain
ing variables considered by us, the potential jump is de
termined not by the Hugoniot-Rankine boundary condi
tions' but by the form of the initial equations, i. e., it 
depends on the physical processes responsible for the 
formation of the shock-wave front. Thus, from the 
measured value of the jump of the potential through the 
wave front we can, in principle, identify the dominant 
physical processes and obtain the shock-wave intensity. 

In the region V we obtain 

In the region D we have 

rD, [d (8,) 2 dh'] 
E ~ - T; d~ -;;; + ~ d; . 

8. 2 (1 ) CD2-CD1~-':'-1+- -,-1. 
Ul, ~l Ulz 

(2.44) 

(2.46) 

(2.47) 

3. We consider now the shock-wave structure in a 
completely unmagnetized plasma, i. e., we assume that 
both (0; T;)"l = 0» 1 and (0. T .)"1 = fO »1. Let us compare 
following dissipative terms: the Joule dissipation /1 u, 
the electronic thermal conductivity d (x.dT./dx)ldx, and 
the ion viscosity TJI(dvldx)2. The electric current is de
termined from Maxwell's equation j = (cl 41T) curl H, the 
coefficient of the electronic thermal conductivity at 
O.T.« 1 is x.""nT.T./me, the conductivity is u""ne2T./ 
me, and the ion -viscosity coefficient is 111 "" n T; T;. 

Substituting the kinetic coefficient in the dissipative 
terms and comparing them with one another, we find 
that the dissipation due to the electronic thermal con
ductivity is £ -1 times larger than that due to ion viscos
ity (the ionic thermal conductivity is of the same order 
as the ion viscosity). Comparing the electronic thermal 
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conductivity with the Joule dissipations, we see that 
their ratio is t /32(Oe T.)2. If the last quantity is also 
small, then the electronic thermal conductivity can be 
neglected in comparison with the Joule dissipations, 
which determine the width of the shock-wave front. For 
numerical values of the temperature expressed in elec
tron volts and of the magnetic field expressed in oer
steds, this region will be 

Shock waves with such a range of variation of the 
plasma parameters are realized in Z pinches and elec
tromagnetic shock tubes, for example at n- 1015 - 16, 

T- O. 5-3 eV, and H-O. 5 -3 kOe. [26-28) 

We substitute in (1. 1)-(1. 7) the corresponding kinetic 
coefficient for the unmagnetized plasma. Instead of the 
last equation of (1. 8), it is more convenient to use the 
equation of the thermal conductivity of the ions 

3 edT, T do dq, + ; do,' _ Q - -+n j-+- :txf> -- ,. 
2dx dxdx dx (3. 1) 

Changing over in (1. 1)-(1. 7) and (3.1) to the dimen
sionless variables (1. 9) we obtain the equations analo
gous to (2. 1)-(2.7) and find the following scales: for the 
Joule (ohmic) dissipations t:.J = E02Mli M~, for the elec
tronic thermal conductivity t:.T. = lleM3, for the relaxa
tions connected with the electron-ion heat exchange t:.r 
=Mlh, for the ion viscosity and the thermal conductiv
ity t:.Vj = 11M, t:.T; = 11M3, and for the electron viscosity 
t:.ve = £ liM. 

Among the foregoing scales, at eo» 1, the largest is 
t:.J, which corresponds to predominance of the ohmic 
losses. It is therefore natural to choose the scale t:. = t:.J 

when going to the dimensionless coordinates. Since 
t:.J » t:." enough electron-ion collisions can take place 
over this distance to make T j = Te accurate to small 
quantities of order t:.rf t:.J - (EO r2« 1. Indeed, from (3. 1) 
we obtain at t:. = t:.J in t&rms of the dimensionless vari
ables (1. 9) 

(3.2) 

Weput8e =8 j =8. From (1. 3) and (1. 5) we have in terms 
of the dimensionless variables, omitting terms that are 
small with respect to the parameters e and (eo)"l 

Ul-1+~(~-1) +~ (h'-1)~O, 
5M, Ul Mo,-

3 2 Ul' - 1 + - (8-1) + - (h-1) ~O. 
M 2z MI}./" 

Substituting (1. 1) in (1. 7) in terms of the variables 
(1. 9) we obtain at t:. = t:.J 

_.!,dh 
hUl-l~O.538" d~' 

(3.3) 

(3.4) 

(3. 5) 

Solving (3.3) and (3.4) we obtain hand 8 as functions 
of w 
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~---------------------------------------------------------------- ----------

(3.7) 

where Wl is the value of the dimensionless velocity up
stream in 1. An expression for wl in terms of M2 and 
Ma2 is obtained from (1. 12) by changing the subscripts 
1- 2, while the expression for w_ < 0 differs from Wl 

in the sign of the square root. The limiting values in 
the state 2 are h" w" e" 1. From (3.6) and (3.7) we see 
that h and e satisfy all the boundary conditions. Sub
stituting (3.6) and (3.7) in (3. 5) and integrating, we ob
tain 

The lower limit of integration is chosen such that 
W(l:o) " (1 +wl)/2. Formulas (3.6)-(3.8) solve the prob
lem of the shock-wave structure. 

From the Poisson equation and from (1. 6) we obtain 
for the dimensionless electric field and the potential the 
following expressions: 

E = _ ~ [1.71 de _ e + 4.0~ wh ~] ~, 
fl, d", '" M,,- d", d~ 

(3.9) 

2.02M.' ( 1 ) <D-<D,=1.71(0-0')+-M ,- ",h'--
(l2 WI 

+ "S' [8("") , 2.02M." /'( ')] I' --,-T----.- ~ (t) ((I). 

(1) M'lz-
(3.10) 

In particular, the jump of the potential through the 
shock-wave front is 

2.02M.' 1 
fllD=<D,-<D,=1.71 ( 1-0,)+--.--( 1--) 

~'f"2- (1)1 

·s' [ 0«(,)') 2.02M,'. ,] , + ---,--+----,-h-«(d) d",. 
t (!) .1.11,,~-

(3. 11) 

Figure 4 shows the velocity, the magnetic field, the 
temperature, and the electric variables in the shock 
wave for Ml " 3 and Mal" 2. 

Returning to (3.5), we rewrite it in the form 

(3.12) 

As seen from (3. 6), h > 1/ wand consequently, the left-
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FIG. 5. Plots of h(w) and w(~) 
for Mal <~I (a) and Mal >~I(b). 

hand side of (3. 12) is always positive, i. e., the sign of 
dw/ dl: is determined by the sign of dh/ dw. 

In order to investigate the sign of dh/dw, we elimi
nate from (3.3) and (3.4) and differentiate the obtained 
relation once and twice with respect to w. We have 

3 5(h'-1) 2-5h", dh 
80l - 5 - ---; + -9-'- = --.,---, (3. 13) 

M, _Mo, MO; d", 

;;h",-2 d'h 5", dh' 10 dh ---+-(-) +-h-+8=O 
Al",' dm' Me,' du) M'''' d", . 

(3.14) 

Going over to dimensionless variables referred to the 
state 1 or 2 at these points, we have h" 1 and w " 1. 
Taking this into account, we obtain for dh/ dw at the 
limiting pOints 1 and 2 

(3. 15) 

Inasmuch as Ml> 1 in the shock wave, at the point we 
always have dh/ dw < O. To the contrary, at the point 2 
the inequality dh/ dw < 0 is satisfied only for M~ > 1. It 
can be shown that the solution M~ > 1 is not only neces
sary but also sufficient for the satisfaction of the in
equality dh/ dw < 0 at 1 < w < Wl' This is obvious from 
the fact that at M~ > 1 at the limiting pOints 1 and 2 we 
have dh/ dw < 0, and from (3. 13) and (3.14) it follows 
that it is impossible to satisfy simultaneously the condi
tions d2h/ dw2 > 0 and dh/ dw" O. 

Thus, at M~ > 1 we always have dh/ dw < 0 at 1 < w < Wh 

and the dependence of h on w is monotonic (the line 1-3-
2 in Fig. 5a), while at M~< 1 this dependence is repre
sented by the line 1-4-5-2 in Fig. 5b, i. e., there are 
points where dh/dw>O. It is obvious from Fig. 5b that 
the corresponding solution (JJ (0 is physically unsatis
factoryl) and it is necessary to introduce an internal 
discontinuity. It can be shown that in this case the only 
reasonable path from 1 to 2 satisfying the condition that 
the entropy must increase is the line 1-4-2 on Fig. 5b. 
It is natural to use the designation isomagnetic jump for 
this discontinuity [5, 11, 16, 18]. In an isomagnetic 
jump, the magnetic field remains constant and all the 
remaining quantities-the density, velocity, tempera
ture-have discontinuities. In Fig. 6, M~" 1 corre
sponds to the line of critical values of the Alfven Mach 
numbers M:' M:= 2. 76 as 13- O. At 1 <Mal <M:l a 
shock-wave front of width on the order of t:..J is formed 
on account of Joule dissipations, and at Mal> M:l an 
isomagnetic jump should be observed in the structure 
of the front. 
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FIG. 6. MIt and U::t are the levels of the critical values of the 
Alfven Mach numbers. The straight lines passing through the 
origin correspond to shock waves with different intensities 
propagating in a plasma with a spec ified initial value {3t 
-.o..M2/M2 -5 at t· 

Thus, at Mal> M!l the Joule dissipations are insuffi
cient for a continuous transition from state 1 to 2, and 
we must take into account at the location of the discon
tinuity the dissipations that have a smaller character
istic scale. Since we always have M 2 - 1 at M~ < 1, the 
scales of the electronic thermal conductivity and of the 
electron-ion heat exchange are of the same order of 
magnitude lJc, whereas the ion viscosity and thermal 
conductivity are small relative to the parameter f • 

Neglecting them and introducing on the isomagnetic 
jump ~ = lJe, we obtain in analogy with (3.5) 

dhld~=O«e6) -'). (3. 16) 

Thus, in the isomagnetic jump the magnetic field is con
stant and, as follows from Fig. 5b, is equal to its limit
ing value h = 1 behind the shock-wave front. 

To find the structure of the isomagnetic jump, we re
write (1. 3), (1. 4), and (3. 1) in terms of the variables 
(1.9), puttingh=l, ~=l2/f and discarding terms that 
are small in the parameters, 

w _ 1 + _3_ ( 19,+19, _ ) = 
10M,' w 2 0, (3. 17) 

w' - 1 + _3_ (8,+19,-2) __ 0.63 19 'I' de, = 0 
2M,' Me' 'd~ , 

(3. 18) 

de, + 2 8, dw 1.9 _, _', - -----w -e (19 e) 0 d~ 3 w d1; M, ' ,-, = . 
(3. 19) 

It is seen that the isomagnetic jump is gasdynamic in the 
sense that the changes of all the quantities in it are de
termined only by the acoustic Mach number M 2• Conse
quently, the structure of the isomagnetic jump is analo
gous to the structure of a shock wave in a plasma with
out a magnetic field. [29,30] To find the start of the iso
magnetic jump (point 4 on Fig. 5b), we substitute h = 1 
in (3.2) and (3.3) and obtain 

M,'+3 
W,= 4M,' ' 

19 = (M,'+3) (5M,'-1) 
. --'-~716:-:M;';-,7, -"--'--. (3.20) 

It is convenient to introduce the acoustic Mach number 
ahead of the isomagnetic jump M4= v4/us(4) (us(4) is the 
speed of sound at the point 4). Using (3.20) we obtain 

M/=(M,'+3)/(5M,'-1). (3.21) 

We note that M~ > 1 at M~< 1. From (3.17) and (3.18) 
we obtain 
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(3.22) 

From (3.22) we see that (dEl.!d!;) >0. 

Eliminating Eli from (3. 19), we have 

-= 3.16M,'e, (w-1) (w,-w)+-w-'e, e,-w dw {_';' 3.8 -'I. [ 
dt; M, 

5 10 10M,' 2 e, }-' 
+-M,'w(w-1) ]}{---- (8w-5)---

3 3 9 3 w (3.23) 

It is obvious that the first factor in the right-hand side of 
(3.23) is always positive. 

We consider the second factor in (3.23) at the limiting 
points of the isomagnetic jump 4 and 2 (Fig. 5b), i. e. , 
we put El. = 1 and ,.t! = 1. We see that at the start of the 
isomagnetic jump we have dw/ d!; < 0 at M: > t, which is 
always the case, inasmuch as dw/d!; < O· at the point 2 
only if M~ > t. Dividing (3.22) by (3.23) we obtain 

dejd,u=/(w,e,). (3.24) 

The form of El.(w) is shown in Fig. 7. At M~>t we have 
dEl.!dw< 0 for all 1 < w < W4, and at M~< t the quantity 
dEl.! do.u becomes positive and it is necessary to intro
duce a discontinuity (the 4-4' -3-2 on Fig. 7). In this 
discontinuity-electron isothermal jump-the density, 
the velocity, and the temperature of the ions change 
while the electron temperature and the magnetic field 
remain constant. 

The line M~= t in Fig. 6 represents the critical values 
• T T the Alfven Mach number Mal' As /3- 0 we have Mal 

= 3. 02. Thus, we should observe in the shock wave a 
weak isomagnetic jump at M:l> Mal> M:l , and a strong 
isomagnetic jump with an internal electron isothermal 
discontinuity at Mal > M~l . 

The structure of the weak isomagnetic jump is easy 
to calculate if it is noted that for t < M~ < 1 we have 
w = 1 + x, where x« 1, inasmuch as wmax = !.u4 =¥s at M~ 
= t. Then (3. 22) yields 

5/1 dBe e, ~=3.16M,'x(xo-x), (3.25) 

where Xo = W4 - 1. From the equation of the thermal con
ductivity for the ions (3. 1) and from the analogous equa
tion (1. 8) for the electrons it follows that non-adiabatic
ity takes place only in third order in x, whence 

0" ~~~~b/;'-"" ., . , 
() - - -1- ',- _ _ _ I , 

(3.26) 

FIG. 7. Plotsof@.(w)and 
w(t) for Mal> MIt and M! < t· 
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Integration of (3.25) and (3.26) accurate to second order 
in x yields 

ol= 1 + Ol,-1 
~1~+-ex-p~[74.~74~M~,~3(~(o)-\--1~)~(~~-~~~.o~)1~ (3.27) 

The width of the weak isomagnetic jump in accord with 
Prandtl is 

0.56 I, 
t.. "" M,(1-M,') (3.28) 

In the general case the width of the isomagnetic jump is 
the characteristic length of the electronic thermal con
ductivity lJ f". For the electric field, for the potential, 
and for its change A<I> over a weak isomagnetic jump we 
obtain 

E=~[1.71 de, -~~]=-2.14~Ol-'j'~' 
I, d; (,' d~ /, d~ 

(3.29) 

(D-(il,=3.2t(Ol-'j'-w.,-'j,); . MJ'=3.21(1-Ol:'j,). (3.30) 

Figure 8 shows the changes of h, 'J.!, 0, and <I> in a 
shock wave with weak isomagnetic jumps. 

At M~ < t or Mal > M~l' as we have seen, it is neces
sary to introduce inside the isomagnetic jump an elec
tron isothermal discontinuity, the structure of which is 
determined by the viscosity and thermal conductivity of 
the ions. Its isothermal character follows from (1. 5) at 
A = l2 (in complete analogy with (3.16». If 0 e is con
stant, Eq. (3.1) can be integrated with the aid of (1. 3). 
The structure of this jump is determined by the follow
ing equations: 

(,,_1+_3_. (6,+6. -2)- 0.404 e'j,~=o (3.31) 
10M,' (,) .11, ' d~ , 

5 M'" ry ( ;) M") 2 O.27fi '. de, --;-;- '-0)"-_ ~ ,-+1 w+-:-e,+e,.ln(u+~-e, ·-.-=K. 
.. .{ ;) J1f. d~ 

" "(3.32) 

Here K is an integration constant determined from the 
boundary conditions. 

The electron isothermal jump is quite similar in 
structure to the shock layer in a magnetized plasma
in both cases the role of the principal dissipation is 
played by ion viscosity, which forms a monotonic pro
file of the shock front; no restrictions whatever are im
posed on the shock-wave intensity, since the viscosity 
is capable of ensuring any required dissipation. 

The solution for a shock wave with an isomagnetic 
jump of arbitrary intensity (Mal > M~l ) is given in the 
general case by formulas (3. 6) -(3. 8) for W4 < W < WI' by 

J</J-7.IJ 

,1 I h.w,fJ 

2 

Q -5 -q -3 o 

7. 

6 

2 

FIG. 8. structure of shock 
wave with weak isomagnetic 
jump Ml = 20, M~j = 7 (nt 
= 10 t6 cm-\ T t = 1 eV, H t 
= 1. 38 • 103 Oe). The scale 
of the isomagnetic jllmp has 
been stretched Ollt for 
clarity. 
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h,W,e 

FIG. 9. Structure of shock wave with strong isomagnetic jump 
M;=17, M~1=25 (nt=10 16 cm-3, T j =l eV, H t =6.75·102 Oe). 
The scales of the isomagnetic and electron isothermal jumps 
have been stretched out for clarity. 

combined numerical integration of Eqs. (3. 22) and 
(3.23) at w~ < W < W4, and by (3.31) and (3.32) inside the 
electron isothermal jump (Fig. 9). 

An investigation of the Hugoniot conditions for Eqs. 
(3.31) and (3.32) shows that the electron isothermal 
jump divides the isomagnetic jump into two parts. If 
the isomagnetic jump is strong (M4 » 1), then in its first 
part the quantity that increases mainly is the electron 
temperature (to a value close to the limit), and then in 
the isothermal jump abrupt changes take place in the 
velocity and the ion temperature (which becomes higher 
than the limiting value); in the remaining part, owing 
to the electronic thermal conductivity, there is a slight 
decrease in the velocity and an increase in the tempera
ture of the electrons, and in addition the ions give up 
heat to the electrons, and their temperatures become 
equalized. If we consider shock waves with fixed initial 
state (in which the plasma is weakly magnetized), then 
with increasing intensity an ever increasing part of the 
total jump of the density, temperature, or potential is 
reached in the isothermal jump. Recognizing also that 
a sufficiently strong wave makes the plasma magnetized, 
we can conclude that the structure of these strong shock 
waves differs from that considered in Sec. 2 only in the 
relatively small Joule section in the leading part of the 
shock front. 

The jump of the potential through the isomagnetic dis
continuity is calculated in the same manner as before. 
Ahead and behind the isothermal discontinuity we have 

(3.33) 

·s'ee(u,') , 
<l>-iD\=1.71(e,-8,)+ --, -dOl . 

(,' 
(3.34) 

In the isothermal discontinuity the potential varies in ac
cordance with 

ol. 
iD-<l>.=e"IIl-. 

(,' 
(3.35) 

4. Finally, we consider briefly one more limiting 
case, which has a much narrower applicability in com
parison with that considered above. This is the inter
mediate case of a partly magnetized plasma, when the 
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electrons are magnetized (ne Te» 1), and the ions are 
not magnetized (nj T; «1). Obviously, this state will be 
preserved behind the front only in the case of a very 
small temperature jump. Changing over in (1. 1)-(1. 8) 
to the dimensionless variables (1. 9), we find that in this 
case the main dissipations will be the Joule losses and 
the electronic thermal conductivity (the respective scales 
are a J = Eo2MlIM: and aTe=EozlIMS), and the ion viscos
ity and the thermal conductivity will be small (aVj = liM, 
aT; = lIMs), if we stipulate that all the Mach numbers 
be of the order of unity and the inequality eo 2 » 1 is 
satisfied.· It is easy to show that only when the forego
ing conditions are satisfied does the limit of a partially 
magnetized plasma have a qualitatively distanct behavior, 
and the corresponding solutions are different from those 
conSidered above. Choosing a = aJ> we obtain the equa
tions of the shock layer 

3 ( 8,+8. ) 1 (' ) 0 w-1+--, ---2 +--_ h-1 =, 
1OM,- w 2M,,-

(4.1) 

w'-1 3 1 
-2-+ 4M,' [8.+8.-2)+ M,,' (h-1) 

_ 4~w-'8:'/'h-' dh 4.66M,,' w-'h-'8,-'/' d8. = 0, 
rIO dr, (l'10/3)'/'M,' dr, 

(4.2) 

L )'10 -'I, dh + 4.5M,,' -'h- In _'I, de, nw-1=-8, - -==--w 0,- (4.3) 
3 dr, l'1OM,' dr, 

2 d8, + 8,~=0. 
2 dr, <il dr, 

(4.4) 

Equation (4. 4) can be immediately integrated and yields 

(4.5) 

The integration constant s in (4.5) is determined by 
the boundary condition T = T 1 at v = U1; if we change in 
the system (4.2) -(4.4) to dimensionless variables rela
tive to state 1 or 2, this yields respectively s = 1 or 
s= 6 1 w~/S. 

From (4.1) we can express 6 e in terms of wand h, 
after which the system reduces to the two equations 

dw { ,[ ~= 1.318,(1-hw)-0.69hwM, 2(w-w,) (w-1) 

+. (h-1) (5hw+5w-4) ]} k'(h w) (4.6) 
4MaJ2 1 , 

dh )'10 , { [ -=-EV' 0.62hwM,' 2(w-w,) (w-1) 
dr, 3 

+ (h-1) (5hw-;5w-4) ] -0.578.(1-hw)}, (4.7) 
4M,,-

where 

A (h ) - 3M,,' -Ih-Ie -'I, [ 20M,' 10M,' ~ 
,w -l'1OM,' w ., -3-w--3--~ 

2 _'1 + 5M2' (h' 1)] --8m J __ _ 

33M,,' . 

The situation here is analogous to that in the investi
gation of the system (3.22) and (3.23). We must deter
mine the sign of A(h, w)-the denominator of the right
hand side of (4.6). 

If this sign is different at points 1 and 2, then the 
denominator vanishes on the integral curve leading from 
1 to 2, meaning ambiguity of w(!;), i. e., a physically 
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meaningless solution. It is easily seen that at the point 
1 we always have A(h, w) > O. After the point 2, here 
A> 0 only if M~ > Mzcr' where MZcr is the solution of the 
transcendental equation 

M,'= (3+e,w:" )/5. (4.8) 

Here 6 1 and w1 are expressed in terms of M~ and M:2 

with the aid of (1. 12) and (1. 13) with the interchange of 
the subscripts 1-2. Equation (4.8) determines the line 
of the critical Mach numbers on the plane (M~, M:z) (or 
(Mf. M;l))' In the limit as {3 - 0 we c~ determine ana
lytically the value of the critical Alfven Mach number, 
noting that this limit corresponds to the lower limit of 
the shock-wave region in Fig. 2, on which 6 1 = 0, i. e., 
M~cr = t. Simple calculation with the aid of the paramet
ric equations of this lower limit and (1. 11) yield 

Ma,c, = 2·3'/'''''3.46. (4.9) 

On the other hand, if the Alfven Mach number exceeds 
the critical value, then it is necessary to introduce an 
internal discontinuity. Assuming a = l2' in exactly the 
same way in the foregOing analysis of the isothermal 
and isomagnetic discontinuities, we find that this jump, 
accurate to small quantities of order (eo Zr1, is simul
taneously isomagnetic and isothermal with respect to 
the electrons. Since it already includes the ion viscos
ity, the problem has no other critical numbers or inter
nal jumps. 

We do not investigate this limiting case in greater 
detail, because the larger the temperature jump, the 
more difficult it is to satisfy the conditions indicated 
at the start of this section; this is impossible even in 
principle in the limit of the infinitely large temperature 
jump needed for the derivation of (4.9). Therefore the 
analysis undertaken in this section is more readily of 
formal interest. This completes the inquiry into the 
physical situations that correspond in a collision-domi
nated plasma to different critical Mach numbers, which 
are well known in the limit as {3 - OC10]; in particular, it 
can be concluded that (4.9) does not seem to have any 
phYSical meaning. 

We note in conclusion that since we calculate the 
structure of the shock wave by using the equations of . 
two-fluid hydrodynamics, all the results are meaning
ful, of course, only in the range of variation of the 
plasma parameters where these equations are valid, 
although, as shown inCSll, the use of the Navier-Stokes 
and Fokker-Planck equations give very close results. 
In the case of a nonmagnetized plasma, inasmuch as 
the width of the shock-wave front is much larger than 
the mean free path, the hydrodynamic approximation is 
certainly correct. On the other hand, when n; T;» 1, 
the ions do not have time to become Maxwellized on the 
shock-wave front, and in this sense the use of the hydro
dynamic equations is more readily model-dependent. 

The authors thank academician P. L. Kapitza for use
ful remarks, academician Ya. B. Zel'dovich, Professor 
L. P. Pitaevskil, and Professor S. 1. Anisimov for a 
discussion of the results. 
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!lIt can be shown that dBI dt < 0 at dh! dw > 0, but this is impossible 
in a shock wave. 
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Instability and self-refraction of solitons 
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The nonlinear evolution of a two-dimensional soliton with a non planar front is investigated in terms of the 
ray theory. A necessary condition for the stability of an arbitrary soliton in iso!ropic and anisotropic 
media is obtained. It turns out that stability is enhanced by anisotropy and that cylindric convergence of 
the front leads to instability in some cases and to asymptotic stability of the soliton in other cases. The 
nonlinear stage of self-refraction of the converging and diverging parts of the front is considered. Because 
of nonlinear defocusing, the field in the focus of a converging soliton remains finite and a cylindric front 
becomes plane. This is followed by the appearance of a sharp break on the front and a "shock-soliton" 
type singularity, leading to the destruction of the soliton. General results are applied to the analysis of the 
behavior of solitons in media with different degrees of nonlinearity. 

PACS numbers: 42.65. - k 

1. THE GEOMETRIC OPTICS OF SOLITONS 

Most problems concerned with nonlinear solitary waves, 
i. e., solitons, have so far been solved in the one-dimen
sional formulation. At the same time, the essential point 
for many physical situations is that the soliton is a "wave 
layer" moving in space, which may not be strictly plane, 
and the soliton parameters will, in general, vary along 
the layer. Kadomtsev and Petviashvili [1] have discussed 
small deformations of the plane front of a soliton, and 
have shown that it may become unstable within the frame
work of the two-dimensional generalization of the Korte
weg and de Vries equation. Some nonlinear solutions of 
this equation were subsequently obtained in [2]. 

A very effective approach to the solution of two- and 
three-dimensional problems involving solitons can be 
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developed within the framework of nonlinear geometric 
optics. This involves the consideration of the variation 
of amplitude and velocity of a soliton along ray tubes 
defined by the normals to the soliton front, the local 
velocity of which depends on the amplitude. This meth
od has already been used to consider the propagation of 
cylindrically and spherically symmetric solitons and the 
refraction of solitons in an inhomogeneous medium. l3,4] 

This analysis was, however, performed in the linear 
ray-optics apprOximation when nonlinearity did not af
fect the distribution of rays even though it was important 
for the evolution of the wave along the ray tubes. To 
investigate nonlinear self-refraction effects (which are 
fundamentally related to the possibility of instability), 
it is necessary to write down the coupled equations for 
the ray paths and for the variation of the soliton ampli-
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