
% 

"( (p,:x) = S r'tP- 1 dt. 
o 

The expression for the distribution function of second­
ary ions (that is, ions produced by the beam) is only 
slightly changed. For slow ions Eq. (9) remains valid. 
For fast ions we must substitute P ~ + J.1.Mr 2 for J.1.MR 2 

and t for to in accordance with Eq. (A. 2). The density 
of slow ions can be calculated by integration of their 
distribution function over Pi up to J.1.M(R 2 - r2), and the 
density of fast ions can be calculated with this same in­
tegral taken to infinity. Outside the beam lot '" 0 and the 
longitudinal momentum does not change. Since for r 
> R we have I. t2 '" 0, the value of the distribution func­
tion outside the beam is determined by its value at the 
boundary 

where fR'" J.1.MR 2. The density of fast ions is 

4 (2MT) '''n.nol,to [ 3 '/ 2'1, ¥, 
n,= -SIP'--SI6' 

61 2 3 

+ 1 ('/ 2~' '" ¥, 2 ( ,/ 'I. ,/.] 
- 1:"- 61 -(II -0, )-- 1:' '-2" +0 ) 3 15 \'1', 

61=ERIEr, £,=8,/£r, P='/2+6', 1:'='/2+61-£2, 01.2='/2-61.2. 
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The possibility of plasma flow through a region in which strong magnetic fields perpendicular to the 
direction of motion are produced by external currents is discussed. It is shown that stationary flow of a 
cold plasma is possible even if the (dynamic) plasma pressure is much lower than the pressure of the 
external magnetic field, i.e. f3 « 1. The passage of the plasma through the barrier is caused by the fact 
that the plasma generates a diamagnetic current that destroys the external field, and the plasma moves in 
fact in a very weak magnetic field. The field in the plasma is concentrated in a very thin skin layer with a 
thickness of the order of 8 z c / Wo where Wo is the plasma electron frequency and c the velocity of light in 
vacuum. The value of f3 required for the existence of a stationary flow with practically constant velocity 
depends on the shape of the barrier and may be very small for a smoothly shaped barrier: f3 z (8/11)2 
where 11 is the width of the transition region in which the external field drops to zero, 8<11. An exact 
solution is obtained for the case of the most difficult passage of singular external currents. The 
distributions of the fields, currents, charges, plasma density, and velocity are calculated. The feasibility 
of establishment of such stationary flows is discussed. 

PACS numbers: 52.30.+r 

1. INTRODUCTION 

The possibility of the motion of a plasma stream 
across a strong ll magnetic field was observed experi­
mentally more than ten years ago. (IJ The investigation 
of the features of plasma injection into a strong-field 
region has since been pursued quite intensively, as is 
evidenced by the large number of experimental pa­
pers. (2-6J In the interpretation of the extensive experi­
mental material, the passage of the plasma into the re­
gion of the strong field is attributed to the presence of 
an Ey component of the electric field and the subsequent 
drift of the plasma in the crossed fields E and B. The 
main cause of the appearance of the Ey component is 

assumed to be polarization of the plasmoid boundaries 
as the plasma enters into the magnetic-field region. It 
appears that the presence of Ey is necessary for the 
initial stage of the plasma motion in the region of the 
strong magnetic field. 
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We present an extremely simplified scheme of the in­
teraction of the plasma stream with a magnetic barrier, 
in the following form: The plasma stream moves along 
the x axis from the region x - - 00 into the region x - + 00. 

The magnetic barrier is chosen for simplicity in the 
form of a rectangle of width 2a and field intensity Eo. 
The field is directed along the positive z axis (Fig. la). 
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It is easy to show that in this one-dimensional case 
E"(x) =0. Indeed, for stationary flow curl E =0, taking 
its z component and assuming E =E(x), we obtain E,(x) 
= 0 if the boundary condition is E, - 0 as x - co • 

In the theoretical papers by Chapman and Ferraro(7,8] 
and in the unpublished papers of Rosenbluth and Garwin (9] 
(see also(10]), which have preceded the experiments, and 
in which there was no y-component of the electric field, 
the entire flux incident on the magnetic wall was fully 
reflected. In the cited papers they dealt with the one­
dimensional problem of the equilibrium boundary between 
a cold plasma and a magnetic field, determined by the 
relation Po U~=B~/81T. (Here Bo is the magnetic field 
intensity outside the volume occupied by the plasma). 

The studies performed several decades ago(7,8] on the 
interaction of the plasma with a transverse magnetic 
field served as a stimulus for a large number of the­
oretical papers, in which the model considered in(7,8] 
was further developed. Account was taken of the ther­
mal scattering in the plasma, (ll] of the particles trapped 
by the field in the transition region, [!2] and of the fact 
that the problem was not one-dimensional. [!3] A de­
tailed review of these studies was presented by Phelps. 114] 

One might thus conclude from the results of the theo­
retical papers that in the absence of E, the plasma can­
not move through a strong magnetic barrier. 

In the present paper we show, within the framework of 
the one-dimensional model, that even in the absence of 
the E, components there exist stationary flows of plasma 
through a magnetic barrier. It turns out that these flows 
are possible not only in the case when Po U;> B~/81T, but 
also if the inequality is reversed, and that the parame­
ter B = 81TPo U~ 1 B~ can be very small. The possibility of 
plasma flow through an external magnetic field whose 
pressure exceeds the plasma pressure is due to the 
diamagnetism of the plasma. As we shall Show, a dia­
magnetic current is produced in the plasma, and its 
field cancels out the external field. Thus, the plasma 
moves in a resultant field that can be much weaker 
than Bo. The foregOing pertains to a broad barrier. 
The difference between a narrow and broad magnetic 
barrier is determined by the value of the parameter 
c/ Wo a (a is the width of the barrier) in comparison with 
unity. In the case of the broad barrier c/ Wo a« 1, the 
resultant field is localized in a narrow skin layer of 
approximate thickness cl Wo near the conductors and is 
negligibly small inside the barrier. The quantity 15 = cl 
Wo is the usual inertial length that arises in many prob­
lems in which the interaction of the plasma with the 
magnetic field is conSidered. 

The thickness of the transition layer between the plas­
ma and the field[9] is equal to the hybrid Larmor radius 
Ph = (PepYI2, where Pe,; = cUo me'; 1 eBo• It is easily 
seen that this quantity is equal to the inertial thickness 
c/ Wo if the dynamic and magnetic pressures are equal. 
This explains immediately the condition for the passage 
of the barrier: to this end the barrier thickness must 
be less than the hybrid radius. [9] 

For a broad barrier, the motion of the plasma de­
pends essentially on its shape. It has turned out that 
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the most difficult for the plasma to pass through are 
steep barriers (~« cl wo, where ~ is the characteristic 
region of variation of the barrier size), the limiting 
case of which is a barrier of rectangular shape (Fig. 
1a). The plasma passes much "easier" through a broad 
barrier with a field that falls off smoothly (~» c/ wo) 
towards the edges with a characteristic fall-off width 
-~: at {3Z (151 ~)2 the plasma field velocity changes 
little. 

In the present paper it is also shown that at {3 < 1 there 
can exist one more stationary solution with a reflection 
point inside the barrier. The depth of penetration of the 
plasma depends on the value of {3. We shall discuss be­
low the conditions under which a particular stationary 
solution is realized. 

In Sec. 2 we discuss the formulation of the problem 
and write down a system of equations that makes it pos­
sible to describe the flow of a cold collisionless plasma 
(with a thermal scatter much smaller than the direc­
tional velOCity) through a magnetic barrier. In Sec. 3, 
we obtain stationary solutions with passage of the plas­
ma through the barriers by using for the sake of clarity, 
the "weak deceleration" apprOXimation, i. e., we as­
sume that the barrier does not perturb greatly the plas­
ma parameters. We consider the flow of a cold plasma 
through magnetic barriers of various shapes. 

An analysis of the plasma flow through magnetic bar­
riers produced by rectangular currents is carried out 
in Sec. 4. The possibility of plasma flow through such 
barriers at arbitrarily small {3 is demonstrated. In 
Sec. 5, in the slow-deceleration approximation, we con­
sider the flow of a plasma through a rectangular mag­
netic barrier. Assuming that the plasma currents can­
not have the form of a Dirac l5-function, we obtain in 
Sec. 6 an exact solution of the problem of plasma flow 

a Bulx) 
t 

:1~Hr 
~l_ 

-0 0 a :1: 

b ! iiI) e rlI) 

~~II,_ * _ •• I _~;. .'. 
,; I f, J' 
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B(x) 

C I 
~ 

ni-ne 

~f"nnn II II 
II II 

:' r. 

FIG.!. Distribution of the parameters in the flow of a cold 
plasma through a broad (a» 6) magnetic barrier. a) Distri­
bution of the magnetic field of the barrier Bo(x) in the absence 
of the plasma, b) Distribution of the diamagnetic current j(x). 
The dashed lines show the surface current producing the mag­
netic field of the barrier, c) Distribution of the resultant mag­
netic field B(x), d) Distribution of the plasma flow velocity 
U(x). The dashed line shows the density distribution n(x), e) 
Distribution of the electric field Ex. f) Distribution of the 
charge density (ni -ne)/no. The volume charge is negative 
throughout, and the positive charge, shown dashed, is concen­
trated in narrow layers at the barrier boundary. 
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through a rectangular magnetic barrier. In Sec. 7 we 
solve the problem of the reflection of a stream of cold 
collisionless plasma from a rectangular magnetic bar­
rier. In the conclusion we discuss the feasibility of 
establishment of the obtained stationary solutions. 

2. FORMULATION OF PROBLEM. 
FUNDAMENTAL EQUATIONS 

To investigate the interaction of a stream of cold 
collisionless plasma with a magnetic barrier we use the 
equations of two-fluid hydrodynamics 

1/,m,V<x~~ -n.e{E + l[Ve X BI}-VP,-fiin, (V,-V,)\"" 
dx C 

n,m,V .. dV, ~n,e{E+![Vj XBI}-VP,-mn,(v,-V,)v", 
elx c 

I'OtE=O, 
4n 

rotB=-(j+I,), 
c 

div B=O, div E~4ne (n,-n.), 

d d 
dx (n, Vor) =0, dx (n, V,.) =0, 

where m=memi/(me+mi), mi,e, P i •e, ni,e' and Vi •e 

are the mass, pressure, density, and ion and electron 
velOCities, respectively; E is the electric field; B = Bo 
+13 is the resultant magnetic field; Bo is the magnetic 
field of the barrier, i. e., the field produced by the cur­
rents 10 (x) flowing in the external conductors; :B is the 
plasma magnetic self -field produced by the currents of 
the plasma itself; Vei is the frequency of the collisions 
between the ions and the electrons. 

The problem is one -dimensional, so that all the func­
tions depend only on x. The boundary conditions are 
assumed to be the following: in the region x- - 00 the 
electrons and ions have identical velocities Ve(- 00) 
= Vi (- 00) = Un' directed strictly along the x axis. The 
remaining components of the velocities, and of the fields 
in the region x - - 00 are assumed to be zero. 

We assume that the directional velocity of the plasma 
is much lower than the thermal velocities of the elec­
trons and ions, so that we can neglect in the initial sys­
tem of equations the forces connected with the presence 
of gradients of the electron and ion pressures. Using 
the boundary conditions and taking into account the one­
dimensional character of the problem, it is easy to 
show that Ey(x)=E.(x)=O, Bx(x) = B.(x) =0, Vee= Vi.=O. 
The electric -field component Ex is produced in the pi as -
ma as a result of the difference between the inertia of 
the electrons and the ions. The plasma is assumed to 
be quasineutral (ni "'ne"'n(x)). The quasineutrality as­
sumption means in this case that the relative charge 
separation I (n i - ne)1 n« 1, but the electric field due to 
this separation is such that the ion motion is determined 
mainly only by this field. We shall derive below the 
condition for the applicability of this assumption. 

From the continuity equation for the electrons and 
ions and from the quasineutraility of the plasma it fol­
lows that Vex = Vix = U(x), so that the force of friction 
between the electrons and ions has only a y -component. 
The condition under which the term that takes into ac­
count the friction between the electrons and ions can be 
neglected can be easily derived from the initial system 
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of equations. For this purpose we must have Vel Vey 
«udVe~1 dx, or, recognizing that the characteristic 
scale of variation of the quantities is cl wo, we must 
have cl wo« ul Vel i. e. , the thickness ofthe inertial skin 
layer is much less than the electron mean free path. 

The system of equations of two-fluid hydrodynamics, 
which describes the interaction of a stream of cold 
collisionless plasma with a magnetic barrier, under 
conditions that terms of order m. I mj are neglected and 
quasineutrality is taken into account, can be written in 
the form 

dU 
m,UTx=eE., 

V. 
E.+-B=O, 

c 

dV. e 
m.U--=-BU, 

dx c 

dB 4n 
-=-enVy~ 
dx c 

nU=n,U" (1) 

where V~ is the electron velocity component along the 
yaxis. 

3. APPROXIMATION OF "WEAK DECELERATION" 
OF COLD COLLISIONLESS PLASMA 

1. Barrier with linear growth and decrease of the 
field. We consider the flow of a cold collisionless plas­
ma through a magnetic barrier produced by rectangular 
currents 

{ 

(-B~I2f.) (x+a+f,.) 

B,(x)= -B, 
(BoI2f,.) (x-a-f.) 

° 

(I), 
(II), 

(III and IV), 
(V), 

(VI) . 

The regions I, II, III, IV, V, VI are respectively the 
regions x< -(a+~), Ix+al <~, (-a+~)<x<O, O<x 
«a-~), Ix-al <~, x>(a+~). 

(2) 

From (1) we easily obtain equations for the determina­
tion of the vector potential A = A~(B = dAI dx) and the rate 
of flow of the plasma U(x) 

d~A cov:.!. -1J1 
dx' -7A = - -;-10 (x) , 

U(x)=[i,,(I-a'A')':', 
a'=e'lm,m,.c'Uo, /,,(x) =- (c/4rr)dB,ldx. 

The weak -deceleration approximation means that 

lU(x)-U,1 
8=max . ~ 1. 

Co 

(3) 

(4) 

A solution of (3) is the odd function A(x), so that we 
shall write it down only in the regions I-III. The solu­
tion of (3) in the case of a broad and smoothly varying 
barrier 

takes the form 

( 
(B,,6'/4f.) e,o+x+"lo 

A (x) = (-B 06'/2f.) [e->l O ch [ (a+x) 161-11 
\ (-B06'/2f.)e-'O-,)/osh(xI6) 

(I) , 

(II) , 

(III) . 

if from the equations above we easily obtain 
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From (4) and (6) we have e '" 62/ f31:.. 2 at (J« 1, whence 
f3» (6/1:..)2. Since by definition 6/ A« 1, a plasma can 
move across a magnetic field with slow deceleration 
also when f3« 1. We note that 

max I (n,-n,.)lnl ~(,),,'Il'/",,'~' 

and the quasi-neutrality of the plasma is satisfied if 
(.v~62/wg1:..2«1. Here WB=eBO/mec is the electron 
cyclotron frequency. 

2. Exponential barrier. 

(I) , 

(II) , 

(III) . 

(7) 

Regions I, II, In are respectively the regions x < - a, 
I xl < a, x> a. In the case (5), the solution of (3) is 

{ 
(B,~'/~) ['I,e"+,,,I'-e"+""'] 

A (x)= (B,6'/.'1)e-,j'sh(xlo) 

(B,o'/.'1) [e-'·'-"'I'- 'I,e-"-'''I'] 

(I), 

(II) , 

(III) . 

In analogy with the preceding case we have 

(8) 

Flow with slow deceleration, (J« 1, is realized at f3 
»(6/1:..)2, a condition satisfied also at f3« 1 if 6/1:..« 1. 
The quasilinearity condition is the same as in the case 
considered above. 

3. Power law-barrier 
-oo<x<-(a+fj.) 

-(a+fj.) <x<-a 

Ixl<a { (~'Itln) (x+a+.'1)," 
Bo(x)= B, 

(B,Ifj.n) (x-a-~)" 

o 
a<x<a+~ 

x>a+fj. 

(n=l. 2, 3 .... ). 

(9) 

FIG. 2. Distribution of the parameters of a cold plasma 
flowing through a.magnetic barrier produced by a rectangular 
current: a) Distribution of the magnetic field Bo(x) of the 
barrier in the absence of a plasma, b) Distribution of diamag­
netic current jy(x)' The dashed line shows the external current 
producing the barrier field, c) Distribution of the resultant 
magnetic field B(x). d) Distribution of the plasma flow veloc­
ity U(x). e) Distribution of electric field Ex. f) Distribution 

of the charge density (n; -ne)/",,' 
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Under the condition (5), in analogy with the preceding 
cases, the plasma can move across the magnetic field 
with practically no change of velocity even if f3« 1. 

In this section we presented several examples of plas­
ma motion to smoothly varying (A» 6 = c/ wo) magnetic 
barriers. It is impossible to prove in similar fashion 
the possibility of plasma motion through steep (1:..« 6 
=c/wo) magnetic barriers at f3« 1, since the weak-de­
celeration approximation used in the present section is 
not valid. Indeed, as shown by a subsequent analysis 
(see Sec. 4), steep magnetic barriers slow down the 
plasma appreciably. 

In the next section we demonstrate by a standard 
method the feasibility of the motion of a plasma with 
f3« 1 also through steep barriers. 

4. PROOF OF THE FEASIBILITY OF PLASMA 
MOTION ACROSS A MAGNETIC BARRIER WITH 
~« 1 AT ARBITRARY RATIO o/D1 

We conSider a magnetic barrier produced by a rect­
angular current (Fig. 2). We change over in Eqs. (3) 
and (4) to dimensionless variables. Let the length be 
measured in units of 6 = c/ wo, the vector potential in 
units of 1/ a, and the velocity in units of Uo• We intro­
duce the notation 

W(x)=U(x)IUo, x=fj./6=~/(cI",o), To=1I(2~)"'X. (10) 

Equations (4) and (3) then take the form 

W=(l-A')''', (11) 

d'A {' AI(1-A')" x<-x, 
~,= AI(1-A')'h_To Ixl<x, 
dx' AI(l-A')'" x>x. 

(12) 

From symmetry conSiderations, the solutions of (11) 
and (12) are even functions W(x) and A(x). From A(x) 
= A(- x) it follows that B(O) = O. Since W(x) and A(x) are 
even, it suffices to solve Eqs. (11) and (12) at - 00 < x 
,;; O. 

Multiplying the right- and left-hand sides of (12) by 
dA/ dx and integrating, we lower its order by unity. 
The result can be conveniently written in the form 

1 dA 2'd.; + "U (A) =0, (13) 

and 

(l-A')"'-l 
"U(A) = {(l-A') "'- (1-A' (0) ) '''+To(A-A (0» 

-oo<x<-x, 
-x<x"';;O. (14) 

Formally, Eq. (13) can be regarded as describing 
one -dimensional motion of a fictitious particle of unit 
mass with zero total energy in a potential well "I1(A). A 
plot of OZ~(A) is shown in Fig. 3. Solutions with B(O) = 0 
exist if A(O)';; A. The quantity A is determined from the 
condition (d:U/ dA)A=A* = O. Calculations yield 

A.=To/(1+T,')". 

Since A(O)';; A*, we have 
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'U 

FIG. 3. Schematic form of the 
function "U (A). 

Umi,,=U,(1-A'(0» '!'~Uol (I+T,')'I" 

It is seen that the minimum value of the velocity can 
tend to zero only as 10 - 00. For finite io, the minimum 
value of the plasma velocity need not necessarily be 
small. Since 10= 1/{2j3)1/2y., each fixed Ie in the {(3, K) 
plane corresponds to a definite hyperbola. When 10 
varies from zero to infinity, the entire region of pos­
sible (3 and Y is covered. 

From (13) we easily obtain the connection between 
lot, (3 and A{O). It can be written in the form 

"(Ol dA 

x= f [J--A'(O) l"'-[1-A'l"'+To(A(O)-A)' 
A(-xl 

(15) 

A (-r.) =A (0) - [1- (i-A' (0) )"]/1" 

At fixed io, Eq. (15) determines y. as a function of 
A{O), with x - 00 as A{O) - A* and x - 0 as A{O) - O. At 
all other values of A{O), the function x{A{O)) is mono­
tonic. Therefore, at an arbitrary fixed 10 , when A{O) 
changes from zero to A*, the quantity y. runs through 
all the values from zero to infinity. This means that at 
arbitrary (3 and y. there can exist solutions describing 
plasma flow through a magnetic field produced by a 
rectangular field. 

Let now the magnetic field Bo{x) be produced by two 
rectangular currents and let it have the shape (2). By 
virtue of the symmetry of the problem with respect to 
the plane x= 0, it suffices to obtain the solutions for 
- 00 < x"" O. The equation for the vector potential is 
written in a form analogous to (12). 

Multiplying the right-hand and left-hand sides of this 
equations by dA/ dX, and integrating, we decrease its 
order by unity. It is convenient to recast the result in 
the form (13), where 

t (1-A')"-l, 

U(A)= (l-A',l'h_HT,(A-Al), 

(i-A- )-HTo(A,-A 1), 

A 1=A(-a-x), A,=A(-a+r.), 

(16) 

We consider the flow of a plasma through a barrier 
with a - 00. It is obvious that solutions with plasma passage 
can exist in this case if B{O) - O. But then we have Al 
- A2 in (16). As Al - A 2 , the form of the potential well 
becomes the same as for the flow of a plasma through 
one current, and consequently the conditions for the 
flow of plasma through the magnetic barrier turn out to 
be similar. This means that at arbitrary {3 and x there 
can exist solutions describing the flow of a cold col­
lisionless plasma through a magnetic barrier produced 
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by sufficiently widely separated currents of rectangular 
form. 

The foregoing proof of the existence of the solution 
with passage of a plasma having {3« 1 through an in­
finitely broad barrier proves all the more the possibility 
of passage of a plasma with {3« 1 through a barrier of 
finite width. 

In the case of sufficiently thin conductors, the ex­
ternal current can be regarded as a 6 -function (in the 
sense of Dirac) and the natural question is whether it 
can be cancelled out by the diamagnetic current of the 
plasma. The ratio of the total external current to the 
total plasma current flowing in the layer I xl < lot is 

+" 
210 x / f A(1-A')-'dx. 

If we assume 210 x constant, then 

I "1 / +r" '( "" A.(l-A'(O)) , im ~ oX "< I-A-)-"dx=, ,,' ," =, ,1(0) (1-A.-) , 

This ratio is - 1 at A{O) - A*, this proving the existence 
in the plasma of narrow currents that cancel out the 
external Singular currents. It is obviously of interest 
to consider the case when for some reason, unaccounted 
for in the described model, the plasma current cannot 
be made narrow enough to compensate for the external 
singular current. Is the motion of the plasma across 
the magnetic field at {3 < 1 possible in this case? This 
question is answered in Sec. 6. 

5. FLOW OF PLASMA THROUGH A MAGNETIC 
BARRIER PRODUCED BY SINGULAR EXTERNAL 
CURRENTS (WEAK DECELERATION 
APPROXIMATION) 

Let the barrier take the form of a step (Fig. 1a): 
Bo{x) = Bo at I xl < a and Bo{x) = 0 at I xl > a. This field 
distribution is produced by two infinite plates located at 
x ~ ± a, through which a planar current flows in the y 
direction (marked by the dashed lines in Fig. 1b). The 
plates are assumed permeable to the plasma: this may 
be, for example, a rectangular solenoid whose di­
mensions in the y and z directions are large in com­
parison with a. 

We consider first the case of weak deceleration, 
maxi (U{x) - Uo)/Uol «1. Under this assumption we 
obtain from (I) 

d'V, 000' 
-" --" V,=oo.{Ii(x+a)-Ii(x-a)}, 
dx- r- , 

where o(x) is the Dirac 6-function. 

The solution of (17) is obtained in the form 

(17) 

(1) , 

(II), 

(III) . 

(18) 
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Regions I, II, and III are respectively the regions x< - a, 
Ixl<a,x>a. 

As follows from (18), the value of Vy at the pOints x 
= ± a depends essentially on the value of the parameter ~o 
in comparison with unity. It is easy to clarify the phys­
ical meaning of the parameter ~o. To this end we com­
pare the plasma current with the value of the external 
field flowing over the plates. The external current is 
equal to 

I(x)= --=-Bo{6(x+a)-6(x-a)}. 
4" 

The total external current flowing in one direction is 

, 
J I(x)dx=-cBo/41l. 

The plasma self-current flowing in one direction is 

At ~o = a/a» 1 we find that the diamagnetic current in the 
plasma produces a magnetic field of the order of the ex­
ternal field Bo(x). At a/a« 1 we have 

J j,(x)dx / J 1(x)dx=-aI6. 

Thus, the quantity ~o=a/a is a measure of the diamag­
netism of the plasma as it passes through the magnetic 
barrier. 

We use (18) to calculate the resultant field B(x) (Fig. 
lc), 

{ 
-Bo.' sh So 

B(x)= Boe-"ch; 

-Boe-' sh So 

(I) , 

(II) . 

(III) . 
(19) 

It is seen from (19) that if a» 0, then the resultant field 
differs substantially from zero only in a narrow vicinity 
of thickness 0 near the plate, i. e., the field of the ex­
ternal current is confined to a skin layer by the currents 
of the plasma and does not penetrate into the interior of 
the plasma. The maximum absolute value of the field is 
Bo/2, and the field has a discontinuity from - Bo/2 to 
Bo /2 on going from one side of the plate to the other 
(Fig. lc). 

For a plasma of lower density, for which a« 0, the 
profile of the field B(x) is close to the profile of the ex­
ternal field Bo(x), since the manifestation of the dia­
magnetism is weak in this case. The distribution of the 
velocity U(x) in the case of weak slowing down is 

U(x) "'Uo[ 1- (mJ2m,) (V,'IU,,') J. 

From (20), using (18), we obtain (Fig. ld) 
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( 
Uo(1-~-'.'· sh' ;0) 

U(x)= Uo(1-~-'._'·'Sh2 so) 

U, (1-~-'.-" sh' so) 

(I), 

(II) . 

(III). 
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(20) 

(21) 

The distribution of the electric field in the case of 
weak slowing down is 

Ex (x) {( -0)./0)0)." sh' so 

--s:- = (-0)./6)0) .-", sh 2s 
(0)./0)0) .-" sh' So 

(1) , 

(II) , 

(III) . 

(22) 

As seen from Fig. le, the field Es has a discontinuity 
at the points x = ± a, corresponding to a surface charge 
density 

(23) 

For the volume charge density we obtain (Fig. If) 

(I), 

(II) , 

(III) . 

(24) 

The quasineutrality condition, as seen from (24), is 
equivalent to the requirement 

(25) 

In problems concerning the structure of the boundary 
layer between the plasma and the field one usually ob­
tains an analogous quasineutrality condition [10]: m, U~ 
«m"c2. Actually, w~/w~-ml U~/mec2, since in the 
next section it will be shown that the flow of cold col­
lisionless plasma through a rectangular magnetic bar­
rier is possible only if j9>t. From (21) we obtain the 
condition for the applicability of the weak slowing-down 
approximation 

(26) 

which in the limiting case ~o« 1 yields j9» ~~, or a2 

« 2p. p" where Pe and P, are the Larmor radii of the 
electrons and ions, respectively, calculated from the 
velocity Uo: Pe" = UO/w Be,! • 

6. EXACT SOLUTION OF THE PROBLEM OF THE 
PASSAGE OF A COLD COLLISIONLESS PLASMA 
THROUGH A RECTANGULAR MAGNETIC 
BARRIER 

We shall show that the solutions obtained in Sec. 5 in 
the weak-slowing-down approximation and describing 
the flow of a plasma through a rectangular barrier dif­
fer little from the exact solutions. Thus, we shall not 
assume that the parameter me V; / m, U~ is small. Then 
instead of (17) we obtain the equation 

d'V 0) , ( m VI) -'I. -:J!. __ o V, 1-~ =O)B{6(x+a)-6(x-a)}. 
dx· c't. m iUo2 

(27) 

We solve this equation separately in regions I, II, and 
III with the following matching conditions: 

V,I (-a) =V,II(-a), V," (a) = V;u (a). (28a) 

dV;' dVy' 
--( -a) - --( -a) =0) •• 

dx dx 
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In the three regions we obtain respectively 

dV. _ 'J, (m, )"'[ ( m,V.' ) "']", ---2/lU, _ 1- 1---
dx me. miUO?' 

(1) , 

dV. _ '1, (m, ) "'[ '( m.Vi )'"]''' --2/lU, _ P - 1---
dx me mi,U02 

(II) (29) 

dV. , (m,) "'[ ( m,Vi) '''] 'I, -=-2 1'6U, - 1- 1---
dx me miU/, 

(III). 

Here pZ is the still unknown integration constant. The 
solution of equations (29) can be obtained in parametric 
form. We put Vl/ = - Uo(m, / me)tfZ sin2cp. The parameter 
cP runs through the following values: 0 .. cP < CPt in region 
I, cpz" cp" CP3 in region II, and CP4" cp" 1T in region III. 
Here 0< CPt <iTT, iTT < cpz<h, h< CP3<t 1T , t 1T < CP4< 1T. The 
values of CPt and cpz are obtained from the joining con­
ditions: cP 4 = 1T - CP1, CP3 = 1T - cpz . 

We write down the solution in the three regions. 

In region I: 

V,=-U.(mJme) 'I, sin 2rp, 

dV,Idx=-26U, (m/m,.) '1, sinrp, 

xl/l=ln Itgrp/21+2cosqo+C,. 

In region II 

V.=-U,(m/me) '1, sin 2rp, 

dV, '1 ('1 '1 --;z;- = 2 '6Uo m;/m,) '(P' + cos 2rp) " 

x ( 2 ) 2 6'= k-k {K(k)-F(k,rp)} +k{E(k)-E(k,<jl)}. 

(30) 

(31) 

In (31)weusedthenotation kZ =2/(p z+1). F(k, cp), E(k, cp), 
are incomplete elliptic integrals of the first and second 
kind, respectively, K(k)=F(k, i1T)andE(k)=E(k, i1T). The 
integration constant is chosen from the condition x = 0 at 
cp=1T/2, Le., Vl/=O at the center of the barrier. In 
region III the expressions are analogous to expressions 
(30). 

We now determine the constants CPt, CP2, Ct , and p2. 
From (28a) we obtain sin2cpt = sin2cp2, i. e. , 

(32) 

From (28b) we have 

(jU, (m/m,) 'J, {2'" (P'+cos 2<jl,) 'I'+sin rpl} =IiIB. (33) 

Equations (32) and (33) yield the expressions CPt = CPt (P) 
and CP2 = CP2(P), The value of C1 (P) we obtain from (30) 

-aI6=ln Ilg rpl(P)/21 +2 cos rpl(P) +c. (P). (34) 

We can now calculate p2 from (31) 

-al/l=(k-2Ik){K(k)-F(k, rp,(P»}+(2Ik){E(k)-E(k, <jl,(P))}. (35) 

Expressions (30) and (31) jOintly with the expressions for 
the constants (32)- (35) give the exact solution of the 
problem in parametric form. 

We now obtain the limit of the existence of the obtained 
solution. The sought limit is determined from the con­
dition me V~ = m, ut with the velocity U(x) vanishing at 
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the pOints x=±a. From (30) and (31) we then have CPt 
= CP2 = 1T/4. Equation (33) yields the connection between 
p2 and {3: 

(36) 

From (35) we obtain 

Expressions (36) and (37) determine the connection be­
tween the quantity {3cr (the obtained solutions exist only at 
(3> (3cr) and the parameter a/5• 

We consider two limiting cases: 

a) a/5« 1. Using the asymptotic expressions for el­
liptic integrals as k-O ({3-0 fr0Il! (36)), we obtain 

~cr=2(aI6)', or a';;; (P,Pi) '1,. 

b) a/5» 1. It is seen from (37) that in this case it 
it is necessary that k -1, L e., {3 - t. Again using the 
asymptotic form of the elliptic integrals as k - 1, we get 

~cr",l/. (1-0.8 exp (-aI6» ""II,. 

We note once more with respect to the obtained solu­
tions that validity depends essentially on the assumption 
that the plasma currents cannot be of the 5-function 
type, in contrast to the external currents. 

7. REFLECTION OF A FLUX OF COLD PLASMA 
FROM A MAGNETIC BARRIER 

In the preceding section we have considered the case 
of passage of a plasma through a magnetic barrier, 
L e., we have assumed that in the region x - - 00 there is 
no flux of reflected plasma. From physical considera­
tions it is clear that at (3< 1 there can exist also a dif­
ferent type of solution, in which the plasma is reflected 
from the magnetic barrier. Let us see how the picture 
of the interaction of the plasma with the rectangular 
barrier appears in the presence of a reflected flux. 

Let Xo be the coordinate of the pOint at which the ve­
locity of the flux vanishes. We write down the equation 
for the vector potential A 

d'A iii,' [ e'A' ]'" 
-=2-,-' A 1- '" +B,o(x+a), 
dx2 (,- memiDo-c-

d'A 
-=B06(x-a), x>xo. 
dx' 

(38) 

Just as in Sec. 6, we seek the solution in parametric 
form: 

A=U,(m/m,)'I'(m,cle) sin2<jl. 
(39) 

In region I (x < - a) we obtain 

dA , (m')'''m,c -=-2"6U, - -sinrp, 
dx me e (40) 

In region II (- a<x<XO) 

dA ( m, ) 'I, m c -=26U, _ -'-(P'+cos2<jl)"', 
dx mIl e 

(41) 
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The condition for matching at the point x = Xo correspond­
ing to the value cp=i1T, yields B(xo)=Bo; or: 

26U.(m/m.)"·rn.cP/e=B •• 

from which we obtain the connection between P and f3' 
= 81Tm, no UVB~ 

P=[2~'I-"·. (42) 

Let us find x(cp) in region II (the expressions for x(cp) 
in region I coincide with (30), where it is necessary to 
replace Wo by WO/21/Z) 

x S' cos 2ada -=- +C, 
Il [P'+cos 2aJ'" . 

(43) . 
The constant C1 is determined from the condition x = - a 
at cp = cpz = i 1T - cp 1 : 

x+a k S· 1-2sin' a --=-- da 
6 2'" (1-k'sin'a)'" ' .. 

2 
k'=-­

P'+1 ' 

Formulas (39)- (44) determine the distribution of the 
vector potential A in parametric form. 

(44) 

From (44) we can easily determine the depth of pene­
tration of the plasma h=xo+a into the barrier for a 
given f3' 

hl6=-2-'I'{(k-2Ik) [2K(k) -F(k. '/.n) 
-F(k, <p,) 1+(2Ik) [2E(k) -E(k, '/,n)-E(k, <po) l}. (45) 

In two limiting cases we obtain from (45) the following: 
a) at f3'«lwe have h-l5(f3')1/Z/2=(Pep,)1/Z, Le., the 
depth of penetration is equal to the hybrid Larmor radi­
us; b) as f3' -i we have h/l5- oo • 

If the depth of penetration h becomes larger than the 
width of the barrier 2a, then solutions with reflection do 
not exist and the pass-through regime considered above 
is realized. At f3' > i flow will be realized with passage 
of the plasma through any rectangular barrier. 

We call attention to the fact that in this section we 

arfL" 
I IT : 

- ____ I 

- f1 0 .:1:/1 f1 .I I 

jlx) 
b +' 

4"". ,,:X. 
" I 
~ I 

I 

-4 II Xo a x 

FIG. 4. Parameter distribution in the reflection of a cold 
plasma from a rectangular barrier. a) Distribution of the 
barrier field Bo(i! in the absence of plasma (x 0 is the point 
where the flux is reflected), b) Distribution of diamagnetic 
current jW. c) Distribution of the resultant magnetic field 
B(x), d) Distribution of the velocity U(x) of the incident plas­
ma flux. 
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11 /; 

FIG. 5. Dependence of the depth of pen­
etration h <in units of 6) of the plasma 
into the magnetic barrier (for a station­
ary solution with reflection) on the value 
of (3. 

have designated the ratio of Po U~ to B~/81T by f3' and 
not by f3. The point is that the plasma pressure on the 
barrier is in this case equal to 2po U~, and the ratio of 
the plasma pressure to the magnetic-field pressure is 
equal to 

Thus, the reflection from a broad barrier can take place 
under the natural condition (3 < 1. 

The distribution of the resultant field B(x), of the 
plasma current, and of the plasma velocity are shown in 
Fig. 4. The depencence of the penetration depth h on 
f3, given by expressions (42), (44), and (45), is shown in 
Fig. 5. 

8. CONCLUSION 

Thus, as shown earlier, the plasma can move per­
pendicular to the magnetic field at f3« 1. An exception 
is the case given in Secs. 5 and 6, when the currents of 
the external conductors are singular, and the diamag­
netic currents in the plasma cannot cancel them. A 
corresponding similar situation is produced under con­
ditions when the region of localization of the diamagnetic 
currents turns out to be much larger than the region oc­
cupied by the external conductors, so that the cancella­
tion of the external currents does not take place and the 
plasma cannot move across a magnetic field with f3<t. 
We note, however, that in this case the plasma motion 
across the magnetic field can occur at f3 < 1 (but (3> t). 
It must be borne in mind, however, that the assumption 
that the diamagnetic currents of the plasma cannot be 
singular is outside the framework of the model con­
sidered above. Indeed, it is easy to understand the rea­
son why in our model the magnetic barrier produced by 
so arbitrarily concentrated currents is incapable of con­
fining a plasma flux with (3« 1. In regions where the 
plasma is stopped by the magnetic barrier, U(x) - 0, it 
follows also from the continuity equation that n(x) - 00, 

so that the y component of the diamagnetic current jy 
can become arbitrarily large. This is precisely the gist 
of the cancellation of the singular external currents by 
the plasma currents; this effect explains the possibility 
of plasma flow with {3< 1 through the magnetic barrier 
made up by singular currents. 

A computer calculation of the dependence of Umtn on 
(3, carried out by formula (15) at different it = fj./(c/Wo) , 
shows that this dependence depends essentially on it 
(Fig. 6). It is seen that at K »1 strong deceleration of 
the plasma takes place only at {3« 1. On the other hand 
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FIG. 6. Dependence of the minimal 
velocity of the plasma flux, in flow 
through a rectangular current, on f3 
at various x = AI {,. 

if x« 1, then a decrease in the plasma flux to practical­
ly zero takes place already at {3 - t. The singular dis­
tribution of the external currents corresponds in Fig. 6 
to the dashed curve that shows that only at {3> t can the 
plasma move through the singular external currents. 
At an arbitrarily small broadening of the currents, the 
plot of UmlD against {3 reaches the origin, corresponding 
to a possibility of plasma motion through arbitrarily 
narrow currents at arbitrary {3. In this sense, the re­
sults of the general analysis of plasma flow, which dem­
onstrates the possibility of flow through arbitrarily 
narrow currents at arbitrary {3, become matched with 
the exact solution for the plasma flows (only at (3> t) 
through singular currents. 

The results obtained above do not contradict in any 
way the classical results, according to which the plas­
ma can move through a transverse magnetic field only 
under the condition {3> 1. Indeed, the ratio of the plasma 
pressure to the pressure of the resultant field in the ob­
tained solutions exceeds unity. This means that if the 
plasma penetrates once in some manner the barrier and 
annihilates the field in it, its subsequent motion is pos­
sible even when {3 < 1. 

The question arises as to how the obtained stationary 
solutions can be established. In fact, as shown in Sec. 
7, at {3 < 1 there exists, besides the obtained solutions, 
also solutions in which the plasma is reflected from the 
barrier, i. e., incident and reflected fluxes exist as x 
- - 00. The depth of penetration of the plasma into the 
barrier then depends on the value of {3. It is obvious that 
if at the initial instant of time we begin to inject from x - - 00 

a plasma with {3 < 1 i.nto the barrier, then reflection takes 
place, and ultimately a stationary flow of the type ob-
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tained in Sec. 7 is established, in which the plasma does 
not go into the region X_OO. One can imagine, however, 
also other possibilities. Assume that we have a plasma 
flux in all of space and, starting with a certain instant 
of time, we begin to "turn on" slowly an external field. 
It is clear that in this case we arrive at solutions with 
through transmission. The magnetic field cannot en­
ter into the interior of the plasma volume and will be 
localized near the conductors. 

One other method of establishing the obtained flows is 
to inject at the initial instant into the barrier a plasma 
flux with {3> 1. It will pass through the magnetic field 
and will decrease the latter via its diamagnetism. We 
then can, gradually decreasing Po U~, bring {3 down to 
a value much less than unity. 

We are grateful to G. 1. Kichigin for useful discus­
sions. 

1)We shall say that the field is strong if the plasma pressure 
(dynamic plus thermal) is less than the magnetic-field pres­
sure B2/8 as measured in vacuum 

Here Po = 111)m;; 111) and Uo are respectively the concentration 
and velocity of the plasma far from the magnetic barrier, 
mi is the ion mass, and T is the plasma temperature. 
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