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Ionization of a gas by an electron beam is considered. In the approximation of a small beam radius in 
comparison with the mean free path of secondary particles, the Boltzmann equation reduces to a partial 
differential equation which is solved by the method of characteristics. The distribution function obtained is 
used to calculate the ion density. 

PACS numbers: 51.50. + v 

1. INTRODUCTION 

The problem of passage of an electron beam through 
a gas presents great interest as a result of the possi
bility of the comparatively simple production of plas
ma. [1] By solving the kinetic equation and finding the 
distribution functions of various kinds of particles, it is 
possible to calculate the current and density of second
ary particles. In view of the complexity of the kinetic 
equation, it is not possible to obtain an exact solution. 
The most frequently used method of solution is expansion 
of the distribution function in spherical functions. [2-4] 

The rate of convergence of the series, however, de
pends on the conditions in the plasma. 

In this article the Boltzmann kinetic equation is solved 
on the assumption that the ions formed have momentum 
components along and perpendicular to the beam axis 
but the azimuthal component is unimportant. A suffi
cient condition for validity of this assumption is small
ness of the beam radius in comparison with the mean 
free path. Here it is possible to reduce the integro-dif
ferential equation to a partial differential equation and 
solve it by the method of characteristics. 

2. TH E BASIC EQUATION 

In writing the Boltzmann equation for the distribution 
function of the ions formed, we shall take into account 
elastic scattering of electrons by ions and ionization of 
atoms by the electrons of the incident beam. We shall 
neglect elastic collisions of atoms and ions, excitation 
of ions by electrons, and excitation of atoms and ions in 
collision with each other. With these assumptions the 
Boltzmann equation has the form 

aj, a I, ai, 
-+vi-+F'-a =1." at ar, p, 

(1) 

where F i is the force acting on an ion and I.t is the col
lision integral, which can be written in the form of the 
sum 

(2) 

I.u is due to elastic collisions of ions with beam elec
trons, and I.t2 describes the ionization of atoms. We 
neglect collisions of ions with secondary electrons, as
suming that their mean free path is much greater than 
the beam radius 
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n"crR«:l, 

where ne is the concentration of secondary electrons in 
the region of the beam and R is the beam radius. 

The collision integral which describes the inelastic 
process can be written in the following form[S,6]: 

1.12 = f dp.' dp,dp,dp(2n/li) IUionl' 

( P,2_P,' P,'-P,"-P') , 
XB ~+ 2m 8 (P.+P,,-P,-p. -p)l.(p,)f.(p), (3) 

where m and M are the masses of the electron and atom 
(ion), Ulan is the amplitude of ionization of an atom by 
an electron, Pe and Pa are the momenta of the electron 
and atom before the collision, and P; and P are the mo
menta of the scattered electron and secondary (atomiC) 
electron. 

In the case when the velocity of the beam electrons is 
much greater than the velocity of the atomic electrons, 
Ulan can be calculated in the Born approximation. If we 
set 

where no and Po are the density and momentum of the 
beam electrons, and if we take into account that elastic 
scattering of electrons by ions occurs at small angles, 
we can then obtain the following expression for I Bt1 , 

ali { Po [f dq (r!) 1) f l'I!=8me'no-o- -n-, -+ ~-~ gdq 
0Pi po q dll opo 

(r;') f 3~} ai, Po ---,-, q dqf ~-x--, x>O. 
24p,,-/i- Dp, po 

(4) 

The integrals over q (the momentum transferred to the 
electron) are taken from qmln = Jmlpo to qma.x = Illao; here 
J is the ionization potential of the atom, ao is the char
acteristic dimension of the atom, and (r~) is the mean 
square radius of the ion. 

In the case qaolll« 1 the integral I.t2 has the form 

(5) 

z Z 

X '1',' (T,) 'I'i(T,) '1', (T,) 1: ~ r,"'", 
0:,==1 ~=1 
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z 

dT,=TI d'r .. , 

where l{I it l{I a are the wave functions of the ion and the 
atom, Z is the charge of the nucleus, and POi is the mo
mentum of the ion at the moment of its formation. In 
calculation of [st2 it was also assumed that the gas is in 
equilibrium and has a temperature T and density na' 

If the density of secondary electrons is much less 
than the density of beam electrons, the force Fi is due 
to the attraction of the ions to the beam, 

F ( ) - E- {-Ilr, r<R 
j r -e -

-JlR'lr. r>R' 
~1=2neno. (6) 

Since there is a distinguished direction z II Po, we will 
look for a solution of the Boltzmann equation in the form 

f,=j(r, PI!> P.L, t), 

where PII and Pl are the longitudinal and transverse com
ponents of the momentum and r is the distance from the 
beam axis. With this assumption the basic equation for 
r<R can be rewritten in the form (dropping the sub
script i) 

of P.L af aj at 
--I----w--=-x-+z.t2. 
at mar ap.L ap" 

(7) 

[st2 is a time-independent quantity in which, after solu
tion of the equation, POll and POl must be substituted for 
the functions depending on r, PII' PH and t in accordance 
with the equations of the characteristics. 

We note that only those ions for which P5l + J,LMrij 
"" J,LMr2, can leave the beam; here ro is the coordinate 
of the point of formation and POl is the transverse mo
mentum at this point. The depth of the potential well, 
according to Eq. (6), is 

U mox=ne'noR'=O.fi25 ·10-'noR'K ~O.5 ·10SK 

for R = 1 cm and no - 1010 cm-3• The mean kinetic en
ergy of the ions formed is eT - T. Therefore ions 
formed in a layer of thickness Il.r=R(T/Umax)1/2 can 
cross the beam boundary. Thus, under ordinary condi
tions (T $103 K), the number of fast ions produced which 
leave the beam is negligible (nfasJnS!OW - T /U max)' The 
case in which T- Umax is considered in the Appendixo 

3. DISTRIBUTION FUNCTION AND DENSITY OF IONS 
IN THE BEAM 

If the momentum of an ion on the axis is P6l 
«J,LMR2)1/2, the ion will execute oscillations inside the 
beam with a frequency Wg = (J,L/M)l /2 and amplitude Rmax 
= Pdl/ Wg M. Here the longitudinal momentum increases 
in proportion to the time: PII = POll + xl. Integrating Eq. 
(7), we obtain 

fer, PII' P.L, t) = (2:~;; 'I, [h'+pM (r'-ro') + (PII- xt ) ']'" 

xexP{-[h'+pM(r'-ro') + (PII-xt)']I2MT}t, (8) 

where ro is the coordinate of the point of formation. 

It is necessary to average the distribution function 
over ro, taking into account the fact that the beam is 
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homogeneous and the density of ions formed at any mo
ment of time does not depend on ro. Averaging leads to 
the following result: 

f= n.nol,t ( ('I' E.t+E,+Er)_ ('1 .~)] 
n'i'(E.L +e,) 'Y 2, 8r 'Y" er ' 

e.L =P.L', ell=(PII-xt)', e,=IlMr', (9) 
8r=2MT, 'Y (p, x) = S tp - 1e- f dt. 

The density of ions is 

16 { 2 n, = '3 n•noZ,t(MT) 'I, '3 (4-s) (1-;)'1. +In S 

+2"jn[1+2(1-s)'/'/(1-(1-s)'/,)]}, S""8r le,. (10) 

For eT » eT,we can obtain the following expression for 
the density: 

n,=(8/3n)n.nol,t(MT)'I'jn(Rlr) . (11) 

Thus, the ion density increases with increasing beam 
density and with the passage of time. This leads to a 
situation in which, beginning at some moment of time, 
the inverse effect of the ions on the beam becomes im
portant. In addition, with passage of time the effect of 
the ions on the secondary electrons continues to in
crease: The compensation of the beam field has the re
sult that electrons which left the beam in the initial 
stage of plasma formation begin to return to it. These 
effects can be discussed in taking into account the self
consistency of the problem posed. 

APPENDIX 

In the case of high temperatures (T - Umax) the gas is 
ionized to a certain degree. Therefore we must add to 
the solution (8) of Eq. (7) a distribution function for the 
primary ions in the field of the beam which does not 
vanish at l = 0: 

N, (ell) ( e.L) 
(2nMT) 'I, exp - 2MT exp - 2MT ' 

where el=p~+J,LMr2, ell=(PII-xt)2. For primary ions 
outside the beam we must make the following substitu
tion in Eq. (A. 1): 

(in accordance with Eq. (6», 

f,1I= (PH-xtO) '. 

The quantity to is the time spent by the ion inside the 
beam. It can be determined by noting that the ion 
crosses the beam in a direction perpendicular to the 
beam axis in a time arcsin(J,LMR/P6l)/Wg, while the pe
riod spent by the ion outside the beam is 

(A.2) 

where POl is the momentum at the beam boundary and 
'Y (p, x) is the incomplete gamma function: 
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"( (p,:x) = S r'tP- 1 dt. 
o 

The expression for the distribution function of second
ary ions (that is, ions produced by the beam) is only 
slightly changed. For slow ions Eq. (9) remains valid. 
For fast ions we must substitute P ~ + J.1.Mr 2 for J.1.MR 2 

and t for to in accordance with Eq. (A. 2). The density 
of slow ions can be calculated by integration of their 
distribution function over Pi up to J.1.M(R 2 - r2), and the 
density of fast ions can be calculated with this same in
tegral taken to infinity. Outside the beam lot '" 0 and the 
longitudinal momentum does not change. Since for r 
> R we have I. t2 '" 0, the value of the distribution func
tion outside the beam is determined by its value at the 
boundary 

where fR'" J.1.MR 2. The density of fast ions is 

4 (2MT) '''n.nol,to [ 3 '/ 2'1, ¥, 
n,= -SIP'--SI6' 

61 2 3 

+ 1 ('/ 2~' '" ¥, 2 ( ,/ 'I. ,/.] 
- 1:"- 61 -(II -0, )-- 1:' '-2" +0 ) 3 15 \'1', 

61=ERIEr, £,=8,/£r, P='/2+6', 1:'='/2+61-£2, 01.2='/2-61.2. 
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The possibility of plasma flow through a region in which strong magnetic fields perpendicular to the 
direction of motion are produced by external currents is discussed. It is shown that stationary flow of a 
cold plasma is possible even if the (dynamic) plasma pressure is much lower than the pressure of the 
external magnetic field, i.e. f3 « 1. The passage of the plasma through the barrier is caused by the fact 
that the plasma generates a diamagnetic current that destroys the external field, and the plasma moves in 
fact in a very weak magnetic field. The field in the plasma is concentrated in a very thin skin layer with a 
thickness of the order of 8 z c / Wo where Wo is the plasma electron frequency and c the velocity of light in 
vacuum. The value of f3 required for the existence of a stationary flow with practically constant velocity 
depends on the shape of the barrier and may be very small for a smoothly shaped barrier: f3 z (8/11)2 
where 11 is the width of the transition region in which the external field drops to zero, 8<11. An exact 
solution is obtained for the case of the most difficult passage of singular external currents. The 
distributions of the fields, currents, charges, plasma density, and velocity are calculated. The feasibility 
of establishment of such stationary flows is discussed. 

PACS numbers: 52.30.+r 

1. INTRODUCTION 

The possibility of the motion of a plasma stream 
across a strong ll magnetic field was observed experi
mentally more than ten years ago. (IJ The investigation 
of the features of plasma injection into a strong-field 
region has since been pursued quite intensively, as is 
evidenced by the large number of experimental pa
pers. (2-6J In the interpretation of the extensive experi
mental material, the passage of the plasma into the re
gion of the strong field is attributed to the presence of 
an Ey component of the electric field and the subsequent 
drift of the plasma in the crossed fields E and B. The 
main cause of the appearance of the Ey component is 

assumed to be polarization of the plasmoid boundaries 
as the plasma enters into the magnetic-field region. It 
appears that the presence of Ey is necessary for the 
initial stage of the plasma motion in the region of the 
strong magnetic field. 
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We present an extremely simplified scheme of the in
teraction of the plasma stream with a magnetic barrier, 
in the following form: The plasma stream moves along 
the x axis from the region x - - 00 into the region x - + 00. 

The magnetic barrier is chosen for simplicity in the 
form of a rectangle of width 2a and field intensity Eo. 
The field is directed along the positive z axis (Fig. la). 
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