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Coherent population of quasi molecular states by atomic 
scattering 
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An analysis is given of the conditions for coherent population of the states of a quasimolecule produced 
during atomic scattering. It is shown that, within the framework of the model with isolated nonadiabatic 
interaction regions, the conditions for coherent population of the quasimo1ecular states improve with 
decreasing Landau-Stiickelberg phases which arise in the region of the population of the quasi molecular 
terms. Existing experimental data are used to establish conditions for coherent population on the 
assumption of an effective interaction between these quasi molecular terms throughout the population 
region due to the rotation of the internuclear axis. Expressions are obtained for the depth of modulation 
of the total cross sections for different mechanisms of mixing of the interfering terms at large distances. 
The results are compared with measured total excitation cross sections for collisions between sodium ions 
and neon atoms. 

PACS numbers: 34.S0.Hc 

A simple model of a collision between two atomic par­
ticles, which produces oscillations on the total inelastic 
cross sections, was discussed previously inC1l • These 
oscillations are a consequence of interference between 
two vacant excited states of a quasimolecule which are 
coherently populated during the collision and interact 

the appearance of the interference term AW in the prob­
abilities of population of inelastic scattering channels 1 
and 2[1l: 

at large internuclear distances. 

According to this model, the ground-state term (term 
0) of the system of colliding particles successively 
crosses the two excited terms 1 and 2 of the quasimole­
cule for internuclear distances R ==R1 and R ==R2 (Fig. 
1), where the interaction between the ground and excited 
terms occurs in accordance with the Landau-Zener 
scheme. As the particles separate, an interaction oc­
curs between the excited terms either due to pseudo­
crossing or as a result of the close approach at large 
internuclear distances (for R ==R3» Rl,2)~ which leads to 
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~W~2p,[p2p,(1-p,) (1-P2) (i-p,) J"'{cos(X+X,-X2) 

-cos(x+x,) + (i-p,) cos (x+x,) -P2 cos (x-x,) - (i-2p,) cos x}. (1) 

In this expression, Pl,2 are the probabilities of conserv­
ing the initial electronic state 0 after single crossing of 
the nonadiabatic regions at R ==R1,2' Ps is the probability 
that the system will remain in the same electronic state 
after nonadiabatic interaction in the region R =R3, and 

Xk~2cp, + * J' (E,-Eo) dt, 
_t. 

(2) 

where 
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FIG. 1. Schematic representation of the dependence of the 
energy of quasimolecular terms on the internuclear distance 
R. Eo = Eo(R) is the energy of the ground-state term, E 1,2 

=E1,2(R) are the energies of the excited terms. The time 
t = 0 corresponds to the classical turning pOint in the nuclear 
motion. 

is the phase due to the Landau-Zener interaction be­
tween the terms in the neighborhoods of the points R 
=R1,a, [2] h is the Zener parameter for the correspond­
ing nonadiabatic regions, 1) and 

t " 
x =h J (E,-E,) dt 

" 
1 " 

+- h J (E,-E,) dt+rp,-<p,+-<p,. 
, 

where the value of the phase f{Js is determined by the 
character of the interaction for R =R1,2' 

(3) 

This paper is concerned with the analysis of the popu­
lation of quasimolecular states under the conditions when 
the Landau-Sttickelberg phases become small in a cer­
tain band of collision velocities, which gives rise to an 
increase in the depth of modulation of the total inelastic 
cross sections for atomic scattering. We investigate 
the coherence conditions on the assumption of an effec­
tive interaction between the terms of the quasimolecule 
throughout the entire range of population of vacant ex­
cited states of the colliding particles, and analyze the 
process of population (If the quasimolecular terms due 
to the rotation of the internuclear axis for a close ap­
proach between the colliding particles. A comparison 
is made with experimental results on the oscillations in 
the total cross sections for collisions between sodium 
ions and neon. 

1. POPULATION OF EXCITED STATES IN THE 
THREE-TERM MODEL 

It is clear from the structure of the interference term 
~ W that some of the components are due to the existence 
of alternative paths which "split" when nonadiabatic re­
gions are traversed as the colliding particles approach 
one another at the points a and b (Fig. 1). These com­
ponents are responsible for the Landau-stiickelberg 
oscillations, the phases of which depend on the impact 
parameter p. Such components do not contribute to the 
oscillating part of the total cross sections. The oscil­
lating part is determined essentially by the component 
(1 - 2P2)COS X which appears as a result of interference 
between alternative paths which "split" only in the non-
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adiabatic region R =Ra as the particles fly off in opposite 
directions. There are thus alternative paths (oabcb' Ea , , ' 
oabcb a E 1) and (oabb' E 2, oabb' a' E1 ). The total cross 
sections for the corresponding inelastic processes thus 
retain the interference term ~w which does not contain 
the Landau-Sttickelberg oscillations, i. e. , 

(4) 

Within the framework of the model considered pre­
viously, [U the oscillations in total cross sections ap­
pear as a result of the coherent population of states 1 
and 2 in regions R =R1,2, since the initial phase differ­
ence T/ = CP1 - CPa is small and practically independent of 
the impact parameter p (f{J3 is also independent of the 
impact parameter). The oscillations in the total cross 
sections can be observed provided the collision velOCity 
is such that 

(5) 

where (E2 - E 1) is the average energy difference between 
terms 1 and 2 for R - R 1,2' [1] 

The collisions considered in[1] are those for which 
the Landau-Stiickelberg phases are large, and the as­
sociated oscillations are averaged during the integra­
tion over all the possible impact parameters. However, 
for sufficiently high collision velocities V, the probable 
situation is that for which the differences between the 
adiabatic phases appearing in the population region are 
small: 

2R,<Ei -E,)/ftv<l, (6) 

where 

I 

(E,-E,,)= J (l.E,,(ZI) [u'-p'/R,']-'I'udZl. (7) 
pili, 

and ~Eik(R) is the difference between the adiabatic en­
ergies of the interacting terms. In this case, the Lan­
dau-stiickelberg oscillation phases given by (2) become 
small and are determined by the quantities f{J1,2' The 
result of this behavior of the phases is that the terms in 
the expression for ~w given by (1), which contains Xl 
and X2, are not averaged during the integration over all 
the values of the impact parameter and, consequently, 
provide a contribution to the oscillations in the total 
cross sections. As the collision velocity increases, 
X1,2 - 1T/2 (f{J 1, a - 1T/4), and the interference term assumes 
the form 

'" w,.=!,p, [p,p,,( I-p,) (I-p,) (i-p,) Pp, cos x. (8) 

Comparison of (4) with (8) shows that the amplitude of 
the oscillations in the population probability and, at the 
same time, the amplitude of the oscillations in the total 
cross sections, increase as the Landau-Sttickelberg 
phases vanish, and, as v-oo, ~Wc/~W=2. Thus, the 
vanishing of the Landau-Stiickelberg oscillations as the 
collision velocity increases leads to an increase in the 
depth of modulation of the total cross sections. This is 
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a manifestation of the fact that the conditions for coher­
ent population are satisfied for all the alternative paths 
leading to the formation of interfering excited quasi­
molecular states. As the Landau-stiickelberg phases 
increase, the conditions for coherent population are 
violated for some of the alternative paths (apart from 
the oabcb' Ea and oabcb' a' ElJ indicated above, and also 
oabb' Ea and oabb' a' E l ), producing a reduction in the 
depth of modulation of the total cross sections. It is 
important to note one further feature of term population 
in the model given in[ll: the depth of modulation cannot 
be one hundred percent at low velocities v because the 
alternative path oaa' El contributes only to the constant 
component of the total cross sections and all the inter­
fering terms in the population probabilities due to the 
existence of this path contain the Landau-Stiickelberg 
phases, i. e., they do not remain in the oscillating part 
of the total cross sections. 

The Landau-Stiickelberg phases may be small not only 
because of an increase in the collision energy but also 
because of a efficiently small difference between the en­
ergies of terms interacting in the population region. In 
this case, i. e., for small values of (Ei - E k ), we may 
have to face a violation of some of the assumptions lying 
at the basis of the model[ll and connected with the popu­
lation of vacant excited terms for R ~Rl in nonadiabatic 
regions localized in the neighborhoods of the points a, 
b, a', b' (Fig. 1). It will be shown below that the con­
ditions for the localization of regions of nonadiabatic in­
teraction in the R =Rl,a neighborhoods are not essential 
for the observation of the oscillatory structure on the 
total cross sections. When the inequality given by (6) is 
satisfied, the population of the above quasimolecular 
states proceeds coherently and independently of the char­
acter of the interaction of terms in the population region 
for R ~Rl' 

2. POPULATION COHERENCE IN THE THREE-TERM 
MODEL 

Let us now consider the population process for the 
terms of a quasimolecule on the assumption that the en­
ergy difference between adiabatic terms in the population 
region (R ~Rl) is sufficiently small, so that the inequal­
ity given by (6) is satisfied. In this case, the wave 
function for the electronic state of the quasimolecule 
within the framework of the semiclassical approxima­
tion has the form 

2 • , 

If' (r, t) = ~ b, (t) exp ( ~ -i-S E, dt) 1jJ, (r, Il), (9) 
A-a 

where z/!k(r, R) and bk(t) are the wave functions and am­
plitudes for the corresponding states of the quasimole­
cule, R =R(t) is the internuclear position vector, and r 
represents the set of electronic coordinates. 

In the population region R =R(t) ~Rl' the adiabatic 
amplitudes bk(t) satisfy the following equations: 

db 2 d . t 

--i=~ ~ (k 1 &1 n) exp [ + S (E,~E")dt] b" (10) 
n=O -fl 
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( k 1 :t / n) = S ~.; (r, R) :t 1jJn (r, R) d'r, 

subject to the initial conditions bl = ba =0, bo = 1 when 
t = - fl' 

When the inequality given by (6) is satiSfied, the 
change in.the phase factors in (10) during the population 
time can be neglected (the Landau-stUckelberg phases 
are small). Under these conditions, the relation be­
tween the adiabatic amplitudes is 

db, 2 d 
-=~ \'1(k/-/n)b ili ~ ili n· (11) 

,,=-1} 

Since all the matrix elements in (11) can be taken to be 
real, the solution of (11) shows that the phase difference 
between the adiabatic amplitudes bk(tl ) immediately after 
population is identically zero. This ensures that the 
population of the excited states of the quasimolecule is 
coherent independently of the nature of the nonadiabatic 
interaction between the terms. Within the framework of 
the above analysis, the formation of the quasimolecular 
amplitudes may be regarded as a "sudden" process, and 
this is due to the fact that the Landau-stiickelberg 
phases are small. 

As the collision velocity decreases, the inequality 
given by (6) becomes violated and the corresponding 
Landau-stiickelberg phases in (10) lead to the appear­
ance of an initial phase difference 1) = argbl (fl ) - argba(fl ) 
which, in general, is a function of the impact parameter 
[1) = 1)(v, p)], and the population of the quasimolecular 
states is no longer coherent. 

3. TOTAL CROSS SECTIONS FOR INELASTIC 
PROCESSES FOR A ROTATIONAL INTERACTION OF 
TERMS 

The interaction between adiabatic terms is determined 
by two factors: the radial motion of the colliding par­
ticles and the rotation of the internuclear axis during 
the collision. The matrix element for the interaction 
between the adiabatic states can be divided into two 
terms corresponding, respectively, to the two types of 
interaction: 

(Ie / ~ In)=",,,( kl d~ \ n)+*-roV.n(R), (12) 

where vR is the radial component of the relative colli­
sion velocity, W = w(p) is the angular velocity of the in­
ternuclear axis, and Vkn = i(k I L" I n) is the matrix element 
of the operator for the component of the electron angular 
momentum along the direction perpendicular to the plane 
of rotation of the internuclear axis. For nonadiabatic 
interactions in the quasimolecule, one of the terms in 
(12) is zero, in view of the molecular symmetry proper­
ties: when Vkn = 0, the operator (k I d/ dt I n) connects 
terms of the same symmetry, whereas, for the interac­
tion between terms of different symmetry (L; and 11), the 
radial matrix element becones zero. 

Polarization experiments[3,4l and calculations of the 
degree of polarization[5l for the excitation of a number 
of NeI lines in the Na+ +Ne collision have shown that the 
structure of the excitation functions for the NeI lines is 
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largely due to interference between the II electron terms 
of the quasimolecule. The II terms can be populated 
during the rotational interactions with the main L term. 
Analysis of the quasimolecular term diagram for 
(NaNet, reported by Latypov and Shaporenko, [6l enables 
us to achieve a more detailed description of the popula­
tion of excited states of the quasimolecule. 

If we suppose that the ratio of the matrix elements 
VZO(R)/VlO(R) =tani3 remains constant in the population 
region, the solution of (11) for the adiabatic amplitudes 
bk(tl ) during the rotational interaction between the terms 
is 

b, (t ,) =cos P sin a(p), b,{t,) =sin ~ sina{p), bo(t,) =cos a (p), (13) 

where 

1 I, 

a{p)=ti S [V ,.'{R)+V20'{R)),"CI)dt. 
_t, 

(14) 

The restriction of the population region to internuclear 
distances R .:;:: Rl is connected with the fact that the 
ground and excited-state terms diverge widely for R > Rl , 

according to the term diagram given in[6l, and the tran­
sition probabilities between the terms become small. 

In deriving the solution given by (13), we did not take 
into account the interaction between the II states of the 
quasimolecule due to the radial motion of the nuclei of 
the colliding particles. Since this interaction is smail 
in the region of the effective population of II terms (VR 

< wR), the coupling of inelastic channels in this region 
cannot modify substantially the amplitudes of the excited 
states. 

The subsequent development of the amplitudes for the 
population of excited states of the quasimolecule occurs 
adiabatically everywhere except for the region of the 
distant interaction between the terms. After the inter­
action between the II terms for R =Rs, the population 
probabilities of the corresponding atomic states 1 and 2 
have the form 

W ,=[p3 cos' p+ (l-p3)sin' p]sin' a(p)+~ Jr, 

W,=[p, sin' p+ (1-P3)cos' p]sin' a(p)-~ Jr. 
(15) 

The interference part of the population probabilities is 

(16) 

where 

Q= ! f{E,-E I )[l-P'/R']-"'dR 
R, 

is the frequency of the oscillations which is a slowly­
varying function of the impact parameter p when (5) is 
satisfied. As already noted, rpz(v) does not depend on 
the magnitude of the impact parameter, since p/Rs ':;::R l / 

R3« 1. 

The total cross sections for inelastic scattering pro­
cesses connected with the population of atomic states 1 
and 2 are obtained by integrating (15) over all the pos-
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sible values of the impact parameter p .:;::Rl : 

a, (v) = [p, cos' p+ (I-ps) sin' p ]a+~a, 

a,{v) =[p, sin' p+(I-p,)cos' p]a-~a, 

where 

"'a=[p3(1-P,) 1"'a sin 2p cos [Q/v+c:p. (v) ]. 

In these· expressions, 

D, 

a=a,(v)+a,(v)=2rr JSin2 a(p)pdp . 

(17) 

(18) 

is the total cross section for the population of states 1 
and 2 of the quasimolecule. For sufficiently high colli­
sion velOCities, (J"" 1TRU2 and the total cross section is 
only slightly dependent on the collision energy, z) in 
agreement with experimental data. [4] We note, more­
over, that i3 is a parameter of the quasimolecular terms 
and is independent of the impact parameter p. 

4. DEPTH OF MODULATION OF TOTAL CROSS 
SECTIONS 

The depth of modulation of the total cross sections 
for inelastic processes when population proceeds only 
through the excited II term is determined by two factors, 
namely, the ratio of cross sections for the population of 
channels 1 and 2 prior to their interaction in the region 
R =Rs, 1. e., tanZ i3 = (JZ(Rl)/ (Jl (R l ), and the mixing of 
quasimolecular states in the case of nonadiabatic inter­
actions in the region R =R3, 1. e., the quantity P3' The 
depth of modulation of the cross section for the popula­
tion of atomic states 1 and 2 is then given by 

K ,=2[p,{I-p,)],' tg P/[P3+(1-P3)tg' ilL 
K,=2[p3{I-p,) 1'" tg p/[p,tg' p+ (I-P3)]. 

(19) 
(20) 

Figure 2 shows the depth of modulation Kz as a func­
tion of the reciprocal velocity V-l for different values of 
the parameter i3 when the region of distant interaction 
between the terms is described by the Landau-Zener 
model (Fig. 2a) or the Demkov model (Fig. 2b). 

Experimental analysis of the modulation depth of both 
collision channels can be used together with (19) and 
(20) to determine the dependence of the quantity P3 =P3(V) 
on the collision energy for the region of distant non­
adiabatic interaction and the ratio of cross sections for 

0.8 .. 

0.6 . 

0.4 -

0.2 -

-....... 
. ""-.0.5 

"'" b .~ 

............. '-.....-----

3 5[71 ') :rir5 j• 

FIG. 2. Modulation depth of the total cross section u2(V) as a 
function of the parameters of the distant nonadiabatic region 
(1'3 63) and the ratio of the cross sections for initial population 
tan'2/3=u2(Rl)/Ul(Rl): a) Landau-Zener model; b) Demkov 
model. Values indicated against curves are the values of tan/3. 
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the population of excited states of the quasimolecule for 
R1 <R <R3, i. e., to within their distant interaction. 

When the states 1 and 2 are initially populated in the 
region R ~R1 with equal probability, i. e., 0"1 (R1) = ua(R1), 
the depth of modulation of the cross sections u1 (v) and 
ua(v) is the same 

(21) 

When the interaction between the terms for R =R3 is de­
scribed by the Landau-Zener model, the modulation 
depth is 

K~2 exp( -:IT,s) [1-exp(-2:rq,)]''', (22) 

where Y3 =Hfa/nvt:.F is the Zener parameter for the re­
gion R =R3, H1a is the matrix element for the interaction 
between the pseudocrossing terms 1 and 2, and t:. F is 
the difference between the slopes of these terms for R 
=R3' When the interaction in the region R =R3 is de­
scribed by the Demkov model, the depth of modulation 
is 

(23) 

where 53 is the Demkov parameter for the region R =R3 
and 11•2 are the ionization potentials of the correspond­
ing atomic states (in atomic units). 

When the initial cross sections for the population of 
excited quasimolecular states are not equal, the maxi­
mum depth of modulation in the first channel is observed 
for collis ion velocity v = V1 for which 

p,(v,) ~sin' ~~a,(R,)/[a,(Rd +a,(R,)], (24) 

and, in the second channel, for v = va for which 

p,(v,) ~cos' ~~a, (R,)/[a,(R,) +a2(R,) J. (25) 

According to (24) and (25), therefore, the maximum 
depth of modulation of the cross sections for each of the 
two inelastic scattering channels is reached for differ­
ent collision frequencies. Of course, the amplitudes 
of the interference terms for each of the channels are 
then equal. 

An interesting feature of the behavior of the modula­
tion depth appears when, for large internuclear dis­
tances, the quasimolecular states are almost degener­
ate: t:.121 - O. We then have P3 =t for the entire velocity 
interval, and the modulation depth is the same for both 
channels 

K,~K,=sin 2~~2[a,(Rda,(Rd l"'/[a,(R,)+a,(R,) J. (26) 

When only the II terms contribute to the total cross 
sections for the population of interfering atomic states, 
the observed modulation depth should be quite high (Fig. 
2). In fact, measurements of the cross section for the 
excitation of the ;\5852 A line of NeI by collision with 
Na+ ions have shown that the modulation depth reaches 
80%. C4l 
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If, in addition to II terms, the quasimolecular ~ terms 
contribute to the total cross sections for the population 
of the corresponding atomic states, the modulation depth 
for each of the channels is reduced, and the expressions 
for the modulation depth have the form 

K,(v)= 2[p,(i-p,)J"·tg~ 
P3+(1-p,)tg'~+a,(:S)/acos'~ , 

(27) 

K,(v) = 2[p.(i-p,) ],I·tg ~ 
p,tg'~+1-PJ+a2(:S)/acos2~ , 

(28) 

where U1.a(~) is the cross section for the population of 
atomic states through the quasimolecular ~ terms. 

Figure 3 shows the modulation depth of the total cross 
section for the excitation of the ;\ = 736 A line of Ne dur­
ing collisions between Na+ and Ne(1.7J as a function of 
the reciprocal of the collision velocity. The theoretical 
curve for the modulation depth is based on (27) on the 
assumption that tani3=l, <T1(~)=3u/2, which corresponds 
to the experimentally observed modulation depth of the 
cross section for the excitation of the ;\ = 736 A line of 
NeI[7] and 

p,~exp (-2:rq3); y,=H,,2/V!J..F~O.006/v. 

Thus, the measured dependence of the depth of modula­
tion can be used to determine the parameters of the 
pseudocrossing for large internuclear distances: Hfa/F 
=0.006 at. units. 

The structure of the l/v dependence of the modulation 
depth, which has been observed experimentally (Fig. 3), 
is due, in our view, to weak interference between quasi­
molecular L terms participating in the population of the 
final atomic states. 

There is one other way of obtaining the parameters 
of the interaction region. It is based on the analysis of 
the phases of the oscillating parts of the total cross sec­
tions [see Eq. (18)]. When the nonadiabatic region at 
R =R3 appears as a result of the pseudocrossing of 
terms, the additional phase CP3(V) is determined by the 

FIG. 3. Modulation depth K(v) and additional phase rps(v) as 
functions of the reciprocal collision velocity l/v. Curve 
l-experimental data for tbe ;\= 736 A line of NeI excited in 
the collision Na+ + Ne. [1.71 Curve 2-based on (27) witb tanj1= 1, 
(J1(~)=30/2, 'Y3=0.006/v. Curve 3-experimental points ob­
tained by analyzing the interference term in tbe total cross 
section for tbe excitation of the ;\=736 A line of NeI. [1.71 
Curve 4-theoretical value of tbe Landau-Zener phase rp3(V) 
for 'Ys = 0.009/ v. The uncertainties indicated correspond to a 
quadratic deviation with a 90% confidence interval. 
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parameters of the crossing terms: 

<p,(u) = (n/4) +,(,In y,-y,-arg f(1+iy,). 

Figure 3 shows the phase CP3(V) obtained by analyzing 
the interference term in the total cross sections for the 
excitation of the A = 736 A line of NeI in the case of col­
lisions between Na+ and Ne. For sufficiently high col­
lision velocities, the experimental dependence of the 
phase on l/v is very close to the behavior of the Lan­
dau-Zener phase. This enables us to estimate the pa­
rameters of the terms in the distant interaction region, 
and the result is H~2/~F=0.009 at. units. However, 
for collision velocities v - O. 03 at. units, the phase of 
the interference term begins to increase rapidly. For 
roughly the same collision velocities, Fig. 3 shows that 
the modulation depth of the total cross section for the 
excitation of the NeI lines begins to fall. This suggests 
that, when v - 0.03 at. units, the population coherence 
is violated, i. e., the differences between the adiabatic 
phases produced in the population region turn out to be 
of the order of unity, and the condition given by (6) is 
violated. An analogous reduction in the modulation depth 
of the total cross sections for inelastic processes is ob­
served with decreasing collision velocity for excitation 
functions for a number of spectral lines, obtained in 
experiments on inelastic scattering of various ions by 
neon atoms. [3,4) 

When the interaction at R =R3 occurs as a result of a 
close approach of the excited quasimolecular terms 
(Demkov model), the phase CP3(V) becomes a linear func­
tion of the reCiprocal velocity[2) 

<p,(v)= 1,-1, 1'2-ln(1'2+1) 
u (I.I,) 'I. 12 

(29) 

This velocity dependence of the phase CP3 leads to an in­
crease in the observed oscillation frequency 

Q'~Q+O.36(l,-I,)/(lJJ'/' at. units. 

Thus, the measured oscillation frequency is somewhat 
greater than the area of the "loop" formed by the inter­
fering terms on the diagram showing the dependence of 
the energy of the quasimolecular terms on the internu­
clear distance. 

Thus, studies of the conditions for coherent population 
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of interfering terms of the quasimolecule performed 
within the framework of certain model representations 
provides us with an additional means of interpreting the 
structural features of both the total cross sections for 
inelastic processes and the degree of polarization of 
spectral lines excited during slow ion-atom collisions 
as a function of energy. 

We have confined our comparison with experimental 
data to inelastic processes in collisions between Na+ 
ions and Ne because the most complete experimental 
data are, in fact, available for this ion-atom pair. 

The authors are greatly indebted to V. I. Perel' for 
useful discussions. 

l)Several terms are miSSing from the expressions obtained 
in [1] for the phases (/ik(V) because of the apprOximate eval­
uation of the phase integrals. Corrected values of (/ik are 
given in [2). 

2)If we suppose that in the population region R " Rl the matrix 
elements of the rotational interaction are linear functions of 
R[VkO(R)=c~], the total population cross section for states 
1and2is 

"R,' SR' [ R, ] a~-2--n cos 2b p ln-; pdp, 

o 

where b= (2C1V/1i) cos-l {3. For high velocities (b» I), 
(J"" 7T Ri/2, whereas, for small velocities (near the thresh­
old), (J",,27Tb2 J~1[pln(R/p]2 pdp=const(E-Uo), where Uo 
is the threshold energy for the inelastic process. 
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