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Decay and excitation of a quantum system following two 
successive sudden changes in the Hamiltonian 
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The response of a quantum system to two successive sudden changes of the Hamiltonian is considered. 
The dependence of the probabilities for various processes on the dwell time T of the system in the 
intermediate state is investigated, the interaction in the intermediate state being represented by a 
repulsive potential of the form ylr '. Analytic expressions are found for the limiting cases of large and 
small values of T. The deviations of the spectra of the dissociation products of diatomic molecules from 
the Franck-Condon distribution for resonance scattering of electrons is investigated in detail. A possible 
isotope effect for hydrogen molecules is noted. 

PACS numbers: 03.65.-w, 31.30.Gs, 34.70.Gm 

1. The problem of the transitions of a quantum sys­
tem described by a time dependent Hamiltonian arises 
in the treatment of various processes involving the in­
teractions of atoms and molecules. Such problems do 
not admit of exact solution if the transitions in the con­
tinuous spectrum are to be taken into account, and most 
of the known results either relate to special model Ham­
iltonians or have been obtained within the limitations of 
time dependent perturbation theory. Here we examine 
the reaction of a quantum system to two successive sud­
den changes of the Hamiltonian H(r, t) 1>; 

(
Ha(r), t<O 

H(r,t)= If'n' (r), O<I<-r. 
H,(r), -r<t 

(1) 

Here HOt and Ha are the initial and final Hamiltonian, 
and T is the dwell time of the system in the intermediate 
state described by Hamiltonian Hint. Such a problem 
was first formulated for a zero-range potential model 
under the initiative of Yu. N. Demkov, and the ejection 
of a weakly bound electron in an atomic collision was 
treated by Bronfin and Ermolaev(2) as an example. 

However, it is easy to exhibit a wide range of physi­
cal processes and systems involving successive fast 
changes in the character of the binding in which the in­
teractions are of a more complicated type. As an ex­
ample we might consider processes in which the outer 
electron shells of atoms are reconstituted as a result 
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of a cascade of nuclear transformations (in which the 
nuclear charge or the effective charge of the core of 
tightly bound electrons suffers changes). Specifically, 
we might speak of a sequence of {3+ and ff decays of a 
heavy nucleus, of the nuclear photo effect 
ZAN(y,lHl)z_lAN-l (with subsequent ejection of a K elec­
tron by a y ray from the excited product nucleus 
z_lAN-1), etc. 

The resonance scattering of an electron by a diatom­
ic molecule, 

e- + AB (v) -> (ABt 

e- + AB(v') 
)" 

" e- + A + B 

(2) 

may serve as another example. As can be shown, the 
theoretical treatment of this process involves a stage 
in which the problem of the reaction of the nuclear sub­
system to two successive sudden changes in the inter­
atomic potential must be solved. In fact (see, 
e. g. , [3-6),' the amplitude for process (2) has the form 
(except for a constant factor) 

Here C{liUl and X" are the wave functions for the initial 
(final) and intermediate states of the nuclear subsystem 
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(the subscripts i and f label the initial and final states, 
and the summation is taken over all intermediate 
states), r(r) is the autoionization width of the iOnic 
term, r,. is the total width of the /l-th level of the AB­
complex, whose energy e" is reckoned from the initial 
energy of the nuclear subsystem, e is the energy of the 
incident electron, r is the difference between the posi­
tion vectors of the two nuclei, and 1:(r) is a solution of 
the equation[3,.] 

(E+ 1/,,:..-V(r)) ~ (r) =-!p,(r) l'r(r). (4) 

in which V(r) is the complex potential for the interac­
tion of the atoms in the quasimolecule AB-, i. e., V 
= U(r) - (i)ir(r) (11= me = e = 1). 

Introducing the Green's function for Eq. (4), we can 
write Eq. (3) in the form 

Ail = J dr dr' !p,r'/'G(r. r') r·/'!pi. (5) 

If we neglect the variation of r( r) in the fundamental 
transition region (in this connection see[3,5,6]) and per­
form a Fourier transformation, we can write Eq. (5) 
in the following form, which involves only a single inte­
gration: 

(6) 

. where 

(7) 

is the probability amplitude for an intramolecular tran­
sition following two successive sudden changes in the 
interatomic potential at times t = 0 and t = T. 

It should be noted that the features of the quantum 
transitions considered below as functions of the dwell 
time of the system in the intermediate state are also of 
interest in connection with other physical processes and 
systems. For example, the collision of a fast atom 
with a molecule may involve two passages through the 
region of strong nonadiabatic coupling. Then at points 
of pseudocrossing of terms, an electronic transition is 
instantaneous as compared with the vibrational motion 
of the molecule provided a« v/ w, where a is the size 
of the nonadiabatic transition region, v is the velocity 
of the incident atom, and w is the vibrational frequency 
of the molecule. 

Related problems also arise in the treatment of the 
interaction of heavy dipole molecules with ultrashort 
laser-light pulses, the reaction of an atomic system to 
the sudden application of a magnetic field, [7] etc. 

The time dep~ndent Green's function 

(8) 

which describes the evolution of the system during the 
time T, is known in explicit form only for a limited num­
ber of Hamiltonians. The case of the oscillator poten-
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tial, corresponding to a transition between vibrational 
states of the intermediate complex AB-, has been well 
investigated in published studies. [3,4,6] Below, we use 
the model Hamiltonian 

(9) 

to discuss features of intramolecular transitions via the 
formation of an AB- ion with a repulsive potential. The 
interaction potential y/r2 admits of analytic treatment2 ) 

and (with y > 0) gives a reasonable apprOximation to the 
actual terms of negative iOns, which are characterized 
by a force that decreases with increasing internuclear 
distance r and an interaction that vanishes in the limit 
r- 00. This same approximation has been used by Chen 
and Magee[5] in treating the resonance vibrational ex­
citation of hydrogen molecules (in each special case the 
value of y can be chosen in accordance with the force 
acting in the fundamental transition region). 

Using the expansion of the known expression for the 
operator (ia/at+ a/2>-1 in spherical harmonics, it is not 
difficult to show that 

( . i) 1 1 ) -I i''>1 ( rr' ) {. r'+r"} 1-+-1-- =--_u, - exp 1-- , 

at 2 r' 4:n;rr'l't t 2t 

where the function u~(z) = zl/2J ~(z) satisfies the equation 

Thus, the problem reduces to the calculation of inte­
grals of the form 

i"+1 ( rr' ) {r'+r" } a~~(T)=-=-Sdrdr'R"(r)R,(r')u, - exp i-- , 
l'T T 2'[ 

(10) 

in which ROl and Ra are the radial wave functions for the 
initial (a) and final (/3) states of the system. The val­
ues of the transition integrals (10) are determined by 
the relationships obtaining among the characteristic 
time parameters T, aOl(a)J u-'~\a» and k-2 of the system, 
where aOl(S) is the characteristic region of motion in the 
bound initial (final) state, wOl(a) is the characteristic 
frequency of transitions to the discrete spectrum of 
Hamiltonian BOl(Bs), and k is the relative momentum of 
the particles (for transitions to the continuous spec­
trum). Let us consider the two limiting cases in which 
the time T during which the perturbation acts is re­
spectively short and long, 

2. When the time T during which the perturbation acts 
is short and BOl = Bs (this is the case of greatest interest 
for the study of fast atomic-nuclear processes) the ini­
tial state will obviously be only slightly altered. As 
can be seen, however, this condition is not enough for 
the applicability of time dependent perturbation theory. 
So let us write Eq. (7) in integral form: 

(11) 

(we are thinking of a transition between states i and j of 
the Hamiltonian BOl), where the 

(12) 
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are the overlap integrals of the wave functions for the 
initial (final) state of the quantum system with the wave 
functions of the intermediate Hamiltonian Hint. The time 
dependent perturbation series corresponds to an expan­
sion of amplitudes (7) in integral powers of T, an ex­
pansion that can be formally obtained by expanding the 
exponential exp(- ik 2T/2) under the integral sign in (11). 
If the corresponding product of overlap integrals (12) 
decreases with increasing k faster than any power (e. g. , 
exponentially, as is the case for Hamiltonians of the 
harmonic oscillator type, whose states belong to a dis­
crete spectrum), the perturbation series will converge 
uniformly. In the most interesting cases, however 
(when, for example, the Hamiltonians Ha(e) have a con­
tinuum of states in addition to the discrete spectrum), 
integrals (12) fall off at infinity according to a power 
law: fi(i)k ex k-n;(j), and the terms of the formal pertur­
bation series diverge, beginning with n + 1 (n = E(v - 1)/ 
2), where v=ni+nj - 3). In this case we have the 
asymptotic expansion 

00 00 

a,,(T)= Lb,;m)Tm+(-iT)'" LL c:;P"\'P+,)I', (13) 
p,q=O 

which can be derived by breaking up the integration in 
(11) into two regions, expanding exp(- ik 2 T/2) in the 
first region, and using the asymptotic series 

for the products of overlap integrals in the second re­
gion (here e i and e j are the energies of the initial and 
final states). Then the terms of expansion (13) are de­
termined as the corresponding inverse images (from 
the expansions about zero and at infinity). The coeffi­
cients in formula (13) can be easily calculated; in par­
ticular, for the cjj'O) we have 

A,pA j ;[ (-ie,)P(-ie;)'] (iYnI2) 

2n'p!q! (v+p+q)!! \!/,CYi' 

in which the upper (lower) quantity in the large paren­
theses is for odd (even) values of v+p+q (v+p+q=2s 
+1 or v+p+q=2s, where s=O, 1,2, ••• ) and C is 
Euler's constant. 

According to formula (13) only the first n terms can 
be found by time dependent perturbation theory: the 
subsequent terms of the expansion, which take all the 
virtual transitions to the continuous spectrum accurate­
ly into account, cannot be calculated by time dependent 
perturbation theory. 3) Asymptotic expansions of the 
type of (13) obtain for analytic Hamiltonians Ha,B' For 
nonanalytic potentials Va,B (of the square well type) the 
alj( T) have essential singularities at zero, but even in 
this case the first few terms of the expansion can be 
found by time dependent perturbation theory (the zero­
range potential is an exception: for it, perturbation 
theory cannot be applied at all). 

3. When the perturbation time T is long (this is the 
case of greatest interest for processes of the type of 
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(2» the system decays with a probability close to unity. 
In this case the leading apprOximation gives the Franck­
Condon distribution for the decay products: 

which corresponds to a transition to the continuous spec­
trum under the action of a single sudden change HOt 
- Hint of the Hamiltonian. Let us take the finite values 
of T into account in investigating the excitation prob­
ability and the deviation from the Franck-Condon dis­
tribution. 

For the case of transitions between discrete levels, 
when T» T rna" = max(a 2 , w- I ), the main contribution to the 
excitation integrals comes from the values of rand r' 
that correspond to a small value for the argument of the 
function u~(rr' /T). Then in the leading approximation 
in powers of 1/r we have the following expression for 
the amplitude for the O!- (3 transition4 ): 

2'r(J.+1),H! ' 

[.",=1.",(00), I.",(T) = Jr'+,/·R.(O) (r) ,,'/" dr, 

(14) 

(15) 

i. e., the dependence of the excitation probability on the 
duration T of the perturbation is mainly determined by 
the force F acting on the system in the intermediate 
state (Fmaxex(A2-t)/p~, where Po is the size of a typical 
region of localization of the initial bound state). 

In considering transitions to the continuous spectrum 
we express the final-state wave function as the sum of 
an incident wave R1,-)(r') and a reflected wave R1,+)(r') 
(E = k 2/2) and shift the integration contour in the com­
plex r' plane away from the real axis, integrating the 
term containing R1'")(r') along the ray argr' = rr/4 and 
the term containing Rp(r') along the contour shown in 
Fig. 1. When T» T max = max(a 2, W -I, k -2) the integrals 
along the ray arg r' = 11/4 converge rapidly in the neigh­
borhood of the origin and make a contribution of - l/T~+l 
to the probability amplitude for a transition to the con­
tinuous spectrum. All possible singularities of RE(r') 
in the complex plane (poles and branch points) lie at 
finite distances (independent of T) and also introduce 
contributions of - 1/r~+1 (A > 1). The remaining integral, 
taken along the line arg(r' - kT) = rr/4, is determined by 
the neighborhood of the point kT, which is fairly far 
from the origin. Hence for k 2T» 1 and potentials 
VB( r') that fall off rapidly at infinity (VB - (r' t n with n 
>-- A+ 1), we obtain 

Re r' 

(16) 

FIG. 1. Integration contours. 
The dashed (full) contour is 
for the integral containing 
Rj+)(r') (Rj-)(r '». 
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where 

ii.E(T)= V ~ J drR.(r) u,(kr) ei";'" (Im <'\,(E) =0). 

<'\,(E)=E.+6(k) j-1Mr('A-lh). 

Formula (16) gives the Franck-Condon distribution in 
the leading approximation; the corrections to this dis­
tribution are associated with the finite time for reduc­
tion in the intermediate potential of the wave packet de­
scribing the initial state. If the repulsion in the inter­
mediate state is strong enough (X> 1) the spectrum of 
the decay products is determined to terms of the order 
of 1/7~·1 by the first term in (16). To the same approxi­
mation, the total decay probability 

-J dk exp{id.I2T}ii.E (T) 
o 

(17) 

is unity. This can be easily seen directly by expanding 
one of the exponentials in (17) (which contains the dif­
ferential operator ~k) and integrating the resulting se­
ries by parts. 

If the leading correction term is taken into account, 
the energy spectrum of the decay products, according 
to (16), will have the form 

(18) 

. where 

is an operator describing the distortion of the spectrum 
waE = I aaE(CO) I 2 obtained in the Franck-Condon approxi­
mation as a result of the finite time of action of the per­
turbation. In particular, for an initial state localized 
in a neighborhood of Po (Ra - exp(-(r-po)2/a 2) with a 
«Po), Eq. (18) takes the form 

1 ( a' 0') 2 

w .... (T)=wo(1+A(T» exp 4"" 0po' u,(Po1'2E) I· (19) 

It follows from Eqs. (18) and (19) that taking into ac­
count the finite time 7 during which the perturbation acts, 
broadens the spectrum (in connection with the addi­
tional quantum indeterminancy) and shifts the peak of 
the distribution toward the lower energies (owing to the 
finite time during which the force F acts in the inter­
mediate state). The physical consequences of this con­
clusion are discussed in Sec. 5. 

Spectrum (18) may be characterized by two param­
eters: the energy at the peak of the Franck-Condon dis­
tribution (Eo=y/pij) and the force F acting on the par­
ticle in the fundamental region I r - Po 1- a of motion in 
the initial state; and in this form the spectrum reflects 
the features of any monotonically decreasing repulsive 
potential Vint • 

4. Equations (14) and (16), obtained above, are valid 
for asymptotically large values of 7 (7)> 7 rna.)' For 
smaller values of 7 the probability for finding the parti-
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cle at a finite distance r and various transition prob­
abilities are determined by the interference of two 
waves, one of which describes the outward motion of the 
particle to infinity after having been reflected from the 
potential barrier at distances r - (y/E)1/2. For exam­
ple, in the case of a localized initial state, the prob­
ability for the elastic process when poa < 7 (when the 
wave packet extends beyond the limits of the initial lo­
calization) is given by 

In the opposite case of a quasiclassical initial state, 
when Pnd - "K nd» 1 and y = 0 (d is the characteristic size 
of the potential well and Pn and "Kn are the momenta of 
the bound state inside and outside the well), for small 
times 7 satisfying p~2« 7«p~ld the interference is not 
important and the probability for the elastic process is 

in accordance with the classical picture of the motion 
of the initial state wave packet. For large 7 (7)> p~ld) 
we have 

2 d' 
w (T)- s·n' nn - ( d)' ( ') I -. n P" Pn T T 

5. Let us use the results obtained in Sec. 3 to dis­
cuss the features of the spectrum of the dissociation 
products of hydrogen molecules incident to resonance in­
teraction with electrons (process (2)). Using formulas 
(6), (16), and (18) with IE-Eol <Eo and r«Eo and ex­
plicitly exhibiting the dependence of the model param­
eters on the reduced mass J.1. of the molecule, we can 
put the spectrum of the dissociation products in the 
form 

W E(E)"'{1+~[ 16E(Eo-E) 
• 16E' 3Q' 

(20) 

where 

is the width of the peak of the Franck-Condon spectrum 
and w is the vibrational frequency. The Franck-Condon 
distribution for the decay products is compared in Fig. 
2 with the distribution calculated with Eq. (20) for an 
electron energy E corresponding to excitation of the H 2 
autoionization state (lsaK)(2pa.)22-~~;. It is not difficult 
to see that in this case the shift of the peak of the 
Franck-Condon spectrum due to the finite dwell time 
of the system in the intermediate autoionization state of 
Hi is given in the leading approximation in the param­
eter 1i = r /Eo by 

From this it follows that the spectrum of the decay 
products will be broader and its peak will be shifted to 
lower energies for heavier isotopic variants of the mole­
cule. In particular, the shifts ~E of the peaks for H2 , 

lID, and D2 molecules satisfy the condition 
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M 
E,a,u. 

FIG. 2. Comparison of the Franck-Condon distribution for the 
products of the resonance dissociation of hydrogen molecules 
(process (2» with the distribution calculated with Eq. (20) us­
ing the parameter values Eo'" 2.4 • 10"1 and n'" 1. 5 • 10-1 from[ 61 

and the experimental value r '" 7. 4 .10-3 from[9 I. The dash-
dot curve shows the Franck-Condon spectrum normalized to 
unity at the peak, and the full curve shows the spectrum cal­
culated with allowance for the finite dwell time of the system in 
the (1 sO",)(2pO"u) 2 2!:; state of Hz. 

llE (D,) -IlE (Hz) 

M(HD) -IlE(H2 ) 

3 
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1lTransitions following a single rapid change of the interaction 
are described by the theory of sudden perturbations and have 

been well investigated for specific systems. [1[ 

2lEarlier published papers on the resonance interaction of elec­
trons with molecules were based on numerical integration of 
Eq. (4) or on direct summation of expression (3). 

3lAs a specific example we give the asymptotic expansion of 
the amplitude for the elastic process following sudden re­
moval of the Coulomb potential with its subsequent restoration 
a time T later (Vo< = Va = -z/r, Ro< =Ra = 2rz3/2e-""): 

z', 5 32 ( , ) 'I, 
.,,(.)=1-;---(.'.)'+- - (z'.)·/,+ .... 

2 8 15 2" . 

°The known result ar,a - T-3/2 for free motion in the intermediate 
state (see, e.g. ,[B) follows from Eq. (14) with A=I/2 (,),=0). 
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Stimulated Raman emission and frequency scanning in an 
optical waveguide 
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Equations are derived for stimulated Raman emission in an optical waveguide. The arbitrary number of 
components of the radiation and also the dependence of the refractive index on the light intensity are 
taken into account in the equations. Solutions of the equations are obtained for some cases of practical 
interest. On the basis of the solutions the following phenomena are predicted and investigated: "ladder" 
scanning of the optical frequency in a fixed cross section of the waveguide; a "multiplication" effect of the 
initial scanning range due to mutual transformation of the radiation components; the possibility of 
controlling the scanning process by means of a weak input (Stokes) pulse. The possibilities of "quenching" 
stimulated Raman emission in a wave guide are also considered. 

PACS numbers: 42.65.Dr, 84.40.Vt 

INTRODUCTION 

It is known that various nonlinear phenomena can be 
observed in optical waveguides. Ippen et al. [1J have ob­
served broadening of the spectrum of picosecond light 
pulses passing through a multi mode optical waveguide. 
This broadening was attributed by them to phase modu­
lation due to the dependence of the refractive index of 
the waveguide material on the light intensity. In an 
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earlier paper(2J I called attention to the fact that the 
passage of an intense light pulse with an initially fixed 
field-oscillation frequency through a single-mode opti­
cal waveguide can be used to obtainl ) broadband scan­
ning of the frequency in this pulse, such that the scan­
ning interval can exceed, for example, 1014 rad/sec. 

Frequency scanning uncovers great possibilities for 
selective excitation of a specified level of multilevel 
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