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If one imposes chiral invariance at short distances on gauge theories with spontaneous symmetry breaking 
of the Higgs type one obtains a natural mechanism for the appearance of two classes of fermion masses: 
light ones and heavy ones. The light fermion masses turn out to be of the order g 2 times the masses of 
the heavy ones, g being the gauge coupling constant. The possibility of imposing chiral invariance is based 
on a nontrivial property of the renormalization of the Yukawa coupling constants in gauge theories. As an 
illustration a simple SU(3) lepton model is considered in which the ratio of the electron and muon masses 
can be calculated to be of order 1/ 13 7. 
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1. INTRODUCTION 

For many years now particle physics faces the fa
mous electron-muon problem. Although until now no 
differences in their interactions have been observed, 
their masses differ by a factor of about 200. Since in 
order of magnitude this factor coincides with the fine 
structure constant a the idea has been expressed re
peatedly that in a unified theory of weak and electro
magnetic interactions the mass of the muon might exist 
in the zeroth approxination in a whereas the electron 
mass appears only when the gauge interaction is 
switched on, and will therefore be of the order am ... 
The recent experimental news about the existence of 
heavier quarks and heavy leptons leads to the thought 
that the e- i.J. situation is not unique; the masses of the 
"usual" light quarks could be a fraction of order a of 
the masses of the heavy quarks and the masses of the 
light leptons may be a fraction of order a of the masses 
of the heavy leptons, etc. 

In attempts at calculating the electron mass as a 
"radiative correction" to the muon mass we encounter 
as a rule divergences. It is true that there are models 
in which the divergences are absent in the calculation of 
the electron mass, [11 so that the ratio me/m .. turns out 
to be finite and of the order 1/137, but these models 
have an exceptional character and can hardly be consid
ered realistic. 

In the present paper we show that there exists a con
siderably wider class of models in which in spite of the 
divergences the ratios of the type me/m .. turn out to be 
finite and of the order g2 (the square of the renormalized 
coupling constant of the gauge interaction). This result 
appears naturally if one requires an additional symme
try of the theory at short distances. In this section we 
explain the main idea of our approach. 

Let us assume that the masses of the fermions appear 
in some gauge theory as a result of spontaneous symme
try breaking of the Goldstone-Higgs type, i. e., through 
the appearance of a nonzero vacuum expectation value 
of some scalar fields. The Yukawa interactions which 
are responsible for the appearance of these masses will 
be written in the general form 
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ro ~h'-r. La(') "",(" + 
.:r.. = ~ r\f-'4 Uai,aipi '¥a. H.c. (1) 

aira. 

Here I/J[; and cpr are left-handed and right-handed fermi
ons transforming according to the representations r L 

and r R of the gauge group G, respectively, with rR not 
necessarily the same as rL; <I>~r) is a scalarJield trans
forming according to the representation r, hr are the 
Yukawa coupling constants for the appropriate irreduc
ible representation, 8di!", are the Clebsch-Gordan coef
ficients of the group G, satisfying the orthonormality 
conditions 

(2) 

In the tree approximation the fermion masses ap
pear on account of some nonvanishing vacuum expecta
tion values (<1>::» ;"0. The corresponding fermion 
masses are 

(3) 

It is easy to see that these are the masses of particles 
described by the four-component spinors 

since the mass terms which follow from the Lagrangian 
(1) can be written in the form 

If we want some masses to vanish in the tree approxi
mation it follows from Eq. (3) that we have to set equal 
to zero some definite combinations of the coupling con
stants and vacuum expectation values of the scalar 
fields, which does not seem very natural in the general 
case. We introduce, however, in place of the fields 
<I>~r) the fields X.i: 

(4) 

(Owing to the orthonormality conditions (2) the kinetic 

Copyright © 1977 American I nstitute of Physics 663 



energy expressed in terms of the new fields has the 
canonical form: 2: 1 a ... Xal 12.) Then, if the Yukawa cou
pling constants hT are all equal, hT = h, the Lagrangian 
(4) can be rewritten in the form 

(5) 

The Lagrangian (5) exhibits a larger symmetry group 
than the initial group G, namely, the chiral group G L 

X G R, i. e., it is invariant under independent transfor
mations of the right-handed and left-handed particles. 
In terms of the chiral group GLXG R the fields trans
form according to the irreducible representations: 
I/J;- (rL, 1), cpf- (1, rR), Xai - (rL, r~). In terms of the 
gauge group G the fields Xal transform according to the 
reducible representation r L@ rR' 

Since the mass matrix iIl ai is now 

m.,=h<x.'>, (6) 

the absence of some masses in the tree approximation 
means simply the vanishing of the vacuum expectation 
values of the corresponding field components Xal> which 
is, of course, much more natural than the vanishing of 
combinations of the type (3), since the question of which 
components (x"i) are different from zero reduces as a 
rule to a choice of axes in the "isotopic" space. 

In the presence of an interaction with gauge fields the 
chiral invariance (understood as the quality of the Yu
kawa coupling constants h T ) can only be approximate. 
The reason is that the gauge interactions exhibit sym
metry with respect to the group G, and not with respect 
to the chiral group G L X G R, and therefore even if one 
requires equal hT for some value of the normalization 
momentum p2 = /J.2, for any other value of the momentum 
the quantities hT will, in general, no longer be equal, 
since they undergo different renormalizations on ac
count of the gauge interactions. 

We now pose the following question: can the chiral 
symmetry be exact at "small distances"? In other 
words, is it possible that the ratios of the different Yu
kawa coupling constants hT(p) should tend to one for 
p- <Xi? Below we solve the Gell-Mann-Low equations 
for hT(p) and show that 

n, (p) =h, (g(p) Ig) 2,[ He, (g' (p) -g') +0 (g') ], 

g'(p) 
g' 

1 +b,g' In (pilL) 

Here g(p) and 'fiT(p) are effective coupling constants, 
/J. is the normalization momentum g(/J.) =g, hT(/J.) =h" 
and II and C T are certain numbers. In the derivation of 
Eq. (7) for hT the second order in If has been taken into 
account in the Gell-Mann-Low function, but the higher 
powers of the Yukawa coupling constants have been ne
glected (on account of the smallness of the fermion 
masses compared to the intermediate boson masses). 
We assume that asymptotic freedom holds in all con
stants of the theory: g(p)-O, hT(p)-O for p_<Xi, Le., 
b1 > 0, II> O. 

A remarkable property of the expression (7) for 'fiT is 
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the fact that the number II does not depend on the repre
sentation according to which the scalar fields trans
form, L e., does not depend on r. This is a conse
quence of a nontrivial cancellation occurring in pertur
bation theory. It is for this reason that we can impose 
the following conditions on the ratios hT : 

n,,(p)lii,,(p) -+1, p-+oo. (8) 

If the power II were to depend on r, then since g( p) - 0 
as p- <Xi, the functions hT(p) would tend to zero differ
ently, and the short- distance chiral symmetry would be 
one hundred percent violated. From (8) and (7) we ob
tain in the limit p- <Xi (g(p) - 0) 

h" (1-e"g') =h"(1-e,,g') = ... ""'h. 

We see thus that the requirement of short-distance 
chiral invariance leads to the result that the physical 
Yukawa coupling constants differ by quantities of the 
order If. 

(9) 

With the help of the relations (9) one can express the 
fermion masses in the tree approximation (3) in terms 
of the renormalized constants h, g and the vacuum ex
pectation values of the fields Xal (making use of the ex
pression of the fields <I>~T) in terms of Xai given by Eq. 
(4». As a result of this we obtain 

(10) 

This implies that the fermion masses can be divided 
into two classes: light fermions and heavy fermions. 
The heavy fermions are those for which the masses mai 

correspond to nonvanishing vacuum expectation values 
(Xai)' The masses of the light fermions, corresponding 
to vanishing (Xai), are of the order If times the masses 
of the heavy fermions. 

Since the starting equation (3) is strictly valid only in 
the tree approximation, corrections to it can also yield 
effects of order If. Therefore it is desirable to make 
use of a formalism in which an equation of the type (3) 
may be considered as exact. A formalism suitable for 
this is the effective-action approach(2,3] for a system 
situated in an external scalar field. Since by definition 
the effective Lagrangian includes all the radiative cor
rections, Eq. (3) is indeed exact in this case, albeit 
with a slightly different definition of the renormalized 
coupling constants hT than is usual (this will be explained 
in more detail below). 

There is another essential reason why the use of an 
effective Lagrangian is convenient. An effective La
grangian contains effective coupling constants which 
depend on the external scalar field as a parameter (cf., 
e. g., (4]). Letting the external field go to infinity we in 
fact go to short distancesl) and may set all 'fiT equal to 
each other. We thus realize exact chiral invariance at 
small distances directly in the effective Lagrangian, 
which cannot be achieved by means of the coupling con
stants occurring in the usual Lagrangian. 

Finally, there are purely technical advantages to the 
use of an effective Lagrangian: the relative simplicity 
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of considering the region of momenta of the order of the 
particle masses, usually causing difficulties when the 
renormalization group method is used; the convenient 
normalization conditions which determine the physical 
coupling constants as effective coupling constants for 
values of the scalar fields equal to their vacuum expec
tation values, etc. 

The paper is organized as follows. In Sec. 2 we de
rive the renormalization group equations for the fermi
on mass in an external field. At the end we arrive at an 
exact equation of the type of Eq. (3) in which the con
stants are functions of the external field. In Sec. 3 we 
consider the Gell-Mann-Low functions, which deter
mine the behavior of hT for large values of the field 
within the framework of perturbation theory. We de
rive Eq. (7) and show that the number v does not depend 
on the representation r according to which the scalar 
fields transform. This proves Eq. (10); however for 
an explicit determination of the coefficients cT it is 
necessary to know the Gell-Mann-Low function for the 
constants hT in the two-loop approximation, which we 
will consider in another paper. In Sec. 4 we describe 
a simple SU(3) model of the leptons, which puts the 
electron muon and neutrino into one triplet and where 
one can in principle calculate the ratio me/m ", - t!'. 

2. THE RENORMALIZATION GROUP EQUATIONS 
FOR THE FERMION MASS IN AN EXTERNAL FIELD 

It is well known[2J that the effective action is the gen
erating functional of the one-particle-irreducible 
Green's functions of the system. We are interested in 
that part r of the effective action which is related to 
Green's functions r(2,n) with two fermions and an arbi
trary number of scalar particle lines (for simplicity we 
first consider the case of one kind of scalar particles 
only): 

r=.E ~I J d'xd'yd'x, ... d'xn 

x r~~'·l(x, y, x" ... , xn),p. (x)1j), (y) Il> (x,) . .. Il> (xn ). (11) 

Regarding 4> as a constant field and gOing over to the 
p-representation, we obtain 

r ~S d'p r l".'( 0)- () () Il>n (12) 
= ~ (2rr)'·' p,p,D, ... , IP. P 1j:, p -;;T' 

where 

r :: .• , (p, p',p" . .. , pn) (2rr)'!)'" (p-p' -!op.) 

= S d'x d'y d'x, ... d'xnr~i,n) (x, y, x" ... , xn)exp{-ipx+ip'y-i!op,x,}. 

(13) 

The quantity r(2, n) which enters into (12) can be split 
into parts which are even and odd with respect to the 
fermion momentum: 

(14) 

Hence 

d'p 
r= J (2rr)' [z.(p',<p);ji(p)p1j:(p)-M(p', cD);ji (p)1jJ (p)], (15) 
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Z ( , cD) = -{1 rIa,., ( ') <p n 

• p , i..l odd P n!' 
n=O 

(16) 

M( 2 "') .E~ rl2.n, ( ') cD n 
p,w =- erl!n P- " n. 

It is clear from (15) that the Green's function of the fer
mion in the external field 4> is 

G-'(p, 1l»=M(p', <P)-Z.(p', Il»p, (17) 

where the functions M and Z~ are defined by the equa
tions (16). 

The one-particle irreducible Green's function r(2.nl 
satisfy the Callan-Symanzik equations (these equations 
are valid separately for r odd and r even): 

Where, as usual, 

fig 1 filnZ. 
p(g)= ~a;' Y.=-2~-a;-' 

1 fi InZ~ 
(19) 

1~=-2~----a;-' 

and /J. is a normalization parameter. 

It follows from (18) and (16) that M and Z. also satisfy 
an equation of the Callan-Symanzik type with the addi
tional terms y ~ 4> a / a4>: 

(20) 

Similar equations for the effective potential and other 
quantities of that type have been obtained by Coleman 
and Weinberg[3J (cf. also[4J). 

As can be seen from Eq. (17), the physical mass m 
in the external field 4> is determined by a solution of the 
equation 

M(m', cD)=Z.(m', cD)m (21) 

and obviously depends on /J., g, and 4>. The ratio 
M(/J., g, 4»/Z.(/J., g, 4» satisfies Eq. (20) without the 
term 2y. (this can be seen simply subtracting the equa
tions for lnM and lnZ. from one another). This yields 
easily that the physical mass m =m(/J., g, 4» also satis
fies the equation 

(22) 

Until now we have restricted ourselves, for the sake 
of simplicity, to the case of one scalar field 4> and 
charge g. In addition we have considered fermions of 
only one kind. In cases of realistic interest there are, 
of course, several fields 4>IT) and charges gj, fact which 
will be taken into account in the equations below. The 
set of constants gj may include the gauge coupling con
stant g, the Yukawa couplings hT and other dimension
less constants which occur in the theory; the fields 4>(T) 
refer to different irreducible representations of the 
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group G; the possible indices on the fermion masses 
will temporarily be omitted for simplicity. In Eq. (22) 
one must make the substitution: 

. a 
~!....-+ ~ p,-, 

8g ~ og, 

Dimensional considerations imply that one can write: 

(23) 

hence 

a a 
[ - ~ 0-1,)<1>,-.-+ 1:~,-+ 1 ]m(<1>" ~l,g,)~O. 

"-J ow, a gi 
(24) 

, 

For the gauge theories to be considered below the 
Gell-Mann-Low functions (31(g) are gauge-invariant, i. e., 
do not depend on the longitudinal part of the vector boson 
propagator. The quantities Yr related to the renormal
ization of the wave functions depend on the gauge. In 
general, the gauge-noninvariance of the effective action 
has been noted repeatedly. We have shown before 
(cf. [4]) that some physical quantities (e. g., the mass 
ratios in dynamical spontaneous symmetry breaking) do 
not depend on the gauge choice. We show here on the 
example of the quantity 1Il(cI>" g;, Il) that the gauge-in
variant field- dependence appears if instead of the fields 
cI>r one considers the renormalized scalar fields 

(25) 

where the factors tT characterize the change of the re
normalization constant of the wave function of the parti
cle corresponding to the field cI>r in the presence of ex
ternal fields (including the field cI>T itself). More pre
Cisely, tr(cI» is that function of the scalar fields which 
appears in the expression for the effective action as a 
factor in front of the term (a" cI>T)2, i. e., (cf. (3]) 

(26) 

It is easy to see that this term, which is related to the 
kinetic energy of the scalar field, can be written in the 
form 

(27) 

Indeed, the error made by introdUCing tT under the de
rivative is small, of the order of .t;. 

The function t r ( cI» itself satisfies an equation of the 
Callan-Symanzik type[3]: 

(28) 

Making use of this equation one can go over from the 
variables cI>r to cI>~ in the following manner 

a n a 1 ~ & In ;. a 
1: (1-y,) ii In <1>. ~ L. (1-y.) a In <D.' +"2 .t....J (1-y,) a In <1>, a In <1>,' 

T T,.! 
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Cancelling the terms which contain Y and substituting 
(29) into (24) we obtain 

a alnt'; a 
[ -~-,-~il'(-"') -, "-;' a In <D, ~ og, ~~co,,,t a In <D. 

( a) ] + 3, - -'-1 m~O. 1:, a g, $~'''"'t (30) 

One still needs to replace differentiations with re
spect to gj at constant cI>T by differentiations at constant 
cI>~: 

( a) ( a) ~ ( a In <D,' ) a 
iJg; <ll = ag; 'ZI' + ~ --ag;- ~ Bln<D/ . (31) 

Comparing (31) and (30) we finally obtain: 

Thus, as a function of the variables (cI>~, Il, gil the quan
tity III satisfies an equation which does not contain 
gauge-dependent coefficients. 

We now assume that spontaneous symmetry breaking 
occurs in the system, so that even for switched off ex
ternal sources some of the fields cI>r have nonvanishing 
vacuum expectation values < cI>r) = vT• We consider a re
gime in which the fields cI>; vary proportionally to their 
vacuum expectation values vT (when the sources are 
switched off), i. e., we assume 

<D/~t.v •. (33) 

This regime is very natural in the framework of the re
normalization group: if, as is usual, we would deal 
with quantities which depend not on fields but on mo
menta, it would correspond to a proportional variation 
of all the momenta starting with some fixed set. We 
understand the transition to short distances in the usual 
sense: A-oo. 

In the regime (33) the sum of partial derivatives 
LcI>;a/acI>~ is a/at(t=lnA) and in place of (32) we obtain 

[-~+ ~ ,l,~+1]m(t.v"~l.g)~o. 
dt ~ ag, 

t~ln/" (34) 

The general solution of the equation (34) is well known: 

m~F(g,(t) )e'. dg,(t)/dt~p.(g). g, (0) ~g,. (35) 

where F is an arbitary function of the invariant charges 
g, determined from the boundary conditions, e. g., at 
t=O(cI>~T) =V~T)). 

We now consider the very essential question of the 
boundary conditions for the equation (34). This equation 
was obtained from the usual Callan-Symanzik equations 
for the usual one-particle irreducible Green's functions 
r(2, n\ and the boundary conditions for rn are, in their 
derivation, related to the boundary conditions on r(2, n). 

These conditions are imposed at p = IJ. and determine, in 
particular, the values of the renormalized coupling con-
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stants. Thus, for instance, one can set 

r"· I, (p, p, 0) I p~"=h, (36) 

where h is the Yukawa coupling constant of the fermion 
and the scalar field, etc. The boundary conditions for 
the other r(2. n) are determined from (36) and also from 
the normalization conditions for r(2.0) and r(O·2) and 
therefore depend explicitly on J,J.. The parameter J,J. 

which is an argument in Eq. (34), enters exactly through 
these normalization conditions. It is clear that such a 
normalization in the solution of Eq. (34) is inconvenient, 
since the boundary conditions are imposed not on the 
quantity m(t, g, ... ) itself, but on functions which play 
an auxiliary role. It is considerably more convenient 
to introduce a new definition of the renormalized cou
pling constants, directly in term of quantities which 
depend on the scalar fields and which enter into the ex
pression of the effective action. Such a "field" defini
tion of the charges (coupling constants) (we shall call 
the usuall definition a "momentum" definition) was pro
posed in[3] and discussed in detail by us in[4]. 

We define the Yukawa coupling constants hT by means 
of the requirement that Eq. (3) for the Fermion masses 
mai which in the usual, "momentum" normalization of 
the constants is valid only in the tree approximation, 
should be exact. Then by definition the constants hr 
are 

(37) 

where nlai are the physical masses of the fermions in 
external scalar fields V~T). 3) Such a definition of the re
normalized Yukawa coupling constants fixes the func
tions F(gj(t)) uniquely in the general solution (35) of the 
equation (34), written for the masses nlaj(t). Indeed, 
for t=O,-Le., for q,~T)=V~), according to the defini
tion (37), we have 

'f1 ", ('I m,,(O)= ~h,e" .• v. , 

hence 

~ (1') <rl '{"1 (r> f(r) 
m,,(t)= ~7i,(t)El, •.• v. e'= ~7i,(t)El" .• «D. ; 

co 

(38) 

The gauge coupling constant g can also be defined in 
the "field" manner, namely, in terms of the physical 
mass of the vector boson via a formula of the type 

Mw=gv. 

After defining the "field" normalization of the coupling 
constants we can calculate the effective coupling con
stants hr(t) and i(t) for large values of the fields. This 
allows us to formulate the requirement of chiral invari
ance at "short distances, " discussed in the introduction 
by means of requiring that the constants hr(t) become 
equal to t - 00. (More precisely, hrl/hr2 -1 for t - 00.) 

We explain the procedure of transition from the "mo-
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mentum" to the "field" definition of the Yukawa coupling 
constants in the framework of the first approximation 
of perturbation theory, neglecting details which are re
lated to "isotopic" indices. 

From the definitions (14)-(16) for M(Jl', q,) and 
Z~{f}, q,) it is obvious that in the tree approximation 

(39) 

It is easy calculate M( Jl', q,) and Z.( Jl', q,) also in the 
one-loop approximation, similar to[3.4]. If one then ex
presses the physical mass m, which is a root of Eq. 
(21), in terms of the renormalized fields q,; = !;'~/2(q,) q,T 
(the quantity !;'T can also be obtained by means of per
turbation theory), then as a result one can obtain the 
following expression for the physical mass: 

m(<<D, fl, g.)=h«D' [Hag'ln~f (g,,~)]. 
cDr v, 

(40) 

Here a is the coefficient in the Gell- Mann- Low function 
I3 h for the effective coupling constant h, J,J. is a normal
ization momentum used for the "momentum" definition 
of the renormalized coupling constant h, and f is a func
tion of all the coupling constants gj and of the various 
ratios vr/v.. It is essential that in the regime (33) we 
have q,;/q,;=v,/v •• The transition to the "field" defini
tion of the renormalized coupling constant h (we tem
porarily denote it by hF) consists in setting 

m(<<D:=v" fl, gi) =hFv, (41) 

Le. , 

h [ 1 +ag2 1n ( ~, f) ] = hr. (42) 

Expressing the function m(q,', •.• ) in terms of hF we ob
tain 

m(<<D', ... )=hF«D'(Hag2 1n (v,/«D:»=h'«D'{1-ag'lnA). (43) 

Thus, after the introduction of the "field" coupling con
stant hF, 111 ceases to depend on J,J. and becomes a func
tion of t = In .\. 

Of course, any definition of the coupling constant 
leads to the appropriate Gell-Mann-Low function for 
that constant. In particular, with our "field" definition 
of hF (41) the Gell-Mann-Low function is 

f) m(lnA, ... } I 
~h= • 

ii In A «D' In ,~O 
(44) 

To first order of perturbation theory we obtain that 
13h = - ahF g2, where a is the same as for any "momentum" 
definition of h (cf. (40)). In the following section we 
make use of this fact for the calculation of 13h by means 
of the simplest Feynman diagrams. 

One would like to stress that the use of the "field" 
definition of the coupling constants is purely a question 
of convenience. One can, of course, start also from 
the "momentum" definition, but then the corrections of 
order g2 to the "chirally invariant" values of the masses 
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would appear from other sources: from the difference 
between the renormalized constants hr from each other 
and from corrections to the tree approximation. The 
latter can be left out by definition when the "field" ap
proach is used. The definitive expression for such 
quantities as the mass ratio should not depend on the 
method of procedure. 

3. CALCULATION OF THE FUNCTIONSh, IN THE 
ONE-LOOP APPROXIMATION 

We calculate the coefficient of the term hrt!' of the 
function i3hr =' I3 T and show that it does not depend on the 
representation r of the scalar field, but depends only on 
the representations to which the spinor fields belong. 
It was already pointed out that it is this circumstance, 
which does not follow from general group-theoretical 
considerations, which allows one to impose the require
ment of chiral invariance at short distances. 

Strictly speaking, as we explained in the preceding 
section, for our purposes we have to calculate the 
"field" Gell-Mann-Low function, however, since in the 
first order of perturbation theory in which we are now 
interested, the Gell-Mann- Low function does not depend 
on the method of definition of the coupling constants, and 
thus we use the "momentum" definition. 

A formal calculation of {:3r is carried out in the Appen
dix; here we obtain the same result by means of a more 
indirect reasoning which may turn out to be useful in the 
next order of perturbation theory. We start out by set
ting all the bare coupling constants hrlJ in the Lagrangian 
equal to one another: hrlJ = ho. Then all Yukawa couplings 
(1) can be written in terms of the fields Xal in the form 
(5): ho~;cpfXai where the Xal transform according to the 
representation rL@ r;-a reducible representation of 
the group G. The expression ho~;; cpf Xal is at the same 
time an invariant of the chiral group G LX GRin which 
the left-handed fields (indices a) and the right-handed 
fields (indices i) transform independently. T he bare 
vertex has now the form 0aa' °1 j' where the indices a and i 
refer to the fermions and the indices a', i' refer to the 
scalar field. It is obvious that if all the coupling con
stants hr are renormalized in the same way to first or
der in t, then to this order the vertex must retain its 
structure 0aa'oW' Conversely, if the gauge interaction, 
which generally does not exhibit the chiral G LX G rin
variance, renormalizes the coupling constants hr dif
ferently, then the 0aa' 0Il' structure will be destroyed. 
This must manifest itself in the appearance of a new 
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matrix structure, namely: (F')aa,(F")W, which in dis
tinction from the structure oaa' OJ I' does not exhibit chiral 
GL x G R- symmetry, but is an invariant of the group G. 
We will convince ourselves here that to first order in 
If the terms proportional to the quantity (F")aa,(F")i i' 
cancel in fact, meaning that all coupling constants hT 
are renormalized identically, i. e., that the coefficient 
of hrt!' in the Gell-Mann-Low function i3 r is indeed inde
pendent of r (the representation to which the scalar 
fields belong). 

The complete renormalization of the vertex, taking 
into account the wave function renormalization of the 
external particles, is determined by the diagrams of 
Fig. 1. 

Let F;b denote the generators of the representation 
r L and let Fij be the generators of the representation 
rR; then the generators of the reducible representation 
rL@r; are F;b oij- 0abFi;, where, on account of the 
hermiticity of the generators Fi~ =F~i' The vertex de
scribing the emission of a vector boson by the scalar 
particle Xal is proportional to this matrix. Keeping this 
in mind it is easy to calculate the logarithmically di
vergent contributions of the individual diagrams in Fig. 
1 for an arbitrary choice of gauge a of the vector meson 
propagator (D",v =[g",v- k", kv(l- a)/k2] /k2). The graph 1, 
a yields (we omit the common factor (~/81T2) lnA) 

the graph b: 

the graph c: 

the graph d: 

6~. (PP) p, (-cd2), 

the graph e: 

(F"F")".6,.,(-a/2) , 

and the graph f : 

Summing these contributions we obtain 

, 3 
k.. 1n.\- [(F"F") •• ·6",+6,,·(PP) ,'d 
8n' 2 

3go' C, (rd + C, (rR) 
=--In.\ 6 •• ,6"" 

8n' 2 
(45) 

where C2(r) is the eigenvalue of the Casimir operator 
for the representation r: 

We note, first, that as expected the result is gauge
invariant, i. e., does not depend on the choice of a. 
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Secondly, the structure F: •• F7. i which appeared in the 
individual graphs cancels in the sum leaving only the 
GL x GR-invariant structure 0 ••• 5i• i , which, as was in
dicated above means that all the Yukawa coupling con
stants hT which couple the irreducible scalar fields are 
renormalized in the same manner to first order in!1'. 

The corresponding term in the Gell-Mann-Low func
tion is 

(47) 

and does not depend on the representation r of the scalar 
field. 

We emphasize once again that the cancellation of the 
term F;'. F;. i is "accidental" (although, as we shall see, 
it occurs for all groups and all fermion representations). 
From general group-theoretic considerations one should 
expect, on the contrary, that in general such a term 
may appear. 4) 

Thus there is no reason to consider that in order g4 
there will occur the same cancellation; moreover in this 
order the Gell-Mann-Low function depends in general on 
the method of definition of the coupling constants. Since 
we have introduced the "field" definition of the coupling 
constants (Sec. 2), we have in fact fixed which Gell
Mann- Low function we are dealing with. We assume 
that for this definition 

~,=-ah,g'+a,h,g'+ ... , a= (3/16n') [C, (rL) +C, (r.) 1, 
~,.=-b,g·+b2g·+ ... (48) 

(As was already pointed out, we neglect higher-order 
terms in the Yukawa coupling constants on account of 
the fact that the fermion masses are several orders of 
magnitude smaller than the vector boson masses.) 
Solving the renormalization group equation (44) together 
with the equation djf/dt=Sg2, we obtain Eq. (7): 

(49) 

where 

Imposing chiral invariance at short distances, which 
as explained above means 

(50) 

(cf. Eq. (9», we obtain for the physical coupling con
stants h T : 

h,=(1-c,g')h, (51 ) 

where it suffices to include in the coefficient cT only the 
r-dependent part: 

(52) 

According to Eq. (37) the fermion masses mai are now 
determined exactly (i. e., including radiative correc-
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tions) by the formula 

Substituting here the expression (51) for hT we obtain 
finally, up to terms of order g4: 

a'i' 

(53) 

which agrees with Eq. (10) of the Introduction. A sim
ple example of application of Eq. (53) is discussed in the 
following section. 

4. AN EXAMPLE OF APPLICATION OF Ea. (53) 

Here we give a simple example of a model in which 
one can apply the ideas developed above and compute, 
in principle, the ratio me/m" - g2. 

We consider the SU(3) model of weak and electromag
netic interactions of the leptons 11, e and ~ mentioned 
in[l], but rejected by the authors, since according to 
their logic the ratio me/m" in this model remains a free 
parameter. We show that adding the requirement of 
small- distance chiral invariance fixes this parameter, 
and it turns out to be proportional to C1 = 1/137. 

We construct two leptonic triplets which exhibit the 
e- ~ universality: 

It is convienient to replace the triplet cP L by the antitrip
let 

T he quantity cP L transforms according to the represen
tation rL=3 of the gauge group G=SU(3), whereas CPR 
is in the representation r R = 3*. Accordingly, the in
teraction of the leptons with the octet of vector bosons 
has the form 

where F n ="An/2 are the generators of the group SU(3). 
Since the charge matrix is diag(O, -1, 1) the photon is 
the combination A = 1/2 W3 - (!3/2)We. The orthogonal 
combination is the neutral intermediate boson Z 
= (!3/2W3 + 1/2 We; it interacts with the leptons propor
tionally to the matrix (1/v'3)diag(2/3, -1/3, -1/3), its 
interactions with e and ~ being purely axial-vector, 
i. e., parity conserving. Since the group SU(3) contains 
the Weinberg-Salam group SU(2) x U(l) as a subgroup, 
the Weinberg angle is determined to be 6w = - 30°. 

This model contains three types of charged vector 
bosons: 
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The processes involving the exchange of W'-bosons lead 
to the standard theory of weak interactions. Processes 
with the exchange of doubly charged U-bosons will mani
fest themselves only via a charge-asymmetry in the re
action e+ e- - /l+ /l- at sufficiently high energies. The 
exchange of a V-boson modifies somewhat the cross sec
tion for elastic v .. e-scattering and in addition leads to 
the wrong electron polarization in muon decay. The 
existing experimental data are not in contradiction with 
this model if A1v > 3Mw• 

Assume that the masses of the particles appear as a 
result of spontaneous symmetry breaking of the gauge 
invariance, Ii la Higgs. In particular, let the fermion 
masses appear as a result of the Yukawa interaction of 
the form ~ L rp R X with scalar fie Ids X. In this case the 
scalar fields X transform according to the reducible 
representation 303* = 3*0 6. Accordingly the Yukawa 
interaction must, in general, be written with two inde
pendent coupling constants h3 and h6: 

where <1>(3) and <1>(6) are scalar fields, transforming ac
cording to the irreducible representations 3* and 6 of 
SU(3). The coefficients in Eq. (54) have been selected 
in agreement with the normalization of the Clebsch
Gordan coefficients, Eq. (2). In order that the electron 
and muon acquire mass it is necessary that the vacuum 
expectation values of the fields <1>1 3) and <1>~~) = <1>~~) be 
different from zero. Then 

It is understood that in general lIle and m .. are, in gener
al, independent quantities. However, if one imposes the 
condition of chiral invariance h3 = h6 = h, the Yukawa in
teraction can be written in the form h~: rpf Xai> where the 
fields 

(55) 

are irreducible in the framework of the chiral group 
SU(3)xSU(3) and the question of which components (Xai) 
are nonzero reduces to a choice of axes in the "isotopic" 
space. If one sets (X32) *0, (X32) = 0, then we obtain in 
zeroth approximation in !!" 

(56) 

Corrections of first order in g2 are given by the general 
formula (53). From it we obtain: 

m.=m;') [1 +0 (g') 1. m.=g'm.(c,-c.) 12, m,=O. (57) 

where, accordingtoEq. (49), C6 -c3 =(a3 -a6 )/bt.g=2e, 
e2 /41T = Ct. = 1/137. 

The vector meson masseS also appear as a conse
quence of nonvanishing vacuum expectation values of 
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scalar particles. We note that the presence of (X32) *0 
alone does not split the masses of the Wand V bosons. 
In order to make the V and U bosons heavy one can in
troduce, for example, an octet scalar field ~ (which for 
group-theoretic reasons does not interact with the lep
tons) with nonvanishing vacuum expectation value for 
~8' As a result we obtain the following masses of the 
vector bosons: 

MA'=O. Mw'='/,g'<Xn)', J!.fz'='/,g'<x,,)', 

.W v '= Ij,g'< x,,)'+' /;g'<;,)'. Mc'=g'<x,,)'+' /;g'(£,)'. 

subject to the sum rules 

The example considered here is meant, of course, 
only as an illustration. For us it is important only that 
the ratio of the fermion masses is of the order!!" and 
can be obtained in a quite natural manner. 

We are indebted to V. N. Gribov, Yu. L. Dokshitser 
and I. T. Dyatlov for useful discussions. 

APPENDIX: A DIRECT CALCULATION OF THE 
GELL-MANN-LOW FUNCTION FOR THE YUKAWA 
COUPLING CONSTANTS 

A Yukawa interaction which is invariant under the 
gauge group G can be expanded into a sum in terms of 
the irreducible scalar field representations: 

(A. 1) 

where the spinor fields </I: and rpf and the scalar fields 
<1>~T) transform respectively according to the representa
tions r L, rR, and r of G. The invariance of this interac
tion Lagrangian implies 

(A. 2) 

where F:b , F;i, F~a are the generators of the group G 
respectively in the representations rL, rR, and r. Ac
cording to the general definition of the Gell-Mann- Low 
function 

In the transverse gauge Z. = Z ~ = 1, and in the expression 
for Zh there survives only the diagram represented in 
Fig. 2a, which together with the graph for Z~/2 (Fig. 
2b) yields 

IX 
1 

. JAb 
I~a 

a 

FIG. 2. 
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It is obvious that the matrix Xdr!", must be proportional 
to e d r: '" . We determine the proportionality coefficient 
and show that it does not depend on the representation 
r of the' scalar fields which enter into the Lagrangian 
(A. I) but is completely determined by the representa
tions rL and r R to which the fermions belong. 

T he matrix Xdr: '" can be identically rewritten in the 
form 

We make use of the commutation relation (A. 2) and of 
the fact that (F" F")X)! = C2(r) 0X)!" where (;2(r) is the eigen
value of the Casimir operator in the given representa
tion. We have 

Using Eq. (A.2) once again, we obtain 

We see that the explicit dependence on the representa
tion r of the scalar particles has disappeared. Thus 

3h,g' C, (rL) + C, (rR) 
~,=- 8lt' 2 

in agreement with the calculations of Sec. 3. 

1)The fact that the large-field limit corresponds to a passage 
to short distances follows from the circumstance that the 
field-dependence of the effective coupling constants in the ef
fective Lagrangian duplicates the dependence ofthese constants 
on the momentum (for some definition of the renormalized 
charges). Moreover, it can be seen from the Feynman dia
grams that large values of the external scalar fields as well 
as large external momenta cut off the region of integration 
with respect to small momenta, i. e., the contribution of 
large distances. 

2)For SWitched off sources we shall assume that Simultaneously 
~r -v r and ~: -v r' which reduces to the normalization !;r(~:) 
= 1 condition for !;r with all ~: =vs' This implies some change 
of the normalization and will be discussed in detail below. 

3)We note that the constants defined according to (37) and (36) 
differ by quantities of the order g2. 

4)One can verify that this is the situation which arises in the 
renormalization of the coupling constants in a "A qf coupling. 
IT one requires chiral invariance of these interactions by im
posing relations on the coupling constants "A, then these rela
tions will be violated already in first order in 1', so that in 
this sense the Yukawa couplings are unique. 
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Nonadiabatic transitions between decaying states 
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Processes of the charge exchange type between multiply charged ions and atoms are investigated taking 
into account the decay of states due to Auger ionization. It is shown that for sufficiently slow collisions 
with a small resonance defect the decay of states can significantly alter the probability of elastic collisions 
and the probability of charge exchange. It is also shown that along with the traditional charge exchange 
scheme a stepwise charge exchange is possible as a result of coherent interaction of states, between which 
electron transitions occur, via virtual states of the continuous spectrum. The probability of stepwise charge 
exchange is calculated taking into account the interference between two channels. 

PACS numbers: 34.60. +z, 32.1O.Qy 

INTRODUCTION 

In many problems of the physics of atomic collisions 
one has to consider transitions between states which de
cay into the continuous spectrum in the course of the 
collision. Transitions occurring in collisions of multi
ply charged ions and atoms, [1,2] in collisions of many
electron atoms with the formation of vacancies in the 
inner shells [3, 4] and in many other cases [5,6] are of such 
a nature. All the aforementioned processes are char
acterized by the fact that the lifetime of quasimolecular 
states between which the transition occurs can be com-
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parable with the time of their interaction in the act of 
collision. 

In investigating the effect of the interactions between 
states decaying into a common continuum on the prob
ability of a transition it is necessary to distinguish two 
cases, which practically can be realized in the case of 
atomic collisions and which in a certain sense are limit
ing cases. In the first case only the direct interaction 
between two states and, consequently, only the usual 
channel for the transition from the initial state to the 
final state is essential, while the interaction between 
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