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We construct a method for rigorously evaluating the properties of one-dimensional metals in the field of 
impurities taking both types of scattering into account, quasi-classical forward scattering of electrons and 
backward scattering (i.e., from the neighborhood of the momentum Po to the neighborhood of - Po' 
where Po is the Fermi momentum). In contrast to the method proposed by BerezinskiI {Zh. Eksp. Teor. 
Fiz.65, 1251 (1974) [Sov. Phys. JETP 38, 620 (1974)]J the present approach possesses a higher degree 
of automatism; it enables us to generalize to the case of a quasi-one-dimensional system and to take into 
account scattering by phonons. We give a detailed account of the method itself in the present paper and 
demonstrate how it can be applied by calculating as an example the conductivity and permittivity of a one
dimensional metal. We correct a result in BerezinskiI's paper. 

PACS numbers: 72.lO.Bg 

1. INTRODUCTION 

Recently people have become interested in one-dimen
sional and quasi-one-dimensional problems. A distinc
tive feature of these problems is the fact that many ap
proximate methods applicable to three-dimensional sys
tems become unsuitable for one-dimensional ones. The 
exact solution of various problems for one-dimensional 
systems is connected with considerable difficulties and 
even when it is possible to find it the corresponding 
method makes it impossible to generalize it to the quasi
one-dimensional case (three-dimensional perturbation 
of a one-dimensional system). 

One of those one-dimensional problems is the prob
lem of the electrical reSistivity of a one-dimensional 
metal in which the electrons are scattered by randomly 
distributed impurities. Berezinskii[1] recently solved 
this problem. Unfortunately, the very ingenious meth
od applied by him does not permit generalization to the 
quasi-one-dimensional case. At the same time such a 
generalization is of considerable interest as real sys
tems are not purely one-dimensional. As an example 
we may mention the quasi-one-dimensional compounds 
which are the base of TCNQ, where the electrons have 
the possibility to make transitions between filaments. 
Another example is a semi-metal in a strong magnetic 
field where apart from the one-dimensional motion 
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along the field there is a finite transverse motion de
scribed by an oscillator wavefunction. 

We have been able to construct a new method for 
studying the properties of a one-dimensional system of 
electrons which interact with random impurities; this 
method enables us to generalize it to the quasi-one-di
mensional case. In the present paper, the aim of which 
is an exposition of the method, we restrict ourselves to 
the problem of the electrical resistivity of a purely one
dimensional metal which was already solved by Bere
zinskit. [1] In subsequent papers we shall consider qua
si-one-dimensional systems. 

11. THE GREEN FUNCTION 

We shall assume that the electrons have an energy 
spectrum 

8=p'/2m. (1 ) 

We shall assume T= 0 (if we neglect phonons, see[2], 
the temperature affects the results only when T - EF ). 

In the equilibrium state the electrons are then degen
erate and the Fermi momentum is connected with the 
electron density by the relation 

n,=2p,/2rr.. (2) 

Copyright © 1977 American Institute of Physics 630 



,-, 
I \ 

I \ 
I \ 

I \ 
l~ I. 

FIG.!. 

The electrons are scattered by randomly distributed 
impurities. The impurity concentration equals rlj. If 
it is not too large all physical effects will be determined 
by electrons with momenta in the immediate vicinity of 
P = Po and of P = - Po. When an e lec tron with momentum 
close to Po is scattered by an impurity it can either re
main in that neighborhood or go over to the neighbor
hood of - Po. The first process corresponds to a Born 
amplitude Ul and the second one to uz. 

We consider the first approximation to the self-energy 
which is connected with the scattering of an electron by 
an impurity (Fig. 1). It has the form (see C2J) 

S- dp. 
l:(p) = n, __ 2itG(p,) lu(p-p,) I'-l:.+l:" 

• dk 
l:.=ni lu.I'[ro-vk+illsignroj-·~, (3) 

-. dk 
l:,=n, Llu.I'[ro+Vk+ill sign roj-' ~. 

The term ~1 corresponds to forward scattering when the 
electron remains in the vicinity of Po. In that case Pi 
=Po+k, k«po, (P~-p~)/2m::::ivk (v=polm). The term 
~2 corresponds to backward scattering when the elec
tron goes over into the vicinity of - Po. In that case Pi 
= - Po+k, k«po, (P~ - p~)/2m::::i - vk. Integrating we 
get 

l:,=-ind u.j' sign ro/2v=-i sign ro/2Th 

l:,=-ind u,I' sign ro/2v=-i sign oo/2T,. 

We have introduced here the symbols 7"1 and 7"z. 

(4) 

It is well known (see, e. g., [1J) that in fact the dia
grammatic method is inapplicable to the given problem. 
The reason is that when one evaluates the conductivity 
all diagrams are important and it is impossible to find 
some simple sequence of main diagrams and sum them. 
In view of this we formulate instead of our problem 
another one which is equivalent to it. 

Since the important electron states are in the neigh
borhood of Po and - Po we introduce in our discussion 
states lfil elk. corresponding to momenta Po + k, and lfi2e 1k• 
corresponding to momenta - Po + k, where k« Po. The 
energy of a free particle reckoned from the chemical 
potential is ~ = vk for lfi1e lu and equal to - vk for lfi2el" •• 
Hence, the energy operator of a free particle can be 
written in the form vk(J3' where (Js = (A _~) is a matrix 
with indices 1 and 2. 

Instead of the interaction with the impurities we in
troduce random fields1) 17(z) and ,(z). The interaction 
with the field 17(Z) leaves an electron in the viCinity of 
Po if it was there, i. e., this interaction is diagonal in 
the indices 1 and 2. We can assume this interaction to 
be real and to have the following properties: 

(5) 
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If we change from a continuous variable z to a discrete 
set of points with spacing~: 171 = 17(ZI)~' Eqs. (5) take 
the form 

(6) 

We shall assume that the fields 17(Z) and ,(z) are Gauss
ian. Equations (5) and (6) correspond to an averaging 
over the functional 

One checks easily that this corresponds to the Born ap
proximation for the scattering. Indeed, expanding G in 
a series in 17 we have terms of the type 

S Go (z-z.) Tj (z.)G.(z-z,) Tj (z.) .. . Tj (Zft) Go (Zft-z') dz • .. , dz. 

= EGo (z-z,) Tj,G. (z,-z.) Tj •••• Tj,G. (z,-z'). 

' .. J 

If 171 occurs only twice we get after averaging an expres
sion with 

If, however, 171 recurs, e. g., four times, we get on 
averaging 

as d .... O. 

The second field' transfers an electron from the vi
cinity of Po to the viCinity of - Po. This field must be 
assumed to be complex as a "quantum" of such a field 
can be "emitted" only in the transition 1- 2 and be "ab
sorbed" only in the reverse transition. This represen
tation corresponds to the fact that when we consider a 
real scattering the momentum transfer in the two 
crosses indicated in Fig. 1 must cancel. The interac
tion with the field thus has the form 

where (J (.) = (Jl ± i(Jz. 

The averaging rules for the field, have the form 

<b(Z)~'(Z') )=II(z-z') VIT" <t)=O, 

<~ (Z)b (z') )=0. 

(8) 

(9) 

For an average of a product of a large number of 'I and 
't in the same point we stipulate the same requirements 
as for the 171' This requirement can be realized by 
means of a Gaussian functional 

Q[~j=exv[- SI~(z)12dZT'/V J. (10) 

We find first of all the retarded Green function in the 
random field 17. It satisfies the equation 

[iVCJ,a: +oo-,](z) ]GoR(z,Z')=II(Z-Z'). (11) 
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The solution of this equation which is the same when 
expanded in 7) as the perturbation theory result has the 
form 

G •• (z, z')= G;:l (Z -z')exp [ _ iCl. j 1] (z,) d~, ]. 

" 

Here G(O) is the free function, equal to 

G~!l (=) = J e'" dp/2n. 
w - PUCI, + II) 

i .. , 'I ( ) __ eHlt,t. r6 Z03 . 
V 

We can write Eq. (12) also in the form 

(12) 

(13) 

G •• (Z,Z')=-L[1+CI,Sign(z-z')lexp [ i~. J[")-1](Z~)ldZ']. (14) 

" 

We average the function G"'R' We write the index of 
the exponential in (12) as a sum: 

. ~ 1]. 
-ICI. i...J ~. 

1&(u') 

We then get the product 

We have expanded each exponent using what we have 
said earlier about high powers of 7)1 in a single point. 
We now average this expression. Since each factor oc
curring in the product gives the same on averaging there 
enters here the average of one of them to the power 
I Z - z' I /.:l. After this we let .:l tend to zero. As a re
sult we have 

< II ( iCl,1],) ( ~) I,-,'I/A (-lz-z'l ) exp --- = 1--- .... exp . 
v 2v't, 2VTl 

f8(I,") 

(15) 

This very obvious result can be obtained by different 
means. We gave the derivation here only to demon
strate our method. 

We now consider the Green function when both fields 
7) and 1: are present. We take some order in 1: and the 
exact expression in 7). We now average over the field 
1:. The result will correspond to some diagram of the 
type of Fig. 2 with dotted lines depicting the average of 
1:11:1. The dotted lines connect points with the same z. 
Each point is connected with the Green functions (14), 
but while in the vicinity of a point with 1:1 we get from 
both Green functions a factor 

exp [ 2i j'1] (z,) d;l ] , 

near a point with 1:1 there arises a factor 

exp [ -2i J 1] (z,) d:, ] . 

All such factors cancel and as a result the Green func
tion will again be proportional to the same exponent 
which occurs in Eq. (14). One sees easily that the same 

632 Sov. Phys. JETP, Vol. 44, No.3, September 1976 

.,.-~--, 
;-... ;' ..... ~- ...... , 

-£ ,( ,t \, 'lr# FIG. 2. 

is valid for the average over 1:1 of a product of several 
Green functions. The result will depend solely on the 
end arguments. In that case, since Eq. (12) is valid for 
any Green function-retarded, advanced, or causal
we may deal with products of different kinds of Green 
functions. For the evaluation of the conductivity we 
need in what follows only closed loops of several Green 
functions. In such loops the factors (12) cancel com
pletely. 

The result of these discussions is thus: scattering de
scribed by the field 7) in which the electron remains in 
its original neighborhood does not affect the conduc
tivity . 

We further consider GR in the field 1:. The appropri
ate equation has the form 

[ iVCl, ~ + ro - -.!... (O(+lt+O(-It")] G •• (z, z') =6 (z-z'), 
OZ 2 

(16) 

The difference from (11) consists in that field operators 
in different points do not commute with one another. In 
that case we can solve the equation symbolically. Let 
Z > z' and Zl be some point between them, i. e., Z > Zl 

> z'. We can then find from (16) a connection between 
G"'R(Z, z') and G"'R(Zh z'). Since z' remains at one end 
we have from (16) when Z > Zl > Z' 

(17) 

where 

S.(z,z')=T,exP[i J (o.ro- ~O(+lt(z,)+ ~O(-)t'(Zl») ~1], (18) 
" 

The T.-product means that if we changed from an inte
gral to a sum, we would obtain S in the form of a prod
uct of factors. These factors, in contrast to the field 
7), do not commute and must be arranged from right to 
left in order of increasing z. 

In Eq. (18) for S we can change to the interaction rep
resentation in w, i. e., we can write 

,S.(z, z') =exp (iroo.z/v)S(z, z', [~., ~.']) ·exp (-iroo.z'/v) , (18') 

where 

CI'+> ( -iWCI,z, ) 0(+>. ( iroo,z. ) 
T~·(z,)=exp --v- T~(z,)exp -v-

0'+> ( 2iwz, ) 
=2~(z,)exp --v- . 

The matrix S is formally described by Eq. (18) but with 
w =0 and replacing 1:, 1:* by 1:"" 1::. 

Let now the order of the points be z' > Z > Zl' In that 
case it is clear that the connection between G"'R(Z, z') 
and G"'R(Zh z,) remains as before (see (17), z' plays 
simply the role of a parameter). If we put the points in 
the order Z > z' > Zl we see that integrating from Zl to Z 
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we collect on the interval (z', Zl) a factor SOl(z', Zl) rela
tive to GOlR(Zh z'). But after that the function has a 
jump by - iu3/ v and yet later the factor SOl(z, z') is col
lected relative to the function with this contribution. 
We thus have for Z > Z' > Zl 

G •• (z, z') =S.(z, z.)G •• (z,. z') -is.(z, z')a,/v. (19) 

Equation (16) and Eqs. (17) and (19) which are simply 
the integral form of that first equation are valid for the 
retarded and for the advanced functions. We must now 
introduce boundary conditions in order to determine 
just the retarded function. We consider the structure 
of the perturbation theory series, e. g., for Gll (z, z'). 
The separate terms have the form 

S G~::. (z-x.) t (z,) G~~" (z,-x,) t· (z,) 

x G~;:. (z,-z,) ... t' (zn)G~~ .. (x.-x')dz, ... dx •. (20) 

It is important that each product under the integral sign 
starts with G~o~ll and ends with G~o~ll' The integral 
over all z, are from -00 to +00. However, according to 
(13), 

(0) i [iCtl] G .... (x-z.) = --O(z-z.)exp - (x-z,) , v v . 

so that the integral over Zl goes from - 00 to z, and the 
integral over zft from z' to 00. Hence, as z- -00 or as 
z' - 00 any such term turns to zero. This refers also to 
the zeroth term. Thus 

One can similarly show that 

G"" .. (z, z') =0 as z .... co or z'--oo, 

G .... (x, z')=O as 
z __ oo 

or z'-_oo, (21) 
G .... (z,x')=O as z .... co or z'-..-oo, 

This just gives us the boundary conditions for the func
tions GOlRaa• 

Let in (19) Zl- _00; we then have because of the 
boundary conditions (21) 

G •• a~(X, x') =s ... (z, _00) G.R'~( _00, x') -i[s.(xz')a,I.~O(z-z')/v. 

We put a = 2 and z- 00, The left-hand side then vanishes 
and we have 

G .. ,~( _00, z') =i[S.( 00, :') a,l,~/vS." (00, _00). 

Substituting this relation into the preceding equation we 
find 

G ( ')_..!....{ S ••• (z,-oo)[S.(oo,z')a,l,~ 
_RIIJ Z, Z - V 80)%2 (00, -00) [S.(z,z')a,la~a(z-z') . 

(22) 

The matrix S(z, z') is determined in (18) for Z > z'. Ac
cording to (22) this is sufficient since we only need such 
a matrix. 

Expression (22) is the solution we need which can be 
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substituted in any product of the GR and be averaged. 
We illustrate how this is done using as an example a 
Single GR function. We use Eq. (18') for all SOl and re
place the integrals by sums. Each S will then be a 
product of factors containing b(Z,) in different points. 
We write 

t. ( -2iCtlz, ) 
~.--it(z.) -;;-exp --v-' . 

Each factor in 5 connected with a fixed point can be ex
panded in b, and bt restricting ourselves to the second 
order: 

We have neglected here also terms such as b ~ and bt 2. 

We consider the function 522 (z, z'). It is clear that it 
will be of the form 

S,,(x,z')= II (1+-} It. I') + 1: t,'t, II (1++ It.I') 
ItE(Z,Z'J i>i k"'i,i 

i,II,/e{~,z') 

+ 1: t,·t,tm't. II ( 1 + + It.I') + .... 
I>i>m>n """,m,n,' 

i,r,",,",fta(I,z') 

We split off 

and use again the rule about not retaining more than the 
bilinear terms such as bfbi in one point. We have 

S .. (z,:')"" II (1++lt.I')( 1+ ~)"t,+ .E t,.t'~m't.). 
Ae(I,z') 1>£ f>i>m>fI 

It is convenient to use this formula. However, in Eq. 
(22) there occurs [~(oo, _00)]-1. It must be expanded in 
b,. Up to terms of higher order we have 

(24) 

However, the second factor in (23) is appreciably more 
difficult because in the expansion there arise products 
of separate terms in which partial cancellation may oc
cur, i.e., indices of band b* may be the same, and 
also there may be an interchange of b* and b. It is, 
however, important that in all terms the factor on the 
extreme left (i. e., with the largest z) is b* and the one 
on the extreme right b. 

In analogy with Eq. (23) we find 

s .. (z,z')= II (1++ltol ')( 1: t,+ 1: t,tm't,+oo.), (25) 
ke(z,") iE(Z,Z') l>m>i 

I,m,ie(:.z') 

S,,(z,z')= II (1++ltol')( 1: t,'+ 1: t,'tmt, + 00') ,(26) 
ketz,z') iE\:,Z') i>m>i 

i,m,ie;(z,z') 

S,,(Z,z')= II (1+ ~ It,I')(1+ 1: ~jtl·+oo.). (27) 
/lE(:,:') i>l 

i.le;(z,z') 
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We now take G22 according to Eq. (22) and average 
over t; and tr. First of all we note that in each term 
of the second factor of (23) all t; are different. They 
can therefore not be averaged with one another. Since 
the last term in (22) is simply S22(Z, z,) we get, when it 
is averaged, only unity as the contribution from the sec
ond factor in (23). In the first term we might expect 
compensation of these factors. However, only (I t112) 
is non-vanishing and according to (23) and (24) in the 
second factor in .522 and in (.522>-1 all terms except unity 
start with tt. There is then a tr with the largest value 
of Zj for which there is no corresponding t;. Hence it 
follows that it again gives unity as its contribution. Af';' 
ter that it is now easy to see that when Z > z' the two 
terms in (22) cancel one another and when Z < Z' we get 
(we took into account that (I tl 12) = t:J../ VT 2 and we intro
duced the "external" factors from Eq. (18')) 

G •• ,,(z, z')= II (1-+ <1f;.I'> ) G!!~,(z-z') 
.lieel'.,') 

_ (1- a ) 1,-,'11" G(') (Iz-Z'I ) G (0, 

- 2V't2 _RU ~ exp - 2W'T2 foIR:!:2. 
(28) 

Equation (22) is inconvenient to evaluate GRll • In view 
of this we introduce the matrix S;"t(z, z') which is de
fined such that S;"t(z, z')S.,(z, z,) = 1. It is clear that 

(29) 
Changing to the interaction representation in w we can 
from this get 

8;::~ (z, z', [~, ~')) =exp[ioo (za,,-z' a,.) Iv ]S.~ (z, z' [~., ~ .. )), (29') 

where S-;.ts(z, z,[t." t!]) corresponds to the matrix (29) 
with w =0 and t(z)- t.,(z) = t(z) exp(- 2iwz/ v). When we 
use the discrete notation the factors in T;l stand in the 
reverse order. 

We multiply Eq. (19) from the left by S;"t(z, Zl)' When 
z >z' >Zl we get 

8. -liz, z,) G •• (z, z') =G .. (z, z') -i8. -'(z', z,)a,/v, 

Transposing terms and making the change z+=tz1 we have 

G •• (z, z')=8.-'(z" z)G •• (z" z')+i8.-' (z', z)a,lv 

when Zl > z' > z. If, however, Zl > Z > z' the last term 
on the right-hand side vanishes. 

We now let Zl- 00. Using the boundary relation (21) 
we find 

G ••• ~ (z, z') =8.:: (00, z) G •• " (00, z') +i[ 8. -, (z', z) a,] .~B (z' -z) lv, 

We take O! = 1, z- - 00. We then get, using (21) 

G •• " (00, z') =-i[8. -, (z', -00 )a,] "lv8;:,'. (00, -00), 

Substituting this expression into the previous equation 
we have 
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G ••• ,(z, z') 

= _ ~ { 8:::', (00, z) [8. -liz', - 00) a,]., 
v 8.:, (00, _00) 

[8. -, (z, z')a,].~ B(z' -z) }. 

(30) 
In this form one can easily find G"'Rll and more diffi
cultly G.,R22' For G.,Rll we get clearly the formula 

G •• " (z, z') = exp( -Iz-z' 1/2v't,) G!!~, (z-z'). (31) 

We give a few relations for unaveraged functions 
which turn out to be useful in what follows. From the 
definitions (18), (18') and (28), (29') we can up to terms 
in I tl2 get 

8;:,', (z, z') =8.,,(z, z'), 8;:,~(z, z') =-8." (z, z'), 

8';;~ (z, z') =8." (z; z'), 8;:,', (z, z') =-8." (z, z'). (32) 

In particular, it follows from these formulae that 

8.,,(z, z')8.,,(z, z')-8.,,(z, z')8.,,(z, z')=1 . (33) 

Using Eqs. (32) and the two definitions of Gas, and es
pecially (22) and (30) we get the following relations: 

In what follows we also need the functions GA' By 
analogy with the preceding we easily get the formula 

( ') _ ~{ 8 •• , (z, _00 )[8.( 00, z')a.]" _ [8 (z z')a,].,8(z-z')}' 
G(DAa.r> Z, Z - V 8.11 (00, -00) tI) , 

(35) 

As before, restricting ourselves to It 12 terms, we get 
the relations 

8.,,(z, z', [~, ~·))=8_.,,(z, z', [~', ~]}, 

8.,,(z, z', [~, ~·]}=8-.2!(z, z', [~', ~]}. 

, Using Eqs. (22) and (35), (36) we get from this 

G.A,,(z,z', [~, ~']) =-G_ •• ,,(z, z', [~', t]), 
G. A12 (z, z', [t, ~·))=-G_.'2!(z, z', [t·, t]}, 

GoA,,(z, z', [~, ~·])=-G_ •• ,,(z, z', [t', t]), 
G.A,,(z, z', [f;, t']}=-G-.... (z, z', [~', ~]). 

(36) 

(37) 

We can then always express GA in terms of GR , chang
ing from t to t* and vice versa. It is, however, some
what better to use directly Eq. (35). 

Finally we introduce the matrix S·. It is clear that 

(38) 

One sees easily that 

(39) 

We note that according to (32) the matrix S is non-uni
tary. 
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12. ELECTRICAL PROPERTIES OF A ONE· 
DIMENSIONAL GAS 

Let there be an electromagnetic field described by a 
vector potential A(wo)e-1wot • By the standard method 
(see[3J) we get for the current 

(40) 

where 

(41) 

where z{- Zh z' - Z. 

We add to and subtract from the second term the 
analogous expression for the metal without impurities. 
The difference is then a convergent integral in which the 
vicinity of the Fermi surface and w Rj 0 are important. 
In view of this we can use in them the formulae for G 
obtained above. In that case 

--4p.' Sp[a,G.+ .. (z, z,)a,G.(z" z)]. (42) 

We consider one of the terms in (42), e. g., Cw+wou(z, 
Zl)GwU(Zh z). Since Gw =CAw when w<O and Gw =CRW 

when w > 0, the integral over the frequency of that prod
uct equals (wo > 0) 

S 
dw -S'" dw 

G.+","(Z, z,)G.tt(z,. z) 2n"= _~ G."+,,,"(Z. z,)G .... II(z" z)~ 

• d - d 
+ S G'.+"'II (z, Z,)G AOII (z" z) T-+ SG'O+O'II (z, z,)G'OIl (z" z)~. (43) 

-1#" 4J:t 0 21t 

We show that the first and third terms of that sum give 
zero when averaged over /;. Indeed, let Z > Zl' Using 
Eqs. (34) which are the same for CR and GA we can re
write the first term so that it contains only G A (Zh Z). 
We have 

We substitute Eq. (35). We then get 

-.. 
~ S 8 0 +"",, (z" -00)8.+.,,,( 00, z)8.11 (z" -00 )8.11 (00, z) 
V" _~ 

,dw 
X [8'+0011(00, -00)8011 (00, -00)]- 2;"' 

Since Z > Zl we see that the numerator contains at least 
one "unpaired" /; in the interval (00, z) and one /;. in the 
interval (Zh - 00). This pair cannot be compensated 
when the denominator is taken into account as in it /; al
ways stands to the left and /;. on the right. 

One can show that the same occurs when Z<Zl' Simi
larly this can be shown for all other terms in Eq. (42) 

635 SOy. Phys. JETP, Vol. 44. No.3, September 1976 

corresponding to the first and third terms in (43). 
There remains therefore solely the second term in Eq. 
(43) and similar terms with other indices in (42). 

It is now relevant to remember that we subtracted and 
added the expression similar to the second term in (41) 
for a metal without impurities. As a whole we get to
gether with the first terms in (41) from this addition 
to Q: 

e' ie'·4p.' S' dw S- dp, (., (., --n,--- - -[GRII(W+W.,p,)G ... II(w,p.) 
mc 4m'c _,,211 _, 211 

, , ie'po' s- dw s- dp. (" -L 
,GF"(w+wo.p,)G.,,,(w,p,)]-r m'e _, 211_, ~[GII (w, "1.,P,) 

X G,(;' (0). pol +G::' (w+w,;. p,)G;~' (w. p,)]. 

The last term gives zero when we take the integrals in 
the correct order (i. e., first over wand then over PIl)' 
The second term cancels the first term after integra
tion, as n. = po/rr. 

The total expression for Q thus has the form 

te'v' • dw -
Q =-c 1,2;"X dz,Sp(a,G •• +o,(z,z,)a,GA.(z"Z», (44) 

where we must substitute for G the Green functions with 
impurities found above. We split the integration over 
Zl into the regions Zl > Z and Zl < Z and using Eqs. (34) 
we express everything in terms of G where the smaller 
of Z and Zl stands as the first argument. We then get 

ieZuZ 0 dw { , 
Q = -c- S 2n S [GRm+m,,,(Z,, Z)G AolI (z" z)+G.O+"II(z" z) GA." (Z" Z) 

-wo _<:c: 

+ S [G'o+m,1I (Z, Z,) GAo"(Z, Z,) +G.o+o," (Z, Z,) GAOII (Z, Z,) 

-GRO+"''' (Z, Z,) GA." (Z, %,) -GRO+",,, (Z, %,) G .. o"(Z, ") ]dz,}. (45) 

We use Eqs. (22) and (35) for C. We also use the fact 
that when we substitute S in the form (18') and average 
over/; we can assume the integrand to be a function of 
w+wo-w=woonly: 

ie'w {S' , Q = __ a [80 ,,, (z,. -00)8" ('" -00)-8.,,,(z,, -00)8" (z" -00)] 
201C __ 

x [80 ,,, (00, z)811 (00, z) -80 ,,, (00, %)8" (00, z) ]dz, 

-+ S [S.,,, (z, _00 )8" (z, -00) -8.,,,(z, _00 )8" (z, -00)] 

x [8.,,, (00, z,)811 (00, z,) -8 .. 21 (00, z,)8" (00, z,) ]dz,} 
X [8.,,,(00, -00)8!!(00, -00) ]-'. (46) 

The formula obtained contains integrals of averages 
such as 

A.,(z" Z" z" z.)=[8".,(z,. z,)8"(z,, z,) 
-8".,(0,. :,)8"(z,, oJ] [8" ... (:3, z,)8!!· (z" z,) 
-8",",(=,. ;,)8,,(z.,. z.) ]/[8".,(0,. ;.)8"(=,, :.)], (47) 

where Zl > Z2 > Zs > z4> and AWO(Zl, Z2, zs. Z4)- AWO(Z2' zs, 
Z4) as Zl - Z2: 

4",(z,. z". :,)~[S"o,(z" :.)8,,(z,. :.) 
-S" •• (z,. :,)8,,(Z3, zJ ]I [S" •• (z" z.) ·8"(z,, z.) j, (48) 
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A (Z,. "3, :,) .... A (Z3. Z,) as Z' .... Z3: 
.4.,(:3, z.)=[S".,(Z3, z,)S;,(Z3, z,) 

-S"", (Z3, z.)S" (Z3. z.) ]I[S"".(:3, Z,) ,S,,(Z3, zJ]. (49) 

Finally, A(zs, z4)-1 as zs- Z4' 

We use these properties as follows. We get a dif
ferential equation to determine A(zs, Z4) as function of 
Z3 - Z4 and, solving it we find A(zs, Z4)' After that we 
get a differential equation for A(Z2' Z3' Z4) in the variable 
Z2 and we use the value of A(zs, Z4) which we have found 
as a boundary condition. Finally, we find A(Zb Z2'~' 
Z4) in a similar way. 

This is the general idea. However, it is not possible 
to carry it out directly because the method which we 
apply works only when the external variable (in (47) this 
is Zl and Z4) occurs only in one kind of SOB(Z" z,,), i. e. , 
say, SoB(Zb Z2)' These variables occur in Eq. (47) at 
once in two kinds of SOB' say S(Zb Z2) and S(Zb z.). To 
avoid this we write [S22WO(Zb Z4)Sl1(Zb Z4)] -1 in the fol
lowing form: 

{S".,(z" z.)S" (z" z,) ]-1= [S" •• (z" z,) S".,(z" z.) +S2t.~(z" z,) 
x S".,(z" z.j ]-t [S .. (Zto z,)S .. (z" z.) +S .. (z" z,)S" (z" z.) ]_t 

=.t ~(-1}"'+" [S" •• (z"z,)S ... ,(z"z.)]·' [S"(z"z,)S,,(z,,z')]·'. 
~ [S ... ,(ZI' z,)S"., (z" z,) ].,+1 [S .. (z" z,)S" (z" z.) ].,+1 

"~O "~O (50) 

We further draw attention to the fact that in the first 
factor under the summation sign there occur necessari
,ly n1 unpaired ~* in the interval (Zb Z2)' This circum
stance remains also in the case where we take into ac
count the first factor in (47) referring to the same in
terval. Hence these unpaired ~* can on averaging be 
compensated only if we take into account the ~ occurring 
in the second term in the sum in (50), i. e., after av
eraging there remain only terms with n1 = n2' Thus 

X [S" .. (z" z.)S" (z" z.) ]" 
[S".,(z" z.)S" (z" z.) ]_+t . 

Equation (47) becomes 

. 
A (z" z" z" z,)= L [B.(z" z,)-B.+, (z" z,) ]C.(z" z" z,), 

• _0 

where 

[S".,(z" z,)S,,(ZI' z,)]· 
B'(=I,")= , 

[S".,(z" z,)S" (ZI' z,)]" 

C ( ) _ [S"",(z" z,)S" (z" z,) ]. 
• z" z" z, - [S ) ].+! 

, l!.2l1lo(Z21 z .. )Stt (Z21 Z, 

x [S" .. (z" z,)S" (z" z,) -S".,(z" z,)S" (z" z.) ]. 

(51) 

(52) 

(53) 

We find below the equation which describes the Z2 de
pendence of e". The boundary condition for this equa
tion will be the value as Z2- z" i. e., B~(Z3' Z4) 
- B~+l(ZS' Z4), where 

(54) 

When evaluating B~ we can use the fact that the average 
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is invariant under the transformation ~;:::t ~*. Using Eqs. 
(36) and the fact that in expressions such as (54) we can 
add to each SOB the same frequency we get 

B.'(z" z,) =B.(z" z.). (55) 

We consider B,,(O, z) (z <0) and substitute SOB in the 
interaction representation (18'). We then get 

) [ ,s" .. (0, z),s .. (O, z) ] • ( 2iCUonZ) 
B.(O,z = . exp --- . 

,s" .. (0, z),s" (O,z) v 

We substitute for SOB Eqs. (23), (25)-(27). The factors 
TI, (1 + t I ~, 12) in the numerator and in the denominator 
then cancel. We split off the dependence on the ~ on the 
extreme right, which we denote by ~1' We then get 

B.(O, z)=[,s"o,(O, z+M +~I'e"""',s"o,(O, z+M ]-[,s,,(0, z+,1.) 
+,s .. (0, z+,1.)~t]'·[,s" •• (O, z+M+~te-2i .. "',s" .. (O, z 

+M ]-"[S,,(O, z+M +S,,(O, z+,1.nl·]-··e-';· ... ,'. (56) 

We expand up to terms of first order in ~1 and ~t and 
retain terms which do not contain ~1 or are proportional 
to I ~112. In the term which does not contain ~1 we write 
the factor e-2lwO"lIlv in the form e-2i"'O"(II+~)/v(l + 2iwont./ 
v). After that we substitute (I ~112) = t./ VT2' Equation 
(56) becomes 

B.(O, z) =B. (0, z+M (1+2icuonMv) +n'(Mv"t,) [B __ I (0, z+,1.) 
+B'+I(O, z+,1.)-2B_(0, z+,1.)]. 

This recurrence relation becomes as t.- 0 a differen
tial equation. Introducing the variable t=-Z/VT2 >0, 
we get 

aB,,/at=n'(B'_I+B"+1-2B.)+i~nB", (57) 

where S = 2WoT2' 

We now introduce the generating function 

B(x,t)= I:B.(t)x·- I • (58) 
"~I 

For this function we get the equation (using the fact that 
Bo(t) = 1 by definition) 

aB a a [a 2 ] -= i~-(xB)+1+ - x-(B(1-x» . 
at ox Ox Ox (59) 

The boundary condition for Eq. (59) is the value at t=O. 
According to (52) we find that B,,(O) = li".o' Hence, from 
(58), B(x, 0) =0. Moreover, the solution must be regu
lar as x- O . 

We perform the following transformation of variables. 
We write: 

u=xl(i-x), R=BI(u+1)'. (60) 

Equation (59) now becomes 

aR 1 0 aR a 
-·=--+-u(u+1)-+i~-u(u+1)R. 
ot (u+1)' au ou ou (61) 

We note that X= 0 corresponds to u = 0, while x- 1 - 0 
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corresponds to u- 00. We get rid of the inhomogeneous 
term. To do that we put 

R(t, u)=R,(t, u)+r(u) (62) 

and we choose r(u) such that the inhomogeneous term 
is cancelled. The equation for r(u) has a solution that 
is regular as u- 0 and does not grow as u- 00, in the 
form 

1 - e"·'du 1 . 
r(u)=-+i~ S---' =--i~e-'~(t+·){ci[~(Hu)j+isi[~(Hu) l}. 

u+1 ,u,+u+1 u+1 

(63) 
The boundary condition for R(t, u) is R(O, u) =0. Hence 
Rt(t, u) satisfies the homogeneous equation correspond
ing to (61), namely, 

oR, a oR, (J 
-=-u(u+1)-+i~-u(u+l)R, 
at au au au 

with the boundary condition 

R,(O, u)=-r(u). 

We Laplace transform (64) with respect to t: 

. 
R.(u.t)= f r"R,(u,s)ds, 

; 

(64) 

(65) 

{J {JR. (u,s) (J 
-,--u(u+1) +i~-u(u+1)R.(u.s)+sR.(u,s)=o. (66) 
au au au 

It is difficult to solve this equation in the general case. 
We consider first of all the case f3 = o. Rt then satis
fies the hypergeometric equation and its solution is 

(67) 

These functions have orthogonality properties, namely 

. 
S R.(u)R., (u) du=6 (A-A') 12/ th nA. (68) 
, 

This makes it possible to satisfy the boundary condi
tion easily. According to (63) (with f3 =0) and (65) 

f R. (u, s)ds=-1/(Hu). 

By virtue of (68) we get 

S-Rdu.)dll' 
R.(u,I.)=-2I.thnAR.(u) 1+u.· , 

Evaluating the integral we find 

R. (u, t) =- S-dl. 2nl.sh nl. e-(,j·WjO F('I,+iA, ·I,-tl., 1, -u). (69) 
, ch'nA 

The function R(u, t) determines the static conductivity. 
Indeed, in view of the fact thatj=O'E=(O'iwo/c)A we have 

. Q(IU,)C 
cr,=hm--, 

~o-+O icuo 
(70) 
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As wo- 0 the expressions in the brackets in the inte
grals in (46) become, according to (33), equal to unity. 
For a conductor of length L we get therefore 

e'L 
cr, = -?- < [S,,(L, O)S .. (L,O) j-'). 

_:1: 

However, according to (33) 

j _._ S,,(L. O)S .. (L, 0) -S.,(L, O)S,,(L, 0) 
[S,,(L,O)S .. (L,O) - S,,(L,O)S .. (L,O) 

From (61) it follows that 

B(x,t) = (1~X),RL~x,t). 

In view of that 

B.(t)=R(O, t)=r(O)+R,(O, t)=HR,(O, t). 

Collecting this all together we get 

e'L S- shnl. , cr=--R (0 t)=e'L AdA--rJ'"H'" 
2:t " , ch'nl. ' 

(71) 

1-B.(L,0). 

where t = L/ VTz. When t» 1 small values of A are im
portant. Evaluating the integral we have 

(72) 

The static conductivity is thus exponentially small for a 
large sample. 

Mott[4J had already predicted that the static conduc
tivity would vanish; it raises the problem of the evalua
tion of 0' (wo). It follows from Eq. (69) that R1(u, t) de
creases exponentially with t for large t. The same re
mains valid also when f3 '" O. Bearing this in mind, we 
consider Eq. (51). The values of the end arguments in 
which we are interested are Zl = L, z. = O. The points 
Zz and Z3 correspond to Z and Z1 in (46). Below we shall 
see that the functions Cn(zz, z3> z.) decrease exponential
ly when Zz - Z3» VTz. The distance between Z and Zl in 
(46) is then small, 1. e., the current in the point Z is 
determined by the field in a vicinity of the order of VT2' 

It is clear that the conductivity can change with the co
ordinate only near the ends of the sample and as that ef
fect is of no interest we must take Z (and then also Z1) 

at a large distance from the points 0 and L. But it is 
then clear that the exponentially decreasing parts of the 
functions B,,(Zh zz) and Bn(Z3, Z4) do not contribute at all 
and can be limited only by parts independent of t. This 
relieves us of the necessity to evaluate R1 for (3 * 0 and 
we can restrict ourselves to R(u, t) = r(u), i. e., to Eq. 
(63). 

We thus consider Cn(Z2, Z3, Z4) as function of zz. The 
equation for Cn can be obtained in a similar manner as 
we obtained the equation for Bn. However, we must 
take into account that the powers of S in the numerator 
and in the denominator are different and that in that con
nection there appears in the numerator a spare factor 
(1 - 1/;112) and the total frequency factor is e;"'o(ZR.ll.lv • 

As a result the equation takes the formZ) 
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dC.ldt=n'C n _,+ (n+1) 'C'+l-2n (n+1)C. 
-C. + (n+ 1/2)i~C •. 

Introducing 

we get an equation for C(x, t) 

Making a change of variables 

u=x/(1-x), <D=CI(l+u), 

we get an equation for <I>(u, t): 

ii<D a a<D 'f a [ ]'f -=--:-It(u+1)-+iMu(u+1)]'- u(u+1) '<D. 
iit du au iiu 

(73) 

(74) 

(76) 

(77) 

We note that this equation is homogeneous and there
fore <I> in the final result decreases exponentially for 
large t. 

The boundary condition for en for Z2 = Z3 is Bn(Z3, Z4) 

- B,,+l(~' Z4)' Hence it follows that 

C(t 2 ,t" t" x)=1-(1-x)B(t" t" x) 

or, from (76) 

<D(t2,t., t" x)=1/(1+u)-R(t,-t" x). 

However, it follows from what has been said above that 
we must retain for R only the part which is independent 
of t3 - t4 which is given by Eq. (63). Hence it follows 
that <I> (t2' t3, t4, x) depends only on t= ta - t3 and satisfies 
for t = 0 the condition 

We now turn to Eq. (51). In order to perform the 
summation we use the following method: 

A = ~ (B,,-B,,+,)C. = 2~ j dcp L (B",-B •• +,) e"" 
II 0 1I( 

1 ,. 
X ~c",e-"'" = 2n S [1-(1-x,)B(x,) ]C(x,)dcp, 

" 0 

(78) 

where Xl = eh , x2 = e-h • Substituting here the expres
sions for 13 and e in terms of R and <I> and changing to 
the variable u=x2/(I-x2)=(ei~ _1)"1 we get 

A = 2i S dur,[ -(u+1) ]<D(u), 
nc (79) 

where the contour e is a straight line parallel to the 
imaginary axis and intersecting the real axis at u = - i. 
The functions C(x) and <I>(x) are analytical in a circle 
with radius I xl = 1. The transformation u = x/(1 - x) 
maps the unit circle into the right-hand half-plane from 
the straight line Reu = - i. The contour e can thus be 
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displaced to the right. The residue in the integral (78) 
then gives a contribution and as a result we get 

A=-i~ S eiOu<D (u)du. (80) 
o 

There occur two terms in Eq. (46). One sees easily 
that they are both equal to one another and are integrals 
of the expression A over t. Substituting (80) into Q we 
have 

e'v S· . S· Q=-~' due'" dt<D(u,t). 
2nc II 0 

(81) 

The solution of Eq. (77) is complicated in the general 
case. We therefore consider only the limiting cases: 
/3« 1 and /3» 1. We start with the case /3« 1. We per
form the Laplace transform which is the inverse of the 
one we performed in (66); namely, we multiply (77) by 
e-st and integrate from 0 to 00. As a result we get 

a a<D(s) a 
-<D(t=O) +8<D (8) = - u(u+1)-- +i~[u(u+1) ],f'_[U(u+1) 1"'<D (8). 

au au au 

According to (81) we need know only <1>(5=0). Denoting 
this quantity by I and using the boundary condition for 
<I> we find 

a df " d " Sexp (i~u,) 
-u(uH)- +i~[u(u+1)] "-[u(u+1) ]'f=r, (u)=i~ du,. 
au du du 1+u+u, 

- 0 (82) 

We can integrate by parts in Eq. (81) in order that in it 
only the derivative dl/du occurs. USing the fact that 
1(00)=0, we get 

e2vi~ S· . df 
Q=--- (l-e"U)-du. 

2nc 0 du (83) 

We now must find dl/du. Let /3« 1. We introduce 
two regions: u< U and u > U, where 1« U« 1//3. In the 
first of these regions we can neglect the second term on 
the left-hand side of Eq. (82). The remaining equation 
can easily be solved for dl/du with the condition of 
regularity at u=O. We find 

dt In(1+u) 1 S· e"u'du, -=----+_. . 
du u(1+u) u+1o (1+u,) (1+u+u,) 

We shall assume that 1« u« 1//3 and we expand this ex
preSSion first in /3, /3(1 + u) restricting ourselves to sec
ond-order terms, and then in u-1, restricting ourselves 
to terms of order /3/u 2 or /32/U • We then get 

-""- In-+-+1 -- In-+-+2 df i~ ( 1 in ) i~ ( 1 in ) 
du u 1~u 2 u' 1~ 2 

( 3 in 1)~' ( 1 in f ) +~' -+-+In- +- --+-+In- . (84) 
4 . 4 1j3u u 4 4 "(~u 

We now turn to Eq. (82) and introduce a new variable 
17 = {3u. We get 

In the region u > Uwe have 17»/3. We shall therefore 
look for I in the form 1=/311 + /3 % + • ••• We restrict 
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ourselves to the first two terms in that expansion. We 
then get 

CIG e it 

'II't."+2TJ/,'+i'll'I.'+i'll/,=iS -d~, 
o ~+'II 

(85) 

1/2 It + 21/1; + i1/2 I; + i1li2=-TJ/."-/,' -i'll/,-~ I,-i S· ~d~. (86) 
2 0 (1]+~)-

As in Eq. (83) only dl/du occurs we must convert that 
equation to one for F1 =dft/du, Fa =dla/du. To do this 
we divide Eq. (85) by .,., and differentiate with respect 
to.,.,. We have 

(87) 

We proceed as follows with Eq. (86). We use Eq. (85) 
to get an expression for 11 in it. We then get 

i OCI e'~ "" e l ; q 
11'j,"+211!/+ iI1'j,' +iI1/2=-;--S - d~-i S ---. d~- -(F,'+iF,). 

<:11 , 11+~ ,(l]+~)- 2 
(88) 

After that, dividing by .,., and differentiating we can get 
an equation for Fa. The boundary conditions for these 
equations are Fh Fa- 0 as .,.,- 00 and the joining up with 
the solution of (77) when u = U. To do that we change in 
Eq. (84) to the variable.,., = f3u and use the fact that in the 
joining-up region .,.,« 1. As a result we get 

i ( 1 i:t ) F,-- In-+-+l , 
11 11] 2 

(89) 

i ( 1 in ) F.-+---:- In-+-+2 . 
- 1]' lP 2 (90) 

We solve Eq. (87). We note first of all that the corre
sponding homogeneous equation has the solution 1/.,.,z. 
We therefore put F1 = C(.,.,)/.,.,z. We have then 

"( 1). diS· e'~ C + i-- C'=TJ-- -d;. 
'II d'll TJ , 'II+~ 

Solving this equation we find 

l' .". d 1 • .j, C, 
F =-S I] .-",S ""--S -d~+-

, I]' _ ' ~ dl], 1]," 1],+~ TJ' ' 

where the constant C1 is selected from the jOining-up 
condition at .,.,« 1. Transforming the integral we get 
finally 

i • ei~, 1 S· e"'-i 
F,=--S-ln(~+1)d~ +- --In(~+1)d~. 

I] 0 ~+1 1]', ~(~+1) 
(91) 

One checks easily that this formula satisfies condition 
(89) for small .,., and, on the other hand, satisfies Eq. 
(87). 

We now can substitute this expression into Eq. (88). 
We get for Fz an equation like (87) which differs only in 
the right-hand Side, which turns out to equal 
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We shall not continue with this rather complicated cal
culation and note merely that the function F1 makes it 
possible to determine the contribution of order f3 2 and 
F z the contribution of order f3 3 in Q. The main term 
among those terms is the one proportional to f3 zlnzf3. 
To determine it, it turns out that one needs Eq. (90). 

We rewrite Eq. (83) in the form 

Q-- "' i~ J (i-e'") (!W,+~'F.)dTJ· 
2nc., 

When .,.,« 1 we have F1 a:: 1/.,." whence it follows that 
small .,., do not playa separate role in determining the 
term of order f3 z. Substituting Eq. (91) and integrating 
first over.,., and afterwards over !; we find 

Q, =e2v~2~ (3) hlc. 

Substituting here f3 = 2WoTz and using the fact that the 
real part of Q determines the dielectric permittivity: 
ReQ= ew~/41Tc, we find 

eo=i6~ (3) .'VT,'. (92) 

On the other hand, if we take Fz from Eq. (90) we get a 
logarithmic integral over.,., with the limits from f3 to 1. 
Hence, the region .,., ~ 1 turns out to be unimportant for 
the logarithmic accuracy. To that accuracy we thus get 

e'v i 
Q,=-i~'ln'-. 

2nc ~ 

Using the fact that ImQ=iwoo/c we get from this 

(J",,(4/n)e'vlllo'T,'ln' (1/1ll0T,). (93) 

The value of the dielectric permittivity obtained by 
Berezinski'iU ] has the same dependence on the variables 
but differs from (92) by a numerical factor which is, 
apparently, the result of a numerical error. The cor
rect value of the constant in Q1 (or EO) can be found in 
the paper by Gogolin, Mel'nikov, and Rashba[Z] (the dif
ference of a factor 2 is explained by the fact that in[a] 
two spin projections are taken into account). The value 
of (J found by Berezinskit[1] is the same as (93) after 
bringing the notations in agreement. 

We now go to the case {3» 1. We expand first of all 
the boundary condition (78) in 1/f3: 

<D(O u)=_1_+ 1 2 + 
, 1+u i~(1+U)2 ~2(1+U)3 .. , (94) 

We turn to Eq. (77) and in the first approximation we 
drop the term on the right-hand side in which there is 
no f3. We obtain a first-order equation which can easily 
be solved by the characteristics method. The solution 
has the form 

. (U+i .) <D=[u(u+1)]-"'I' -u-e-'" , 

where cp(x) is an arbitrary function. For t=O we have, 
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when (3» 1, <p-1/(u+1) (see (94». In view of that c;o(x) 
=X-1/ 2 and we finally get 

Moreover, assuming the term in (77) without {3 to be 
small and using the method of successive approxima
tions we can also find the next-order term which has 
the form 

«Il.=eiW2 ( __ 1 __ _ t_) 
i~(1+u)' 1+u . 

As a whole up to terms of order 1/{3 or t we can write 
the result in the form 

[ 1 1] . «Il(t u)""e-(·-i,/,,. --+--- ""e-"-iP12"tlI(O u) 
, 1+u i~(1+u)' ' . (95) 

We emphasize that this result is already invalid for 
terms of order {3 -2 or t 2• The transfer of t to the ar
gument of the exponential is justified by the fact that it 
is clear from what preceded that <P must be exponential
ly damped at very large t. This means that when we 
take integrals over t we must put i{3 - i{3 - y with y« (3. 
Equation (95) automatically guarantees that. 

Further we have3) 

S• «Il (0, u) 2 4 
«Il t u dt""---""-----

• (,) l-i~/2 i~(1+u) (i~)'(1+u) 
2 

(i~)'(1+u)' 

Substituting this expression into (81) we find 

Q=-e'vl nc+4ie'vl nc~. (96) 

Hence, connecting this with what preceded, we find the 
asymptotic behavior of the dielectric permittivity and 
of the conductivity: 

e =-4e'vl Ul. '=-4nn.e'/mUl.', 

cr=2e'vl nUl. 'T,=2n.e'TJ m (Ul.T,) " 

where ne = po/n = mvhr is the number of electrons. As 
should be the case, when WT2» 1 the permittivity is giv
en by the formula for free electrons. 

I )The introduction of the mutually uncorrelated fields 11 and t 
as well as Eq. (11) for G which is of first order in B/Bz is 
valid provided 1/T« £F. 

2)One should note that equations very close to (57) and (73) 
were obtained also by Berezinskir. III However, in view of 
the fact that the numerical value of Q(wo) found inlll is in
correct and that our method for solving the equations is some
what different we thought it useful to give here the complete 
calculation right to the end. 

3 )We note that the same result is obtained if we take the ex
pression for cf1 without transferring t to the exponent and put 
i{3-i{3-')', where ,),-+0. 
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The roton spectrum in superfluid He3_He4 solutions is considered by taking into account interactions 
between impurity excitations and rotons. An equation for the self-energy function of the rotons is obtained 
within the framework of a model in which this interaction is assumed to be a point interaction. The 
equation is solved by numerical integration with a computer. The solutions are used to determine the 
thermodynamic characteristics of the rotons and the energy dependence of the cross sections of various 
scattering processes in which rotons take part. 

PACS numbers: 67.60.-b 

INTRODUCTION 

It is known that in superfluid He3_He4 solutions there 
are two excitation brancheS-Fermi (impurity) and 
Bose. We are interested in temperatures at which the 
role of the phonons is negligible, i. e., the only Bose 
excitations considered are rotons. Information on the 
spectrum of these excitations in He3_He4 solutions can 
be obtained from measurements of the density of the nor-
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mal component by the method of the OSCillating stack of 
disks, [1-3) the velocity of fourth sound, [43 or mobility of 
the positive ions. [5] In the interpretation of the experi
mental data, the authors of the cited papers have con
cluded that the roton gap decreases strongly with in
creaSing impurity concentration. 

However, the results of experiments on the scattering 
of photons[6.7] and neutrons[81 by superfiuid He3_He4 
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