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We investigate the piezospectroscopic effect for the 4A2--;4T2 transitIOn in the ZnS-Co crystal. the 
deformation potentials of the 4T2 term of the CoH ion are determined. The potentials are calculated for a 
certain model of the crystal field (exchange-charge model), and the part connected with the nearest 
neighbors of the impurity ion (ligands) is separated. The dynamics of ZnS crystals are calculated and the 
projections of the density of the vibrational states in the ligand displacement space are determined. The 
energy of electron-vibrational interaction between an impurity ion and non-fully-symmetrical vibrations, 
which are active in the Jahn-Teller effect, is found. 

PACS numbers: 61.50.Qy, 7l.70.Ch, 78.50.Ec 

INTRODUCTION 

A lattice defect alters the vibration spectrum of a 
crystal because of the associated changes in the mass 
and the force constants. The presence of weakly bound 
electrons in the defects (the electronic-transition fre
quencies are of the order of the oscillation frequencies)l) 
offers another possibility of perturbing the vibration 
spectrum on account of the electron-vibrational interac
tion components that are linear in the displacements of 
the nuclei. The oscillations mix effectively the closely 
lying levels; this gives rise to states that are super
poSitions of electronic and vibrational states, and whose 
energies differ from the energies of the bare states. 
These new states can be called local or resonant, de
pending on the degree of localization near the defect, 
a degree determined by manner in which the states de
cay. 2) The effect has a resonant character. 

In the case of a truly degenerate (and not quasi-de
generate) electron level, interaction with non-fully
symmetrical vibrations that are active in the Jahn-Tel
ler (JT) effect) gives rise to a shift of the equilibrium 
positions of the nuclei that neighbor on the defect, along 
directions determined by the symmetry r k of the elec
tronic level and by the vibrations that interact with it. 
The symmetry of the latter depends on the irreducible 
representations (other than the fully-symmetrical one) 
are contained in the symmetrized product {rkx r k}. Each 
of the oscillation modes determined by this condition 
corresponds to several equivalent distorted nuclear con
figurations, between which migration takes place. Then, 
just as in the quasi-degeneracy case, localized states 
are produced having only a genetic connection with the 
electronic and the vibrational states from which they 
stem, and frequencies are produced that are shifted 
relative to the frequencies of these states. Electronic 
resonance of the degenerate levels plays here the same 
role as resonance of electronic and vibrational levels in 
quasi-degeneracy. 

In a number of papers[2-71 (including our own, [41 
henceforth deSignated I), the resonant and local states 
of such type were determined for a number of systems 
from an analysis of the electron-vibrational spectra cor
responding to transitions to orbitally degenerate levels 
of impurity ions of transition metals. In these studies, 
the real crystal vibration spectrum was approximated 
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by a large number (from 1 to 4) of effective oscillators 
of definite symmetry, the infinite set of electron- vibra
tional states was cut off at terms with sufficiently small 
values of n (vibrational quantum number), and the ma
trices of the spin-orbit interaction and the electron-vi
brational interaction were diagonalized; a constant (or 
constants) regarded as a variable parameter and the ma
trix operator determined by the symmetry of the vibra
tions and of the electronic level, are separated in the 
Hamiltonian of the electron-vibrational interaction. The 
electron-vibrational interaction energies (E IT' see be
low) obtained from the best fit to the experimental data 
are equal to -100 cm-I, i. e., they are of the order of 
the spin-orbit splitting and of the frequencies of the ac
tual vibrations, so that the electron-vibrational interac
tion in these systems can be regarded as intermediate. 

In contrast to this phenomenological treatment, we at
tempt in this paper to develop a microscopic picture of 
the electron-vibrational interaction for the 4T2 term of 
the Co2+ ion in a znS crystal. To this end we investi
gate the piezospectroscopic effect in the 4A2- 4T2 tran
sition (Sec. 1), determine the deformation potentials, 
i. e., the constants characterizing the action of various 
symmetrical components of the strain tensor on the 4T2 
term, determine the electron-vibrational interaction 
constants for the same term within the framework of the 
model of the complex (Sec. 2), and take into account the 
dispersion of the vibrations in the crystal (Sec. 3). 

1. EXPERIMENTAL RESULTS 

The 4T2 term of the tetrahedrally coordinated C02+ ion 
is split by the spin-orbit interaction into four levels: 
r: (lower), r s, r:, and r7 (see Fig. 1 of I). The struc
tures of the absorption and luminescence spectra con
nected with the 4A2- 4T2 transition have been considered 
earlier in I (see also[Sl). In the present study we inves
tigate the action of uniaxial compression on the leading 
line of the absorption band (the transition ra(4A2) 
- r: (4T2». 

The znS-Co crystals (ceo - O. 1 at. %) constituted a 
sphalerite microtwin with a concentration of stacking 
faults (i. e., layers stacked in accordance with the hexag
onal packing law) of '" 10%. The pressure P was applied 
along the twinning axis [111] and in the plane {111} per
pendicular to it, in which the directions for the two twins 
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TABLE I. Characteristics of the piezo
spectroscopic effect at the level r~ (4T 2) 
(in units of cm-1/100 kgf cm-2). 

Experiment C'3!c1J!ation 

Cubic Trigonal z=o Z=l centers centers 

~OOI 

I 
1.42 

I 
1.12 1.02 

I 
1.00 

.dIll 0.029 0.031 0.063 0.055 
tl, -0.032 -0.026 -0.044 -0.044 

were equivalent. We shall henceforth indicate only one 
of the two equivalent directions. Samples cut in the 
form of parallelepipeds with edges along the directions 
[Ho], [H2]. [111] and with typical dimensions 2x2x4 
mm were placed in a helium cryostat equipped with a 
device to apply the pressure. The spectra were re
corded with an SDL-1 spectrometer. 

The piezospectroscopic effect was investigated on the 
3524 cm-1 line of the cubic centers and on the 3403 line 
of the trigonal centers (C02+ ions in stacking faults). 
The results obtained for both lines are shown in Fig. 1. 

The splitting of the lines in the case of uniaxial com
pression of the crystal is a reflection of the splitting of 
the upper level of the transition Q(4T2), since the ground 
state 4A2 of the C02+ ion, being an orbital Singlet, is not 
split (in first-order perturbation theory). An analysis 
of the experimental data by means of Kaplyanskit's for
mulas[8] has made it possible to determine the values of 
the shift3 ) ~o and the splittings of the level r~ (4T2) if P 
is applied along [111] (~111) and along [001] (~OOl)' These 
splittings are proportional to the deformation potentials 
of this level (Table I). In the calculations we used the 
following values of the parameters: 

Dq=38:J em-l , 7=1.:3449 a,,', 7=4.7348 ao" 

G(Z=O) =-1.90, G(Z=1) =4.37. 8,=0.0608, 
8,=0.07"G, 8.=0.0499, 8/=-0.0420 a,,-I, 

8.'=-0.0294 ao- ' , 8/=-0.0406 a,,-'. 

A characteristic feature of the piezospectroscopic ef
fect on the considered level is the strong anisotropy of 
the deformation potentials. 

2. ANALYSIS OF THE DEFORMATION POTENTIALS 
AND ELECTRON VIBRATIONAL INTERACTION 
CONSTANTS OF THE Co2+ ION IN THE 4T2 STATE 

In the representation of the fictitious angular mo
mentum s= t, the wave functions of the spin-orbit quad
ruplet q (4 T2 ) investigated in the piezospectroscopic ex
periments described above, are equal to 

- 1 - - -- -I±'I,>='F -=(1"31 ±1, ±'/.>+ 1210, ±'1.>+51'F1, 'F'I,», 
130 (1) 

- 1 - -- - -I±'/,>=± -=(31±1, 'F'/,>+31210, ±'I,> t-131'F1, ±'I,», 
130 

where I i~, S. > is the wave function of the term 4 T 2 (S = t) 
in the representation of the fictitious angular momen
tum Z= 1. 

Under uniaxial deformation, the shift and splitting of 
the level r~ are determined by the parameters of the ef
fective Hamiltonian acting in the space of the functions 
(1) 
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where el. (r) are linear combinations of the components 
of the homogeneous strain tensor eli' which transform 
in accord with row A of the irreducible representation 
r of the group Td 

eo 1 
e (r,) = -= = -=-(e,.+e •• +e,,) , 

V3 V3 

1 1 
e, (r,) = -=(3e,,-e,,) , e, (r.) = -(e,.-e •• ), 

213 2 
e,(L) =ejk, (i*i*k), 

0, (r,)= :'IS,' - 8 (8 + 1), Q2 (r3) = 1/3 (sx2 - S.'), 
- 1 "" "" "- "" Q; (r,) = "2 (88,\ + 8,,8;), (i +- i +- k), 

A, B, and C are the potentials of the hydrostatic, tetrag
onal and trigonal deformation, respectively. 

Expressing the components of the strain tensor in 
terms of the external pressure P and the elastic con
stants Cij of the sphalerite lattice, and diagonalizing 
the Hamiltonian (2), we obtain the isotropic shift 

AP 
Ao=- --::=.-----

13 (Cl1+2C12 ) 
(3) 

and the splittings of the level r: at P along [001] and P 
along [111] 

2isBP 
t.oo'=-C -C ' 

11 1:! 

CP 
~111=-' 

:!C" 

The deformation potentials are linear functions of the 
parameters b':, determined in preceding paper, [9] of the 
Hamiltonian of the 3d electron localized on a cation site 
of a homogeneously deformed sphalerite lattice 

A=~b,(r,) B=-~b.o 5 ' 75 ~, 
C 1 (' 4 ,) '=30 b, + 5 b, ' 

The potentials of (5) were calculated within the frame
work of the model of pointlike exchange charges (see[9]), 
in which explicit account was taken of the Coulomb in
teraction of the 3d electron with all the pointlike ions in 
the lattice, and the contribution to the energy of the im-

a 

5'1:)': 
P, k~/crn ~ 

5'10' 
P, kg/em' 

FIG. 1. Piezospectroscopic effect on the lines 3524 cm-1 (a) 
and 3403 cm-1 (b) in the ZnS-Co crystal. 
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~~~~~R7tI 
~~LrU~~ 
abc d e 

FIG. 2. Symmetrized deformations of the tetrahedral com
plex, characterized by normal coordinates: a-fully symmet
rical deformation fj; b-tetragonal fa, c-trigonal (macro
scopic) f~, d-trigonal (microscopic) f~, e-rotation f 4• 

purity ion from the overlap of the electron clouds of its 
valence electrons and the ligands is approximated by a 
quadratic form of the corresponding overlap integrals 
with one phenomenological parameter determined from 
the Stark structure of the 3d-shell spectrum. 

We write down the deformation potentials (5) in explic
it form in terms of the parameters of the models, and 
separate the contributions AI, Bl , and ClI which corre
spond to the energy of the interaction of the 3d electrons 
with the nearest neighbors (four S ions in the vertices of 
a tetrahedron): 

16 e'G 640 e'r' 
A,=- ---(R8: -8,)+ ---Z 

45 1'0 729 1',' ' 

128 e'G 1024 e'r< 
B)=---8, +----Z 

135 1'0 2187 1'0' ' 

e'l.T' 
~B=0.201-, Z, 

1'0 

(Sa) 
(Sb) 

(,' 16 e'G ,,16 e'f£ 80 e'r' 
C, =---(148,-38, R-48, R)+----Z+----Z 

945 R 315 R' 567 R' ' 

4 e';:Z ,;:z e'; 
c/D,= __ z; ~C= __ e -Z[0.0185+0.0093(W+D) ]+0.0528- Z. 

63 R' 1'0' 1'0' 

Here 2ro is the lattice constant, R = .f3ro/2 is the radius 
of the first coordination sphere, Z I e I is the charge of 
the Zn ion, yn is the mean value of the n-th degree of 
the radius of the 3d orbital, S. = S; + ~ + k.S~, k2 = 1, k4 
= - t; Ss' Sa, S. are the overlap integrals of the 3d func
tion with the 3s, 3pa, and 3prr functions of sulfur, S: 
= ds.1 dR; G is a parameter of the model and can be found 
at a fixed value of Z from the difference between the en
ergies of the e and t2 states of the 3d electron in the stat
ic crystal field of sphalerite[9] 

8 e'G e'r' 
10Dq =--8.+1.389--Z. 

3 R 1',' 

We have separated in the trigonal deformation poten
tial (see (Sc)) the terms due to the displacement (Cfl) 
and polarization (CfDI) of the sublattice of the sulfur ions 
relative to the sublattice of the zinc ions (see Fig. 2). 
The internal microscopic deformation that produces the 
piezoelectric effect in the sphalerite lattice is charac
terized by dimensionless parameters Wand D, [9] the 
values of which were obtained in the shell model by using 
the parameters of model II of the dynamics of the sphal
erite lattice[lO]: W= -1. 48, D= 2 .1O-4Iz; these values 
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were used in the calculation of the potential of the trig
onal deformation C. The mean values r·, the overlap 
integrals, and their derivatives were calculated with the 
atomic wave functions of Co and S. [11] Since the effec
tive charge on the ions Zn in ZnS is close to 0.7, [12] the 
values of the parameter G were obtained from (7) at 
Z = 0 and Z = 1, and were cited above. 

The results of the calculation of the deformation po
tentials are given in Table II, while the experimental 
characteristics of the piezospectroscopic effect on the 
transition r e(4A2 )- q(4T2 ) and those calculated from 
Eqs. (3) and (4) are compared in Table 1.41 

The agreement between experiment and a theory that 
uses no fit parameters whatever can be regarded as sat
isfactory, and this gives grounds for using the exchange
charge model for the separation of the contributions 
made to the trigonal deformation potential by two types 
of trigonal deformation. The strong anisotropy of the 
effect is due, first, to the peculiarity ofthe wave functions 
of the T2 state produced as a result of the Stark splitting 
of the F state of the free ion, and second, to the partial 
cancellations of the contributions to the combined poten
tial of the trigonal deformation C from the macroscopic 
(C:el ) and microscopic (WCfl) deformations. 51 In the 
case Z = 0, for example, the contribution to the specific 
splitting ~111 from the macroscopic deformation (at W 
=D=O) is ~:~I=0.147 cm-l /l00 kgf/cm2 , while the con
tribution of the microscopic deformation is ~:rl·DI 
= - O. 084 cm- l /l00 kgf/cm2• 

As seen from Tables I and II, a change of the effec
tive charge, within reasonable limits, exerts no essen
tial influence on the results of the calculation, i. e., the 
contribution of the ion charges to the deformation poten
tials is relatively small, and the greater part of this 
contribution is connected with the ligands, (i. e., Al 
»M, B l » ~B, Cl » ~C). Consequently, when consid
ering the electron-vibrational interaction we can confine 
ourselves to allowance for the interaction of the impurity 
ion only with the vibrations of the nearest neighbors. An 
arbitrary deformation (static or dynamic) of the tetra
hedral complex CoS4 can be resolved in the symmetrical 
coordinates QA (r) that form the bases of the irreduc ible 
representations r l , r a, q, r~, r 4 of the group Td-Fig. 
2. The Hamiltonian of the lattice with isolated impurity 
ion in the state 4T2 will be expressed in the form 

Jjf={Eo+ .ElIw;(q) [aq/aqj++]}I+~A(r8)+ .Ev.(r;}Q,(r,), . ~ 

(A, i=I,3,4,5",5'), (8) 

TABLE II. Deformation potentials of the level ft(4Tj) and of 
the electron-vibrational interactions constants of the 4T2 term 
(in em-I). 

o 117991 11851 
1 1844 1257 
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where ~o is the energy of the 4 T2 level, I is a unit ma
trix, X is the spin-orbit interaction constant, 6) a;J and 
aqJ are the creation and annihilation operators of phonons 
with wave vector q and frequency W j(q) from the branch j. 

The parameters of the electron-vibrational interaction 
in the electronic operators, f\ (rl ), can be connected 
with the deformation potentials of the spin-orbit state, 
r: (4 T2 ), by expressing the symmetrical coordinates of 
the CoS4 complex, which are induced by the long-wave 
lattice vibration, in terms of the component of the dy
namic deformation constant 

where °1 are the components of the axial vector of the 
rotations. Taking the spin-orbit interaction into ac
count, the effective Hamiltonian of the electron-rotation
al interaction in the basis I i., S.> of the term 4T2 is 
equal to 

~(')=-(Ae/4) [Sf]=-(A/41'iro)Q(r.) [Sl]. 

The corresponding coupling constant x/ro is smaller by 
two orders of magnitude than the coupling constants with 
the vibrations of symmetry r h r3, r5 (see below) and 
will henceforth be assumed equal to zero. 

The representations r 1 and r 3 are encountered in the 
expansion of the deformation of the complex one time 
each, and the corresponding deformation potentials A 
and B of the level r: characterize directly the electron
vibrational interaction of the term 4T2 with the vibrations 
of the same symmetry. However, the trigonal deforma
tion potential C by itself yields no information on the in
teraction with the trigonal vibrations rs and r~. The 
two types of trigonal deformation arise simultaneously 
under uniaxial compression, and the piezospectroscopic 
experiments yield the result of their joint action. Their 
contributions can be separated only within the framework 
of some crystal-field model; this is why we have used 
the exchange- charge model in the present paper. 

In a real basis made up of eigenfunctions of the ficti
tious angular momentum i, viz., l/Jx, l/Jy, and l/Jz (seeCl3l , 

p. 284 of the Russian translation), the effective interac
tion of the Hamiltonian of the ion Co2+ in the state 4T2 

with degenerate oscillations takes the form 

~JT=V(r3) [8.Q. (r.) +8.Q.(r,) ] 

+ L, [v(r,·)Q.(r,a) + v(r:)Q,(r.')]T", 
.zrz 

where the operators l~ tE, 1'21 are given in the book of 
Abragam and Bleaney (p. 285 of the Russian translation), 
while the coupling constants, with (2) and (9) taken into 
account, are equal to (the constant of the coupling with 
fully-symmetrical vibrations is equal to V(r1)=A1lrO) 

v(r,)= 1~. , 
21'2r. 

(0) 

v(r,')=- 15~. , 
2l'2ro 

15C(W) 
v(r.')=---'-

2ro 

(we neglect the polarization of the sulfur ions in the 
course of the vibrations). 
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(10) 

As seen from Table II, the constants of the coupling 
with the tetragonal and trigonal vibrations are of the 
same order of magnitude. The change produced in the 
energy of the 4T2 term by the electron-vibrational in
teraction can be approximately estimated within the 
framework of the one-mode model; in particular, if we 
neglect the interaction with the trigonal vibrations and 
put A = 0, then 

(11) 

where J..L is the mass of the sulfur atom and weft is the 
frequency of the vibrations of symmetry r 3.7) Putting 
Weft = 300 cm-1 (see below), we obtain from (10) and (11) 
(at Z = 0) E J T = 32 cm -1, 8) i. e., EJT is comparable in 
magnitude with the 4T2-term splitting due to the spin
orbit interaction. This circumstance demonstrates the 
need for simultaneously taking into account, in the cal
culation of the JT effect, both the interactions with the 
r3 and r5 vibrations and the spin-orbit interaction. 

3. ELECTRON VIBRATIONAL INTERACTION WITH 
CONTINUOUS VIBRATION SPECTRUM 

The value of EJ T in the case X = 0, V(rs) = V(~) = 0 can 
be calculated also with account taken of the dispersion of 
the lattice vibrations. Expanding the symmetrical coor
dinates QA (r3 ) in the normal coordinate of the impurity 
lattice 

Ql(r) = L,Ql(r,j) (a,+a/) (1I12m,)'" (12) 
, 

(j= (q,j) in the regular lattice), after substituting (12) in 
(8) and eliminating the terms linear in af and ai, we ob
tain a system energy shift by an amount 

En(r,)= V'(r,) ~ IQ1(r" j) " • 
2 k..l m' . , ' 

(13) 

Introducing the Green's function of the impurity lattice 
in the space of the symmetrical coordinates 

, ')-L, Qdr.j)Ql·(r',j) 
GD(r,r,w - ".' 

W -WI -I.e , 

we obtain from (13) 

V'(r,) "s dw En(r,)=-- ImGD(r"r"m')-, 
nom 

(14) 

where Wo is the end-point frequency of the vibrational 
spectrum of the lattice. In the case of a "strong" JT ef
fect, due to interaction with trigonal vibrations, 

4 •• dm 
EJT(r,) = -S-[V'(r,a)lmGD(r.-, r.-, w')+ 2V(r.-) vcr,') 

3n 0 w (15) 

x 1m GD(r,a, rl, m')+ V'(r.')lmGD(r,', r,', w')]. 

The Green's function of the impurity lattice is con-
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nected with the Green's function of the regular lattice G 
by the relation 

(16) 

where ~<I> is the lattice-perturbation matrix and includes 
the change of the mass in the substituted site and the 
change of the strength constants. Assume that the ma
trix ~<I> has nonzero elements only in the space of the 
displacements of the CoS4 complex. In this case the vi
brations of the complex can be characterized by two 
force constants: central (along the direction of the bond) 
and tangential (perpendicular to it). The former, <I>(r1), 
characterizes the fully-symmetrical vibration, and the 
latter <I> (r3) the tetragonal. The trigonal vibrations are 
characterized by combinations of these constants. 

The imaginary parts of the lattice Green's functions 

1m G (f, f', 00') = n .E Q,(f, jq)Q,. (f', jq)6(00'-00,'(q» (17) 

'.' 
were calculated with the characteristics of the sphalerite 
vibrational spectrum, determined within the framework 
of the shell model with the set of parameters II (see UO]). 

The calculation and the diagonalization of the dynamic 
matrix were carried out with the BESM-6 computer. 
The calculations were made for wave-vector values that 
are uniformly distributed in the irreducible part of the 
Brillouin zone q = rr(ql> q2' q3)lro' where qj = nj In, and nj 
are integers so chosen that q does not go outside the 
limits of the irreducible part. At n = 48, a total of N 
= 442 368 points is taken into account in the complete 
Brillouin zone. For each value of the wave vector q, 
the diagonalization of the dynamic matrix yields six val
ues of the square of the frequency w~, belonging to three 
acoustic and three optical branches, and accordingly six 
polarization vectors each for the cores and shells of the 
ions located in the lattice sites. Having at our disposal 
this information for the. entire Brillouin zone, we calcu
late the density of the distribution of the vibrations in the 
squares of the frequency 

1(00')= .E6(00·-00/(q»/6N 
., 

and the functions (17). The explicit form of QA (r ,jq) can 
be obtained by expressing QA (r) in terms of the displace
ments of the atoms of the complex CoS4 and expanding 
the latter in the normal vibrations of the lattice, 

To charige over from distributions in the squared fre
quencies to distributions in the frequencies, the corre
sponding functions must be multiplied by 2w, namely, 
F(w) = 2wf(w2 ), A plot of F(w) is shown in Fig. 3, which 
contains also the so-called projected state densities of 
the regular crystal 

Hri (00) = (200/n) 1m G(f;, f" 00'), Hr.' (00) = (200/n) 1m G(f,·, f,', 00'). 

(18) 
It is seen that the vibrations rl> r 3, and r; are rep

resented mainly in the optical branches and can be de-
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scribed with a certain accuracy by one effective oscilla
tor each (weft "" 300 cm-1). The 11 vibrations are distrib
uted over the entire vibration spectrum. 

The central ion of the complex does not take part in 
the vibrations r 1 and r 3, and therefore ~<I>(rl) and 
~<I>(r3) in (16) are diagonal matrices of rank 1 and 2, 
respectively, the nonzero elements of which are equal 
to the changes of the force constants <I>(r1) and <I>(r3), 
Information on the change of the central force constant 
can be obtained from an analysis of the spectrum of the 
Raman scattering of the light in the ZnS-Co crystal. U4] 

A comparison of the scattering spectrum connected with 
excitation of fully-symmetrical vibrations with the cor
responded projected density at different values of ~<I>(rl) 
(calculated from (18) with allowance for (16)) shows that 
agreement is reached at ~<I>(rl)/<I>(rl)= - O. 20, i. e., 
when the central force constant is decreased by 20%. U4] 

It is natural to assume that the change of the tangential 
force constant does not exceed this value. An indirect 
confirmation of this estimate obtained from an analy
sis of the electron-vibrational structure of the lumines
cence spectrum, particularly its part connected with ex
citation of optical vibrations. The constants of the elec
tron-vibrational interaction of the level r: (4T2) with the 
vibrations r 3 , q, and 11 are all of equal order, which 
is also the order of the difference between the electron
vibrational interaction constants of the levels r:(4T2 ) and 
ra(4A2) with the r 1 vibrations are of the same order (we 
recall that this difference is equal to - 5V(r1 )). There
fore the electron-vibrational structure of the lumines
cence spectrum (see Fig. 3a in I) is a reflection of the 
density of all the vibrations indicated above (although the 
separation of the contributions of each of them is diffi
cult) and should duplicate with some accuracy the com
bined density of these vibrations. As follows from (14), 
a decrease of <I>(r1) leads to a redistribution of the in-

FIG. 3. Total density and projected densities of the vibrations 
in the ZnS crystal. 
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tensities among the LO and TO maxima of the Hrl curve 
in favor of the second of them; the same takes place 
also for the ra vibration. Thus, for example, at ~rI>/rI> 
= - 0.2, the ratio of the areas of the LO and TO maxima 
decreases (in comparison with the regular crystal) by 
49% for the r 1 vibrations and by 33% for the r s vibra
tions. Thus, the indicated ratio is a sensitive criterion 
of the change of the force constants. 9) In the lumines
cence spectrum this ratio is equal to O. 38, i. e., only 
24% smaller than its value for the total density of the 
oscillations F(w), for which it is equal O. 5 in accord 
with the degeneracy multiplicity of the corresponding 
vibrations. This estimate shows that the decrease of 
the tangential force function is small enough, and the 
value given above (- O. 2) is apparently indeed the upper 
bound of ~4>(rS)j4>(r3). 

From formulas (14) and (15), using v(r/) from Table 
II (Z=O), we obtain EJT(rs) = 93 cm-1 (regular crys
tal),lO) En (rs)=114 cm- 1 (~rI>=-0.2), E JT (r5 ) = 100 cm-1 

(regular crystal). 

To conclude this section we note that in the calculation 
of the splittingsand the shift of the r: (the value of ~) 
we have neglected the local change of the elastic con
stants. In fact, the change of the normal rigidity (with 
respect to the bond) of ~rI>(rl) leads to a change of the 
local compressibility in the ratio 

from which it is seen that a 20% decrease of the normal 
rigidity should increase ~o by 25%. The changes in the 
calculated values of ~OOl and ~U1 are not larger. 

4. CONCLUSION 

The values of the electron-vibrational interaction pa
rameters (EJT(r/), i= 3, 5) obtained in this paper for the 
4Tz term of the Coz+ ion in ZnS show that for the investi
gated system there actually is produced an intermediate 
electron-vibrational interaction wherein local and reso
nant states shifted relative to the frequencies of the bare 
electronic and vibrational states by an amount on the or
der of the frequency itself. We note that direct experi
mental proof of the existence of similar states in the 
crystal ZnS-Co was obtained earlier. [15] 

Since v(rs), v(r:), and v(r~) are of the same order 
of magnitude (Table II), the structure of the electron
vibrational levels of the term 4Tz is determined by the 
electron-vibrational interaction both with the tetragonal 
and the trigonal vibrations. Even for the tetragonal vi
brations, which are connected mainly with the optical 
branches (Fig. 3), the single-mode model is not a good 
apprOXimation, since the influence of the acoustic 
branches is not small. On the other hand, introduction 
of one more (low-frequency) effective oscillator to take 
into account the influence of these branches is not justi
fied, since the dispersion for them is of the order of the 
vibration frequency. The situation is even more com
plicated when electron-vibrational interactions with 
tetragonal vibrations is considered. An adequate de
scription of the electron-vibrational structure of the 
spectrum is possible only by solving rigorously the prob-
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lem of the interaction with the continuous vibration spec
trum, as was done by Polinger and Rozenfel'd[16] for the 
Simplest problem of a doubly degenerate level interact
ing with tetragonal vibrations. 

The values of the constants of the electron-vibrational 
interaction with vibrations of various symmetry, ob
tained in this paper, and the spectral densities of these 
vibrations (with allowance for the possible influence of 
the impurity ion) make it possible to consider for this 
system processes in which an essential role is played 
by the electron vibrational interaction, e. g., determine 
the times of the spin-orbit and spin-lattice relaxation, 
and others. 

\)This situation can be regarded as quasi-degeneracy. 
Z)The terms ''bound'' and "hybrid" are also used for these 

states. With respect to large-radius centers, for which the 
change of the properties can be interpreted within the frame
work of the macroscopic description, the term "dielectric 
mode" is used. (11 

3)The shifts of the centers of gravity of the 4T2 term and of its 
spin-orbit levels (without allowance for the change of the 
spin-orbit interaction constant is -1/5 of the shift of the cen
ter of gravity of the r8(4Az) - rt(4T z} tranSition. 

4)When comparing the experimental and calculated characteris
tics of the piezospectroscopic effect we do not take into ac
count the fact that the upper level of the transition is vibronic, 
i. e., it receives, in general, contributions from all the elec
tron-vibrational levels that have a symmetry r 8. However, 
as is clear from I (see Fig. 2), the main contribution to this 
level is made by the state rt, and neglect of all other levels 
introduces an error not larger than 10-20% in the calculated 
value. 

5)We note that for the term 5Tz of the Fe2> ion in znS, which is 
the result of the Stark splitting of the 5D term of the free 
Fe2• ion, the anisotropy of the deformation potentials (which 
is much smaller) is due practically entirely to the second of 
the indicated reasons. C91 

6)In the znS-Co crystal we must distinguish between two spin
orbit interaction constants, diagonal and off-diagonal, but 
their values are close to the values of A of the free Co2' ion 
(-178 cm- I ), and this value can be used to estimate the elec
tron-rotational interaction constant (see below). 

7)The quantity E J T is frequently used as a parameter that char
acterizes the electron-vibrational interaction with definite 
non-fully-symmetrical vibrations (in the case, with the te
tragonal ones), and if the interaction with other non-fully
symmetrical vibrations (trigonal) and the spin-orbit interac
tion are not negligibly small. 

8)Koidl et al. [51 obtained, within the framework of a phenomeno
logical theory in which only interaction with tetragonal vibra
tions are taken into account, a value EJT(rS) =40 cm-I, at 
which the structure of the electron-vibrational band, con
nected with the transition to the 4Tz term, is described in 
the best manner. 

9)For the r~ vibration in which the central ion partiCipates, 
the matrix ~.p includes the change of the mass of the impurity 
ion. This circumstance is not taken into account, since the 
mass defect is relatively small (Ml/M"" 0.1). 

10)The difference from the value obtained within the framework 
of the single-mode model (Sec. 2) is due to the fact that al
lowance for the acoustic branches greatly increases the value 
of EJT , owing to the factor 1/ wZ (see (13». 
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We construct a method for rigorously evaluating the properties of one-dimensional metals in the field of 
impurities taking both types of scattering into account, quasi-classical forward scattering of electrons and 
backward scattering (i.e., from the neighborhood of the momentum Po to the neighborhood of - Po' 
where Po is the Fermi momentum). In contrast to the method proposed by BerezinskiI {Zh. Eksp. Teor. 
Fiz.65, 1251 (1974) [Sov. Phys. JETP 38, 620 (1974)]J the present approach possesses a higher degree 
of automatism; it enables us to generalize to the case of a quasi-one-dimensional system and to take into 
account scattering by phonons. We give a detailed account of the method itself in the present paper and 
demonstrate how it can be applied by calculating as an example the conductivity and permittivity of a one
dimensional metal. We correct a result in BerezinskiI's paper. 

PACS numbers: 72.lO.Bg 

1. INTRODUCTION 

Recently people have become interested in one-dimen
sional and quasi-one-dimensional problems. A distinc
tive feature of these problems is the fact that many ap
proximate methods applicable to three-dimensional sys
tems become unsuitable for one-dimensional ones. The 
exact solution of various problems for one-dimensional 
systems is connected with considerable difficulties and 
even when it is possible to find it the corresponding 
method makes it impossible to generalize it to the quasi
one-dimensional case (three-dimensional perturbation 
of a one-dimensional system). 

One of those one-dimensional problems is the prob
lem of the electrical reSistivity of a one-dimensional 
metal in which the electrons are scattered by randomly 
distributed impurities. Berezinskii[1] recently solved 
this problem. Unfortunately, the very ingenious meth
od applied by him does not permit generalization to the 
quasi-one-dimensional case. At the same time such a 
generalization is of considerable interest as real sys
tems are not purely one-dimensional. As an example 
we may mention the quasi-one-dimensional compounds 
which are the base of TCNQ, where the electrons have 
the possibility to make transitions between filaments. 
Another example is a semi-metal in a strong magnetic 
field where apart from the one-dimensional motion 
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along the field there is a finite transverse motion de
scribed by an oscillator wavefunction. 

We have been able to construct a new method for 
studying the properties of a one-dimensional system of 
electrons which interact with random impurities; this 
method enables us to generalize it to the quasi-one-di
mensional case. In the present paper, the aim of which 
is an exposition of the method, we restrict ourselves to 
the problem of the electrical resistivity of a purely one
dimensional metal which was already solved by Bere
zinskit. [1] In subsequent papers we shall consider qua
si-one-dimensional systems. 

11. THE GREEN FUNCTION 

We shall assume that the electrons have an energy 
spectrum 

8=p'/2m. (1 ) 

We shall assume T= 0 (if we neglect phonons, see[2], 
the temperature affects the results only when T - EF ). 

In the equilibrium state the electrons are then degen
erate and the Fermi momentum is connected with the 
electron density by the relation 

n,=2p,/2rr.. (2) 
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